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ABSTRACT

In inviscid quantum fluids like superfluid 4He (He II) and Bose-Einstein condensates (BECs),

rotational motion can occur when quantized vortex lines are present. A chaotic tangle of vortices

then induces quantum turbulence (QT), turbulent flows in the quantum fluids. QT has become

increasingly important in various physical systems, such as superfluid neutron stars, holographic

superfluid models of gravity, and complex light fields. Many unanswered questions remain despite

past studies on QT in He II and BECs. In this dissertation, we discuss four research projects, three

of which are numerical and experimental studies on selected questions in the quantum fluids field,

and the other is a numerical study on electron qubits floated on solid neon (Ne).

The first numerical study involves the merging process of a stationary BEC with a rotating

BEC. In classical fluid drops, rotational motion is transferred by viscous shear flow during the

merging process. However, BEC is inviscid, and the corresponding mechanism is less clear. Our

results reveal that soliton sheets play an important role in transferring angular momentum during

the BEC merging processes.

In the second numerical study, we study the two-dimensional (2D) QT in a spherical shell BEC.

Although Onsager vortex (OV) clusters, which are persistent clusters of like-signed vortices, can

form in the evolution of decaying 2D flat superfluid turbulence, our search for exotic OV patterns

in a boundaryless 2D spherical BEC shows that OV clusters never form despite the annihilation of

vortex pairs.

The third topic is the numerical and experimental study of the anisotropy in thermal counterflow

turbulence of He II. While turbulence in classical fluids generally becomes more homogeneous and

isotropic as the scale reduces, it is theoretically predicted that counterflow turbulence can become

more anisotropic in He II as the length scale reduces. Our experimental results support this idea,

but our simulation results suggest the need to revise past theoretical models for this turbulence.

Lastly, we numerically study electron qubits floating in a vacuum above solid neon, which is

under development and has recently achieved a coherent time long enough for practical usage. We

study the interaction between the electron and a small protrusion on the neon surface. Our results

indicate the possibility of novel electron states spontaneously bound around the surface bump and

the prospect of utilizing these states as a qubit.

xiv



CHAPTER 1

INTRODUCTION

Turbulence, a complicated and ever-changing flow, is common in our daily lives. This phenomenon

has been extensively studied in various research fields, such as mathematics, physics, and mechan-

ical engineering. Nevertheless, controlling and predicting its dynamics remains challenging due to

its strong nonlinearity and non-equilibrium [4]. In the field of condensed matter physics, quantum

hydrodynamics has been studied since the discovery of superfluid helium in the late 1930s [5] (e.g.,

Kapitza [6] and Allen and Misener [7] in 1938). Quantum turbulence (QT), which refers to turbu-

lence in quantum fluids, is one of the central topics in this field of study. The significant systems to

study QT are superfluid 4He and atomic Bose–Einstein condensate (BEC). The defining features of

quantum fluids are the superfluidity and quantization of vortices, where the term ’superfluidity’ was

introduced by Kapitza in the analogy of superconductivity [6]. This area of study is pertinent to a

wide range of research topics, including axion BEC dark matter [8], cosmic strings in the Higgs field

(e.g., Kibble–Zurek mechanism [9,10]), Hawking radiation [11,12], holographic superfluid model of

gravity [13–15], and neutron stars [16]. This dissertation presents our studies regarding flows in

superfluid 4He or atomic BEC. This chapter introduces the fundamentals of QT in superfluid 4He

and atomic BEC.

1.1 Bose–Einstein Condensate

Einstein [17, 18] predicted a surprising quantum state, Bose–Einstein condensate (BEC), in

thermally equilibrium ideal Bose gas, and Penrose and Onsager [19] expanded the definition of

BEC. The following introduces the fundamentals of BEC. It should be noted that this dissertation

does not take into account the spin degree of freedom in Bose systems; however, the following

discussion can be readily extended to spinor Bose systems [20].

1.1.1 Ideal Bose Gas

As the first step, this section examines the traits of ideal (i.e., non-interacting) Bose gases in

thermal equilibrium. The absence of interactions leads to a loss of nonlinearity, making it impossible

for non-equilibrium states to achieve equilibrium. Nevertheless, the ideal gas approximation proves
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helpful in describing weakly interacting gases in thermal equilibrium, as the contribution of such

interactions for thermodynamics functions becomes negligible after the system reaches equilibrium

[21]. In Bose systems, there is no limit to the number of particles that can occupy a state, which

sets it apart from Fermi systems, where only one particle can occupy each state. The free energy

F in thermal equilibrium is given by [22]

F =
1

β

∑
j

log
(

1 − e−β(εj−µ)
)
. (1.1)

Here, β := 1/kBT is the inverse temperature with the Boltzmann constant kB, εj stands for the

energy of the j-th state, and µ denotes the chemical potential. Under the periodic boundary

condition with the box size L3, the discretized wave number vector k can be expressed as

k =
2π

L
(nx, ny, nz) ∀nx, ny, nz ∈ Z (1.2)

=: ∆k (nx, ny, nz) . (1.3)

and the free energy is then expressed as

F =
1

β

(
L

2πℏ

)3∑
j

∆p3 log
(

1 − e−β(εj−µ)
)
. (1.4)

Here, ∆p = ℏ∆k = 2πℏ/L and εj = pj/2m with the momentum of the j-th state pj . If the energy

difference between the levels is significantly lower than the average energy, the Thomas–Fermi (TF)

approximation is applicable. Then, the free energy can be approximated as

F =
1

β

(
L

2πℏ

)3 ∫
dp3 log

(
1 − e−β(ε−µ)

)
, (1.5)

with ε := p2/2m, and the total number of particles N is given by

N = −∂F
∂µ

(1.6)

= V

(
mkBT

2πℏ2

)3/2

ζ3/2 (αB) , (1.7)

where αB := eβµ and ζr(αB) :=
∑∞

n=i α
r
B/n

r is the Riemann zeta function, which diverges when

αB > 1. It is pertinent to note that the derivative of ζr(αB) with αB is given by ∂ζr(αB)/∂αB =

ζr−1(αB)/αB. At αB = 1, the total particle number is represented as

N = V

(
mkBTc
2πℏ2

)3/2

ζ3/2(1), (1.8)
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where Tc is the BEC critical temperature and can be written as

Tc =
2πℏ2

mkB

(
N

V ζ3/2(1)

)2/3

. (1.9)

Above the critical temperature, the energy is given by

ET>Tc =
∂ (βF )

∂β
+ µ ⟨N⟩

= V

∫
d3p

(2πℏ)3
p2/2m

α−1
B ep2/2mkBT − 1

=
3

2
kBT

(
mkBT

2πℏ2

)3/2

V ζ5/2(α), (1.10)

and the specific heat is expressed as

Cv,T<Tc :=

(
∂E

∂T

)
V=const.

=
15

4
kB

(
mkBT

2πℏ2

)3/2

V ζ5/2(αB) +
3

2
kBT

(
mkBT

2πℏ2

)3/2

V
∂αB
∂T

ζ3/2(αB)

αB

=
15

4
kB

(
mkBT

2πℏ2

)3/2

V ζ5/2(αB) − 9

4
NkB

ζ3/2(αB)

ζ1/2(αB)
(1.11)

where Equation 1.7 is applied to derive ∂αB/∂T as

1

αB

∂αB
∂T

= −3

2

(
2πℏ2

mkB

)3/2
N

V

1

ζ1/2(α)T 5/2
. (1.12)

Below the critical temperature, a macroscopic number of particles occupy the ground state, and

the TF approximation may not apply. In such cases, the free energy and total particle number are

expressed as

F =
1

β

∑
j

log
(

1 − e−βεjαB

)
(1.13)

N = −∂F
∂µ

=
∑
j

1

α−1
B eβεj − 1

=:
∑
j

⟨nj⟩ . (1.14)

Here, ⟨nj⟩ is the particle number in the j-th state. At very low temperatures, the particle numbers

of the ground and first excited states have a relation

⟨n1⟩ =
1

α−1
B eβε1 − 1

≪ 1

α−1
B eβε0 − 1

= ⟨n0⟩ . (1.15)
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Given ε0 = 0, the chemical potential can be calculated as

⟨n0⟩ =
1

e−βµ − 1
(1.16)

⇔ µ = −kBT log

(
1 +

1

⟨n0⟩

)
. (1.17)

Therefore, the chemical potential can be considered negligible at very low temperatures. We can

apply the TF approximation to calculate the particle number of the excitation Nex when the number

of the excitation is small. Below the critical temperature, the excitation particle number Nex,T<Tc

and the condensation particle number Ncond,T<Tc can be expressed as

Nex,T<Tc =
∞∑
i=1

1

eβεi − 1

≈ V

∫
d3p

(2πℏ)3
1

ep2/2mkBT − 1

= N

(
T

Tc

)3/2

(1.18)

Ncond,T<Tc = 1 −Nex,T<Tc

= N

[
1 −

(
T

Tc

)3/2
]
, (1.19)

showing that the particle number of the condensation becomes an order of N below the critical

temperature. Since the ground state has zero energy, the total energy and the specific heat can be

calculated as1

ET<Tc = V

∫
d3p

(2πℏ)3
p2/2m

ep2/2mkBT − 1

=
3

2

ζ5/2(1)

ζ3/2(1)
NkBT

(
T

Tc

)3/2

≈ 0.77NkBT

(
T

Tc

)3/2

(1.20)

Cv,T<Tc =
15

4

ζ5/2(1)

ζ3/2(1)
NkB

(
T

Tc

)3/2

≈ 1.93NkB

(
T

Tc

)3/2

, (1.21)

where Γ(x) :=
∫∞
0 tx−1e−tdt is the Gamma function. The derivative of the specific heat is dis-

continuous at T = Tc, which indicates that the BEC phase transition is a second-order phase

transition [23,24].

1ζ3/2(1) ≈ 2.612, ζ5/2(1) ≈ 1.341
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1.1.2 Bose Field Operator and Macroscopic Wave Function

For a system of N identical bosons, in which nj ∈ N0 bosons occupy the j-th state, the state

basis can be established by |N⟩ := |n0, n1, · · · ⟩ and the creation and annihilation operators â†j and

âj are defined by

⟨N ′| â†j |N⟩ = ⟨n′0, n′1, · · · | â
†
j |n0, n1, · · · ⟩

=
√
njδn′

j ,nj−1

∏
k ̸=j

δn′
k,nk

(1.22)

⟨N ′| âj |N⟩ =
√
nj + 1δn′

j ,nj+1

∏
k ̸=j

δn′
k,nk

. (1.23)

These operators satisfy the commutation relations as[
âj , âj′

]
=
[
â†j , â

†
j′

]
= 0, ∀j, j′ ∈ N (1.24)[

âj , â
†
j′

]
= δjj′ . (1.25)

With the vacuum state |vac⟩ := |0, · · · , 0, · · ·⟩, the N -body state may be written as

|N⟩ =
∏
j

(
â†j

)nj√
nj !

|vac⟩ . (1.26)

The Hamiltonian of a bosonic system with a two-body interaction is given by [25]

Ĥ =
∑
j

ℏ2k2j
2m

â†j âj +
1

2

∑
ijkl

Vijklâ
†
i â

†
j âkâl, (1.27)

where the first term is the kinetic term, and the second term represents the interactions among

particles with the interaction matrix Vijkl.

The transformation from the single-particle basis |j⟩ to a new complete orthonormal basis,

eigenstates |r⟩ of the coordinate operator, is written as

|r⟩ =
∑
j

U∗
µj |j⟩ (1.28)

with a unitary matrix Û . The annihilation operator is then transformed as

ψ̂(r) :=
∑
j

Uµj âj (1.29)

where ψ̂ is the Bose field operator satisfying the commutation relations:[
ψ̂(r), ψ̂(r′)

]
=
[
ψ̂†(r), ψ̂†(r′)

]
= 0, ∀r, r′ ∈ R3 (1.30)[

ψ̂(r), ψ̂†(r′)
]

= δ(r − r′). (1.31)
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With the Bose field operator, the kinetic term K̂ and external potential term Û may be written

as [20,25]

K̂ := − ℏ2

2m

∑
j

∇2
j = − ℏ2

2m

∫
ψ̂†(r)∇2ψ̂(r)dr (1.32)

Û :=
∑
j

U(rj) =

∫
ψ̂†(r)U(r)ψ̂(r)dr, (1.33)

and the two-body interaction term is given by

V̂int :=
1

2

∑
i ̸=j

V (ri, rj)

=
1

2

∫ ∫
drdr′V (r, r′)ψ̂†(r)ψ̂(r)ψ̂†(r′)ψ̂(r′). (1.34)

For a pure N -body state ΨN (r1, r2, · · · , rN ; t), we can define the single-particle density matrix

ρ1 as

ρ1(r, r
′; t) := ⟨ψ̂† (r, t) ψ̂

(
r′, t

)
⟩ . (1.35)

Since the system is Bosonic, the wave function is symmetric under the exchange of any pair of

particle positions, and the single-particle density matrix is Hermitian, i.e., ρ1 (r, r′; t) = ρ∗1 (r′, r; t).

Therefore, the single-particle density matrix can be diagonalized, such as

ρ1(r, r
′; t) :=

∑
j

nj(t)χ
∗
j (r, t)χj

(
r′, t

)
(1.36)

where the eigenvalues nj evolve with time, and the eignfunctions χj (r, t) are called single-particle

states.

The BEC appears below the critical temperature when the eigenvalue n0 of the ground single-

particle state χ0 becomes O(N) in the thermodynamic limit2. The U(1) gauge symmetry is then

broken, and the condensate obtains an order parameter called the macroscopic wave function defined

by

Ψ(r, t) :=
√
n0χ0. (1.37)

The velocity v in the BEC is given by

v(r, t) =
ℏ
m
∇ϕ(r, t) (1.38)

2There are cases where several eigenvalues χj become O(N) in the thermodynamic limit. Such a state is called
’fragmented BEC’ [20].

6



where m is the mass of the particle, ℏ is the Dirac constant (i.e., the Planck constant h divided by

2π), and ϕ is the phase of the macroscopic wave function Ψ. It is worth noting that the macroscopic

wave function Ψ(r, t) is a classical wave function whose amplitude n0 and phase ϕ are determined

simultaneously.

1.1.3 Quantized Vortex

From Equation 1.38, the vorticity ω is given by

ω := ∇× v (1.39)

=
ℏ
m
∇×∇ϕ (1.40)

= 0, (1.41)

which means the flow in the condensate is irrotational, and the circulation Γ along a closed contour

C around a closed area S having no singular is given by

Γ :=

∮
C
v · dl =

∫
S
ω · dS = 0 (1.42)

where the Stokes theorem is applied. On the other hand, if the area S has a singular, the circulation

may have a finite value. In BECs, vortices appear as topological phase defects, i.e., singular points.

In such cases, the Stokes theorem is not applicable, and the phase gradient integrated along C may

have a finite value: ∮
C
∇ϕ · dr = [ϕ] = 2πlv. ∀ lv ∈ N0 (1.43)

Here, the phase difference along the closed contour must be 2π times an integer lv due to the

single-valuedness of the macroscopic wave function. As a result, the circulation Γ around a closed

contour may be a finite value quantized in the unit of κ = h/m as3

Γ =

∮
C
v · dl = lvκ, (1.44)

where lv is called the vortex charge. Onsager theoretically proposed the quantization of vortices in

1949 [26], and Vinen first experimentally observed a quantized vortex in superfluid 4He in 1961 [27].

The vortices with multiple quanta of circulation are unstable and can be quickly split into single-

charged vortices. For example, when a lv-charged vortex is located at the center of a rotating

cylindrical condensate of the radius R, the velocity is given by

vs =
lvκ

2πr
ϕ̂, (1.45)

3In superfluid helium, κ ≈ 9.97× 10−8m2/s
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where r is the radial distance from the center axis and ϕ̂ is the unit vector in the azimuth direction.

Then, the vortex energy per unit length is calculated as

ESV (lv) =

∫ R

a0

1

2
ρsv

2
s2πrdr = l2v

ρsκ
2

4π
ln

(
R

a0

)
, (1.46)

where a0 is the vortex core size4. The vortex energy of a single vortex with vortex-charge of lv (i.e.,

ESV (lv) = lv
2ESV (1)) is higher than that of lv single-charged vortices (i.e., lvESV (1)) when lv ≥ 2.

Therefore, multi-charged vortices quickly split into single-charged vortices [28] .

Figure 1.1: Schematic of vortex reconnection. (a) Vortex reconnection between two vortex
lines. (b) Vortex reconnection between a vortex line and its imaginary vortex line in the
solid wall.

When two vortex lines approach each other closer than a threshold distance ∆rec, they reconnect

(Figure 1.1a. Vortex reconnection may happen with its imaginary vortex on the boundary (Figure

1.1b). The vortex reconnection process emits sound waves [29] and excites Kelvin waves, the

distortion waves traveling along vortex lines [30]. In superfluid 4He, Schwarts [31] estimated the

threshold distance about ∆rec ≈ 2R/ ln(R/creca0) where R is the radius of curvature and crec is a

constant on the order of 1. The Kelvin wave induces the sound wave radiation [32–34].

4a0 ≈ 0.5 Å in superfluid helium.
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1.2 Atomic Bose–Einstein Condensates

Atomic BECs (i.e., BECs in ultracold atomic gases) are significant systems in quantum fluid

research. Ultracold atomic gas is a dilute group of atoms cooled down to about zero Kelvin in a

vacuum by lasers [35]. Since BECs were realized in dilute atomic gas of rubidium [36], sodium [37],

and lithium [38,39] in 1995, many theoretical and experimental techniques have been developed [40].

1.2.1 Weakly Interacting Bose System

Considering a neutral atomic BEC without any external potential in a system of the size L3, each

state has a momentum p = ∆p (nx, ny, nz) with ∀nz, ny, nz ∈ N. In BECs at about absolute zero

temperature, the s-wave scattering is dominant, and the interparticle interaction can be effectively

written as

Vint(r − r′) = U0δ(r − r′) (1.47)

with U0 = 4πℏ2as/m and the s-wave scattering length as. From Equation 1.27, the Hamiltonian is

given by

Ĥ =
∑
p

p2

2m
â†pâp +

U0

2V

∑
p1+p2=p3+p4

â†p1
â†p2

âp3 âp4 . (1.48)

In BECs, the expected particle number in the single-particle ground state (i.e., p = 0) should be

O(N) in the thermodynamics limit, i.e., in the limit V,N → ∞ with a constant density N/V .

Since
[
â0, â

†
0

]
= 1 ≪ N , the operators â0 and â†0 may be approximated as a c-number

√
N0, where

N0 = n0V is the particle number of the ground state. Bogoliubov first introduced this approach [40].

The particle number operator N̂ and the Hamiltonian can be then written as

N̂ :=
∑
p

â†pâp = N0 +
∑
p̸=0

â†pâp (1.49)

Ĥ =
N2

0U0

2V
+
∑
p̸=0

(
p2

2m
+ 2U0n0

)
â†pâp +

U0n0
2

∑
p̸=0

(
â†pâ

†
−p + âpâ−p

)
, (1.50)

where we have retained the terms up to the second order on the operators because the particle

number of the excitations is assumed to be small within the Bogoliubov approach. By combining

these equations, we may rewrite the Hamiltonian as

Ĥ =
N̂2U0

2V
+
∑
p̸=0

(
p2

2m
+ U0n0

)
â†pâp +

U0n0
2

∑
p̸=0

(
â†pâ

†
−p + âpâ−p

)
. (1.51)

where we have again retained the terms up to the second order on the operators. The Hamiltonian

Ĥ has been written in a quadratic form and can be diagonalized by the normalized Bogoliubov
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transformation defined by 5:

b̂p := upâp + vpâ
†
−p (1.52)

b̂†p := upâ−p + vpâ
†
p (1.53)

with

u2p =
1

2

(
p2

2m + U0n0

εp
+ 1

)
(1.54)

v2p =
1

2

(
p2

2m + U0n0

εp
− 1

)
, (1.55)

εp =

√(
p2

2m

)2

+
p2

2m
2U0n0, (1.56)

where εp is called the Bogoliubov spectrum. The diagonalized formula of the Hamiltonian is then

given by

Ĥ =
N̂2U0

2V
+
∑
p̸=0

εpb̂
†
pb̂p − 1

2

∑
p̸=0

(
p2

2m
+ U0n0 − εp

)
. (1.57)

The formula is equivalent to that for a non-interacting Bose system with the Bogoliubov spectrum.

The non-interacting quasi-particles associated with the operator b̂p are called Bogolons.

With the Bogoliubov formula, the particle number operator can be written as

N̂ = N0 +
∑
p̸=0

v2p +
∑
p̸=0

(
u2p + v2p

)
b̂†pb̂p. (1.58)

When thermal excitations are absent, the third term becomes zero, and the second term corresponds

to the particle number of the non-condensed part, which occupies finite wave-number states at

absolute zero temperature. Therefore, the ratio between the non-condensed particle number Nex

and the total particle number N can be evaluated as

Nex

N
=

V

N

∑
p̸=0

v2p

=
1

3π2n

(mcs
ℏ

)3
=

8

3
√
π

√
na3s, (1.59)

where cs =
√
U0n/m is the sound speed in weak-interacting BECs. This result indicates that

most particles are in the identical single-particle ground state when na3s ≪ 1, called the diluteness

condition.
5The normalization condition is u2

p − v2p = 1.
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1.2.2 Gross–Pitaevskii Equation

Neutral dilute atomic gases usually satisfy the diluteness condition nas ≪ 1 at very low tem-

peratures, and the N-body wave function in atomic BEC may be approximated by the mean-field

(Hartree) approximation as

ΨN (r1, r2, · · · , rN ; t) =

N∏
i=1

χ0(ri, t). (1.60)

where χ0(r, t) is the normalized single-particle wave function in the ground state. The effective

interaction potential between the two particles at r and r′ is a constant U0 in the momentum

representation and a delta function U0δ(r−r′) in the coordinate representation. Then, the effective

Hamiltonian of neutral dilute BECs is written as

H =
N∑
i=1

[
p2
i

2m
+ U(ri)

]
+ U0

∑
i<j

δ(ri − rj), (1.61)

here U(r) is the external potential. Introducing the macroscopic wave function

Ψ(r, t) =
√
Nχ0(r, t), (1.62)

the action is given by

S =

∫ [
iℏ
2

(
Ψ∗
N

∂ΨN

∂t
− ΨN

∂Ψ∗
N

∂t

)
− Ψ∗

NHΨ

]
dr1dr2 · · · drNdt

= N

∫ [
iℏ
2

(
χ∗
0

∂χ0

∂t
− χ0

∂χ∗
0

∂t

)
− ℏ2

2m
|∇χ0|2 − U |χ0|2 −

N − 1

2
U0 |χ0|4

]
drdt

=

∫ [
iℏ
2

(
Ψ∗∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)
− ℏ2

2m
|∇Ψ|2 − U |Ψ|2 − 1

2
U0 |Ψ|4 + O(1/N)

]
drdt (1.63)

Ignoring the O(1/N) term and applying the the action principle δS[Ψ,Ψ∗]/δΨ∗ = 0, we obtain the

Gross–Pitaevskii equation (GPE):

iℏ
∂Ψ

∂t
=

[
− ℏ2

2m
∇2 + U(r) + U0|Ψ|2 − µ

]
Ψ. (1.64)

In static BEC bulk, the spatial and time derivatives of the macroscopic wave function are zero.

Therefore, in the absence of any external potential, the chemical potential is

µ = U0n0 (1.65)
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where n0 is the bulk density. The GPE has a coherent length defined as

ξ =
ℏ√

2mµ
, (1.66)

which characterizes the length of competition between the kinetic and interaction energies.

The following derives the hydrodynamic formula of the GP equation. The action can be written

in terms of the density n and the phase ϕ as

S[n, ϕ] =

∫ [
ℏn
∂ϕ

∂t
− ℏ2

2m

[(
∇
√
n
)2

+ (∇ϕ)2 n
]
− Un− 1

2
U0n

2

]
drdt, (1.67)

and from the action principle, we obtain

δS
δn

=

∫ [
ℏ
∂ϕ

∂t
− ℏ2

2m

[
1√
n
∇2√n+ (∇ϕ)2

]
− U − U0n

]
drdt = 0

⇒ −ℏ
∂ϕ

∂t
= − ℏ2

2m
√
n
∇2√n+

1

2
mv2 + U + U0n (1.68)

δS
δϕ

=

∫ [
−ℏ

∂n

∂t
+

ℏ2

m
∇ · (n∇ϕ)

]
drdt = 0

⇒ ∂n

∂t
= − ℏ

m
∇ · (n∇ϕ) . (1.69)

Equation 1.69 corresponds to the continuity equation:

∂n

∂t
+ ∇ · (nv) = 0. (1.70)

By taking the gradient of Equation 1.68, we obtain

∂v

∂t
+ ∇

(
v2

2

)
= −∇

(
U0n− ℏ2

2m
√
n
∇2√n

)
−∇U, (1.71)

corresponding to the Euler equation. The first pressure term U0n corresponds to the traditional

pressure in classical fluids, and the second is called the quantum pressure. The quantum pressure

term becomes negligible in the bulk but plays a critical role in the generation of quantized vortices

[41].

1.2.3 Imaginary Time Propagation

The GP equation conserves the total energy and total particle number. In real experiments,

however, the atomic BEC system is not at zero temperature and has small thermal excitations,

dampening the energy in atomic BECs. Imaginary time propagation is introduced to model the

energy damping [42]:

(i− γ) ℏ
∂Ψ

∂t
=

[
− ℏ2

2m
∇2 + V (r) + U0|Ψ|2 − µ

]
Ψ. (1.72)
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Where γ is a fitting parameter and may be estimated by the experimental results [43–45]. When

we prepare the initial state in our simulations, we apply the imaginary time propagation method

by damping the energy from an approximated initial state. This method may suppress not only

the total energy but also the total particle number as

∂N

∂t
=

∫
d3r

[
Ψ∗∂Ψ

∂t
+ Ψ

∂Ψ∗

∂t

]
(1.73)

= − 2

γℏ

∫
d3r

[
ℏ2

2m
|∇Ψ|2 + U |Ψ|2 + U0|Ψ|4 − µ|Ψ|2

]
. (1.74)

To impose the conservation of the particle number, the chemical potential is evolved as

µ(t) =
1

N

∫
d3r

[
ℏ2

2m
|∇Ψ|2 + U |Ψ|2 + U0|Ψ|4

]
. (1.75)

The evolution with the imaginary time propagation might be trapped in a metastable state. For

example, the circular BEC with a quantized vortex at the center is metastable, requiring enough

perturbation to reach the static ground state. The long decay time allows us to numerically prepare

the initial state with rotational motion by the imaginary time method.

1.2.4 Solition

Figure 1.2: The density and phase profile of a gray soliton with u/cs = 0.4.

The GPE has soliton solutions, localized non-linear waves propagating toward a direction. If

the interaction is attractive, the soliton has an increment of density and is called a bright soliton.

13



In our case, the interaction is always repulsive, and we consider the opposite case, called the gray

soliton. The one-dimensional wave function of gray solitons can be written as

Ψ(x, t) =
√
n0

iusol
cs

+

√
1 −

u2sol
c2s

tanh

(
x− usolt√

2ξu

) , (1.76)

where usol is the soliton speed, n0 is the bulk density, and ξu = ξ/
√

1 − (usol/cs)2. The density and

the velocity are

n(x, t) = n0 −
n0 − nmin

cosh2
[
(x− usolt)/

√
2ξu
] , (1.77)

v(x, t) = usol

(
1 − n0

n

)
, (1.78)

where nmin = n0u
2
sol/c

2
s . Figure 1.2 shows a typical profile of density and velocity. The phase

change across the soliton ∆ϕ is related to the soliton speed as

∆ϕ = ϕ(∞) − ϕ(−∞)

= −2 cos−1

(
usol
cs

)
(1.79)

If the phase change is ∆ϕ = π, the soliton does not move (i.e., usol = 0) and is called the dark

soliton.

1.3 Superfluid Helium-4

Superfluid 4He or He II is the most traditional system in quantum fluid study. In most matters,

all atoms should rest to minimize the potential energy at sufficiently low temperatures, and it

becomes solid. On the other hand, the interaction among helium atoms is relatively weak. Although

the helium may be solidified at high pressure6, quantum effects appear before the solidification at

the atmospheric pressure. When liquid 4He reaches a temperature below Tλ := 2.172K, it undergoes

a phase transition into a superfluid state called He II, vanishing the viscosity. The specific heat has

a sharp peak at T = Tλ, which is called the λ-point. London [47] suggested the relation between

superfluidity and the existence of a condensate based on the similarity of the specific heat jump in

an ideal BEC (Equations 1.11 and 1.21). The strong connection between superfluidity and BEC is

still believed, but one is neither a sufficient nor necessary condition for the other. For instance, an

ideal BEC cannot possess superfluidity since the critical velocity is zero. Additionally, superfluidity

can appear in lower-dimensional systems that do not involve a BEC state.

6The solid state has the hexagonal close packing (hcp) and the face-centered cubic (fcc) phases. [46]
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Figure 1.3: Phase diagram of helium

1.3.1 Two-Fluid Model

Figure 1.4: Temperature dependence of the density ratio:ρs/ρ for the superfluid component
and ρn/ρ for the normal fluid compoent.

The dynamics in He II can be phenomenologically described by the two-fluid model, which treats

He II as a mixture of two fluid components, an inviscid and zero-entropy superfluid component and

a viscous normal-fluid component (i.e., the collection of thermal excitations). The total density is

ρ = ρs + ρn where ρs and ρn are superfluid and normal fluid densities, respectively (Figure 1.4).

The momentum per unit volume is j = ρsvs + ρnvn where vs and vn are superfluid and normal

fluid velocities, respectively. The superfluid has no entropy, and the normal fluid carries the total
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entropy per density s. Then the conservation equations of mass ρ, momentumjl, and entropy s

with no dissipation are given as [48,49]:

∂ρ

∂t
+ ∇ · j = 0, (1.80)

∂jl
∂t

+
∂Πlk

∂xl
= 0, (1.81)

∂ρs

∂t
+ ∇ · (ρsvn) = 0 (1.82)

where Πik is the momentum flux tensor. The simplest formula of the two-fluid velocity equations

neglecting the thermal conductivity and bulk viscosity is given by [50]

∂vs
∂t

= −1

ρ
∇p+ s∇T

+
ρn
2ρ

∇ (vn − vs)
2 − 1

ρn
Fns (1.83)

∂vn
∂t

= −1

ρ
∇p− ρs

ρn
s∇T + νn∇2vn

− ρs
2ρ

∇ (vn − vs)
2 +

1

ρs
Fns, (1.84)

where νn := ηn/ρn is the kinematic viscosity of the normal fluid component and Fns is a mutual

friction force between the two fluids [51], caused by the scattering between the thermal excitations

and the quantized vortices. This model is often called Hall-Vinen-Bekarevich-Khalatnikov (HVBK)

model.

It is important to note two facts about the two-fluid model. Firstly, the normal fluid velocity

vn is not the mean velocity of the non-condensed part and is defined as [20]

vn(r) =
δF

δ ⟨Ĵ(r)⟩
, (1.85)

where F is the free energy of the system and Ĵ is the mass current operator.

Secondly, the superfluid density ρs is not that of the condensate. According to a measurement by

the neutron scattering measurements [52], the condensate fraction in 4He at the saturated pressure

is written as

N0(T )

N
= A

(
1 −

(
T

Tλ

)γ)
(1.86)

where A = (7.25±0.75)×10−2 and γ = 5.5±1.0, which is consistent with the result of a numerical

study [53]. The behavior is similar to that of the ideal Bose system (Equation 1.19), but the
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condensate fraction at the zero-temperature is less than 10%, which is much smaller than the

fraction of the superfluid component in the two-fluid model7.

1.3.2 First and Second Sound Waves

In He II, several kinds of sound waves can be observed [48, 55]. When the velocities are small

enough, the Equations 1.80, 1.81, 1.82, and 1.83 can be linearized as:

∂ρ

∂t
+ ∇ · j = 0 (1.87)

∂j

∂t
+ ∇p = 0 (1.88)

∂ρs

∂t
+ ρs∇ · vn = 0 (1.89)

∂vs
∂t

+
1

ρ
∇p+ s∇T = 0 (1.90)

where the entropy ρs is supposed to be constant. From Equations 1.87 and 1.88, the propagation

equation for the normal sound wave called the first sound wave is obtained as:

∂2ρ

∂t2
= ∇2p. (1.91)

The speed of the first sound u1 is given by

u21 ≈
∂p

∂ρ

∣∣∣∣
s

≈ Cp
CV

1

ρκ
, (1.92)

where Cp and CV are the heat capacities at constant pressure and at constant volume, respectively.

In He II, there is another type of sound wave called the second sound wave, which is a wave

of entropy and temperature. Under a constant density and pressure, we obtain the propagation

equation from Equations 1.89 and 1.90 as:

∂2s

∂t2
=
ρss

2

ρn
∇2T. (1.93)

The speed of the second sound u2 is given by

u22 ≈
s2ρs
ρn

∂T

∂s

∣∣∣∣
ρ

≈ ρs
ρn

Ts2

CV
. (1.94)

1.3.3 Thermal Excitations in Superfluid Helium-4

At low temperatures, the normal fluid is composed of two types of thermal excitations at low

temperatures, i.e., phonons and rotons. The expected energy spectrum (Figure 1.5) was observed

7There are other experimental or numerical studies showing slightly larger values of A [53,54], but they are much
smaller than 1
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Figure 1.5: Energy spectrum of the thermal excitations in He II.

by the neutron scattering [56,57]. Phonons are the primary excitations at low momentum; however,

at higher momentum, rotons emerge as the dominant component. Phonons are the quantized sound

waves and have an energy spectrum of E = csp. On the other hand, the roton energy has a minimum

∆R at p = p0 given by

∆R

kB
= 8.6 K (1.95)

p0
ℏ

= 1.9 Å
−1
. (1.96)

Near the minimum, the energy spectrum can be approximated as

E = ∆R +
(p− p0)

2

0.3m4
(1.97)

with the mass of a 4He atom m4 ∼ 6.65 × 10−27kg.

The identity of the roton is still controversial. In the original idea of Feynman, roton was

considered as the rotational motion around a vortex ring with an atomic-scale radius. Noziéres [58]

later proposed that roton might be a precursor mode of solidification. In this context, roton modes

are studied in dipolar BECs in which the gas may spontaneously obtain a discretized symmetry

due to their long-distance dipolar interactions [59–67].

The energy of the thermal excitations decreases with the superfluid velocity vs and becomes

negative below a critical superfluid velocity, making He II unstable. At T = 0 K, the energy

spectrum with the superfluid velocity vs is given by

E ′ = E + p · vs, (1.98)
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where E is the energy spectrum at vs = 0. The superfluid becomes unstable when E ′ < 0, and the

critical speed vc is calculated as

vc = min

(
E
ℏk

)
. (1.99)

The minimum value of E/ℏk is given at the roton minimum, and the critical velocity is vc ≈ 60

m/s.

1.3.4 Capillary Wave: Ripplon

Another type of wave propagates along a free surface of He II, similar to a capillary wave,

known as a ripplon [49]. Defining that the z-axis is the perpendicular direction to the liquid surface

and the displacement from the equilibrium height in the z-direction is denoted by ζ(x, y), the flux,

entropy, and surface force equations across the surface are given by

ρsvs,z + ρnvn,z − ρ
∂ζ

∂t
= 0, (1.100)

vn,z −
∂ζ

∂t
= 0, (1.101)

p− σζ

(
∂2

∂x2
+

∂2

∂y2

)
ζ = 0, (1.102)

where σζ is the surface tension [48]. Equations 1.100 and 1.101 show that the velocities of both

components in the z-direction are equal to the surface velocity (i.e., vn,z = vs,z = ∂ζ/∂t)8.

In the following, the flow is supposed to be incompressible (∇·v = 0) and irrotational (v = ∇ϕR

with the velocity potential ϕR). Also, the temperature is assumed to be low enough so that

evaporation is negligible. The Hamiltonian of the ripplon system is then given by [68–70]

H =
ρ0
2

∫
dS

∫ ζ

−∞
dzv2 +

ρ0g

2

∫
dSζ2

+σζ

∫
dS

(1 +

(
∂ζ

∂x

)2

+

(
∂ζ

∂y

)2
)1/2

− 1

 . (1.104)

The displacement ζ may be expanded by the Fourier series as

ζ(r) =
∑
k

ζ̌(k)eik·r. (1.105)

8For ripplons propagating along a helium film where the normal fluid component may not flow (i.e., vs = 0),
Equation 1.100 is modified as

ρsvs,z − ρ
∂ζ

∂t
= 0. (1.103)

Such waves are called the third sound wave. It is worth noting that the spatial varying of the fraction ρn/ρs causes
local evaporation and condensation and may dampen the ripplon at finite temperatures.
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where the wave vector k is restricted in the x− y plane on the helium surface. Similarly, from the

incompressible and irrotational conditions ∇2ϕR = 0, the flow potential ϕR may be expanded as

ϕR(r) =
∑
k

ϕ̌R(k)eik·reqz. (1.106)

By considering up to the third order with the small quantities ζ and ϕR, the Hamiltonian may be

written as H = H0 + H1 where

H0 =
ρ0
2

∑
k

k
∣∣ϕ̌(k)

∣∣2 +
1

2

∑
k

(
σζk

2 + ρ0g
) ∣∣ζ̌(k)

∣∣2 (1.107)

H1 =
ρ0
2

∑
k,k′

(
kk′ − k · k′) ϕ̌R(k)ζ̌(−k − k′)ϕ̌(k′). (1.108)

We may quantize the Hamiltonian H by introducing the canonical commutation relations with ϕR

and ζ [49, 68,70] as [
ζ̂(k), ϕ̂R(k′)

]
=
iℏ
ρ0
δ(k − k′). (1.109)

Defining a characteristic dispersion relationship

ω0(k) =

√
σζ
ρ0
k3 + gk (1.110)

and Bosonic creation and annihilation operators

â(k) :=

√
ρ0ω0

2ℏk

[
ζ̂(k) + i

k

ω0(k)
ϕ̂(−k)

]
(1.111)

â†(k) :=

√
ρ0ω0

2ℏk

[
ζ̂(−k) − i

k

ω0(k)
ϕ̂(k)

]
, (1.112)

the Hamiltonians H0 and H1 can be simplified as

H0 =
∑
k

ℏω0(k)

[
â†(k)â(k) +

1

2

]
(1.113)

H1 =
∑
k,k′

ΛR(k,k′)
[
â(k) − â†(−k)

] [
a(−k − k′) + a†(k + k′)

] [
â(k′) − â†(−k′)

]
(1.114)

with

ΛR(k,k′) =
1

2

[
k · k′

qq′
− 1

]√
ℏ3ω0(k)ω0(k′)

8ρ0ω0(|k + k′|)
kk′ |k + k′|. (1.115)

H0 corresponds to the unperturbed oscillation of ripplons with energy ℏω0(k), and H1 shows the

scattering among ripplons. We emphasize that ripplon and the first sound wave are different

excitations. For example, we may assume incompressibility to find ripplon, whereas compressibility

is not negligible for the first sound wave.
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1.4 Turbulence

Our main subject is turbulence in quantum fluids, and this section introduces the theory of

classical turbulence. It is known that the flows v in incompressible viscous classical fluids (i.e.,

∇ · v = 0) are well described by the Navier–Stokes equation [4]:

∂vi
∂t

+ (v ·∇) vi = −1

ρ

∂p

∂xi
+

1

ρ

∂τij
∂xj

(1.116)

τij := ρν

[
∂vi
∂xj

+
∂vj
∂xi

]
(1.117)

where p is the pressure, ρ is the density, ν is the kinematic viscosity, and τij is the stress tensor.

Due to the similarity of the equation, the flow is characterized by a non-dimensional quantity called

the Reynolds number:

Re :=
UL

ν
(1.118)

where U and L are the characteristic speed and length of the flow, respectively. At small Reynolds

numbers (e.g., Re < 1.70 × 103 [4]), the flow has high symmetry and is known as laminar flow.

However, at high Reynolds numbers (e.g., Re > 1.70 × 103), the flow causes instability and loses

its symmetries, resulting in turbulence.

Turbulent flows are characterized by their chaotic nature, making them unpredictable and lack-

ing repeatability. Nevertheless, the averaged quantities in turbulent flows have high symmetries,

and hence the statistical quantities are critical for understanding the physics of turbulence. Statisti-

cal theory in homogeneous isotropic turbulence in the steady state has been successfully developed,

with the Kolmogorov scale being a significant milestone [71, 72]. It is important to note that

isotropy guarantees homogeneity but not necessarily vice versa.

From the Navier–Stokes equation (Equation 1.116) with the Dirichlet boundary condition (i.e.,

u = 0 on the boundary), the conservation equation of the kinematic energy per unit volume is

derived as

d

dt

∫
1

2
v2dVu = −

∫ (
1

2

∂vivjvj
∂xi

+
1

ρ
vi
∂p

∂xi

)
dVu + ν

∫
vi∇2vidVu

= −ν
2

∫ (
∂vi
∂xj

+
∂uj
∂xi

)2

dVu

= −ν
∫

|ω|2 dVu (1.119)

=: −
∫
ϵd(r, t)dVu =: −ϵ̄d (1.120)
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where the integral is taken in the unit volume Vu, and ϵ̄d is called the energy dissipation rate per

unit volume.

1.4.1 Time-Averaged Navier–Stokes Equations

There are three methods of average a quantity A(r, t) that varies in space and time:

• Time average involves integrating the quantity over a period of time Tave as
∫ t+Tave
t A(r, t)dt.

• Spatial average involves integrating the quantity over a volume Vave as
∫
A(r, t)dVave.

• Ensemble average involves taking the average of a number of samplesNave as 1
Nave

∑Nave
j=1 Aj(r, t),

where Aj indicates the quantity of the j-th sample.

It is known that these methods provide identical results in static and homogeneous turbulence when

the number of samples Nave, sampling time Tave, and sampling space Vave are large enough.

In turbulence theories, the velocity is usually decomposed as

v = v̄ + u (1.121)

where v̄ is the time-averaged velocity and u is the velocity fluctuation, whose average is zero (i.e.,

ū = 0). The Navier–Stokes equation (Equation 1.116) can be time-averaged as

(v̄ ·∇)v̄i = −1

ρ

∂p̄

∂xi
+

1

ρ

∂

∂xj
[τ̄ij − ρvivj ] . (1.122)

This averaged equation cannot be fully solved by the averaged quantities of the same order because

it is not closed due to the additional stresses −ρvivj =: τRij , which are called Reynolds stresses

and correspond to the mean momentum fluxes induced by the turbulence. This problem is general

for averaged turbulence equations and is known as the closure problem [73]. Phenomenological

equations are necessary to close the equations and are dependent on the configuration and problems

to be solved [74].

1.4.2 Kolmogorov 1941

In 1941, Kolmogorov [71,72] established important statistical laws, called the K41 theory, from

the following two hypotheses of similarity:

1. When the Raynolds number Re is sufficiently high, the statistical quantities are uniquely

determined by the scale length l = 2π/k, the kinematic viscosity ν, and the energy dissipation

rate ϵ̄d.
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Figure 1.6: Schematic of the energy spectrum in three-dimensional turbulence. The ranges
I, II, and III are the energy-containing range, the inertial range, and the dissipation range,
respectively.

2. At the scale much larger than the Kolmogorov length lK =
(
ν3/ϵ̄

)1/4
, the statistical quantities

are uniquely determined by the scale l and the energy dissipation rate ϵ̄d and do not depend

on the kinematic viscosity ν.

From the first hypothesis, the energy spectrum in a system of the size L3 is written as

E(k) = ϵ̄
1/4
d ν5/4f(k/kK), (kL ≪ k, kL := 2π/L) (1.123)

where kK := 2π/lK is the Kolmogorov wave number and f is a non-dimensional function. Then,

applying the second hypothesis, we obtain

E(k) = Kϵ̄
2/3
d k−5/3, (kL ≪ k ≪ kK), (1.124)

where K is a universal constant called the Kolmogorov constant and estimated as K = 1.62± 0.17

by experiments [75]. The energy spectrum is proportional to k−5/3 in the inertial range (kL ≪

k ≪ kK). This scaling law is called the Kolmogorov scaling (Figure 1.6) and agrees with various

experiments, but this theory still has some issues. Firstly, the intermittency observed in experiments

does not agree with the results predicted by the K41. According to the K41 theory, the p-th order

normalized structure function

Kp(r) :=
⟨|u(x+ r) − u(x)|p⟩

⟨|u(x+ r) − u(x)|2⟩p/2
(1.125)

is constant, but experiments show that Kp increases with L/r and p [76]. Secondly, the K41 theory

ignores the fluctuation of the energy dissipation ϵd and considers only the mean value ϵ̄d [48]. In
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1962, Kolmogorov proposed a revised theory assuming a spatial fluctuation of a lognormal distri-

bution [77], and the theory describes the low-order structure functions. However, this assumption

has many issues (e.g., [78–80]) and modeling ϵd is still a challenging problem. The behavior of ϵd

depends on the system, and we cannot simply apply the Navier–Stokes equations to model the gen-

eral behavior of ϵd because the Navier–Stokes equations ignore the thermal fluctuation and cannot

describe the dissipation range well (e.g., in gas turbulence [81]).

1.4.3 Two-Dimensional Turbulence

Figure 1.7: Schematic of the energy spectrum in two-dimensional turbulence. The ranges
I and V are the dissipation ranges. The ranges II and IV are the inertial ranges. The
range III is the energy-containing range.

The K41 theory is rooted in the conservation of energy cascades in k-space, which renders it

independent of the system’s dimension. In 2D turbulence, the enstrophy per unit volume

G :=

∫
ω2

2
dVu (1.126)

is similarly conserved in the non-viscous range as

dG

dt
=

d

dt

∫
ω2

2
dVu (1.127)

= −ν
∫

|∇× ω|2 dVu

=: −
∫
ηd(r, t)dVu =: −η̄d, (1.128)

where ηd is the enstrophy dissipation rate per volume. A similar energy spectrum for the enstrophy

is then obtained as

E(k) = K ′η̄
2/3
d k−3. (kL ≪ k ≪ kK) (1.129)
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The above results indicate the existence of the double cascades in 2D turbulence (Figure 1.7),

but the directions of these cascades are still unknown at this stage. The following discusses the

directions [82]. When comparing two energy spectra of quantities A(k) and B(k), the spectral

equations can be expressed as:

∂A

∂t
+
∂ΠA(k)

∂k
= −DA(k) + FA(k) (1.130)

∂B

∂t
+
∂ΠB(k)

∂k
= −DB(k) + FB(k), (1.131)

where PA(k) and PB(k) are the fluxes, DA(k) and DB(k) are the (positive) dissipation terms, and

FA(k) and FB(k) are the forcing terms. The forcing spectra are supposed to be confined to a narrow

range as

FA(k) = FB(k) = 0, ∀k ∈ (0, k1) ∪ (k2,∞). (1.132)

Furthermore, since the spectra A(k) and B(k) satisfy a relation: B(k) = LLeith(k)A(k), and we

obtain
∂ΠB(k)

∂k
= LLeith(k)

∂ΠA(k)

∂k
, (1.133)

which relation is called Leith constraint [83]. The time derivative term is ignored to study the

steady state. By integrating Equations 1.130, 1.131, and 1.133, we obtain

ΠA(k) =

∫ ∞

k

[
DA(k′) − FA(k′)

]
dk′

= −
∫ k

0

[
DA(k′) − FA(k′)

]
dk′ (1.134)

ΠB(k) =

∫ ∞

k

[
DB(k′) − FB(k′)

]
dk′

=

∫ ∞

k
LLeith(k′)

[
DA(k′) − FA(k′)

]
dk′

= −
∫ k

0
LLeith(k′)

[
DA(k′) − FA(k′)

]
dk′, (1.135)

which show

ΠA(k) > 0 and ΠB(k) > 0, ∀k ∈ (k2,+∞) (1.136)

ΠA(k) < 0 and ΠB(k) < 0, ∀k ∈ (0, k1), (1.137)

meaning that both fluxes flow downward in the range II and upward in the range III in Figure 1.7.

However, experiments have demonstrated that the energy cascade occurs in the range II, and the
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enstrophy cascade appears in the range III. The following shows that this observation is because

the energy flux is dominant in the range II, but the enstrophy flux is in the range III.

From the Leith constraint (Equation 1.133), we obtain

ΠA(k) =

∫ ∞

k

1

LLeith(k′)

∂ΠB(k′)

∂k′
dk′

= L−1
Leith(k)ΠB(k) −

∫ ∞

k
L−2
Leith(k′)

dLLeith(k′)

dk′
ΠB(k′)dk′ (1.138)

ΠB(k) =

∫ k

0
LLeith(k′)

∂ΠA(k′)

∂k′
dk′

= LLeith(k)ΠA(k) −
∫ k

0

dLLeith(k′)

dk′
dk′, (1.139)

and then, ∫ k

0

dLLeith(k′)

dk′
ΠA(k′)dk′ = LLeith(k)ΠA(k) − ΠB(k)

=

∫ ∞

k

[
LLeith(k) − LLeith(k′)

] [
DA(k′) − FA(k′)

]
dk′

< 0 ∀k ∈ (k2,∞) (1.140)∫ ∞

k
L−2
Leith(k′)

dLLeith(k′)

dk′
ΠB(k′)dk′ = −LLeith(k)ΠA(k) − ΠB(k)

LLeith(k)

= L−1
Leith(k)

∫ k

0

[
LLeith(k) − LLeith(k′)

] [
DA(k′) − FA(k′)

]
dk′

> 0 ∀k ∈ (0, k1) (1.141)

because the coefficient LLeith(k)−LLeith(k′) is positive in 0 < k′ < k1 and negative in k2 < k′ < +∞
9. In 2D turbulence, the Leith function is LLeith(k) = k2 and A(k) and B(k) correspond to the

kinetic energy E(k) and the enstrophy G(k), respectively. We then obtain∫ k

0

dLLeith(k′)

dk′
ΠA(k′)dk′ = 2

∫ k

0
k′

1
ΠA(k′)dk′ < 0 ∀k ∈ (k2,∞) (1.143)∫ ∞

k
L−2
Leith(k′)

dLLeith(k′)

dk′
ΠB(k′)dk′ = 2

∫ ∞

k
k′

−3
ΠB(k′)dk′ > 0. ∀k ∈ (0, k1) (1.144)

According to Equation 1.143, the integral of the flux ΠA with a weight function having a large value

in the high-k range becomes negative, meaning that the kinetic energy tends to cascade into low-k

modes. Similarly, from Equation 1.144, the integral of the flux ΠB with a weight function having a

large value in the low-k range becomes positive, meaning that the enstrophy tends to cascade into

high-k modes.

9You may find an inequality

LLeith(k)ΠA(k)−ΠB(k) < 0, ∀k ∈ (0, k1) ∪ (k2,+∞) (1.142)

which is called the Danilov inequality [84].
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1.4.4 Anisotropic Turbulence

In 1935, Taylor proposed isotropic turbulence, where statistical averages of functions of velocity

and its derivatives are invariant to axis rotation [85]. This assumption allows great simplification

of the statistical theory and is usually justified at small scales. However, anisotropy of flows at

large scales may remain at small scales [86–90]. Furthermore, thermal counterflow turbulence in

He II may spontaneously obtain anisotropy, as discussed later. Therefore, turbulence theories for

anisotropic flows are needed [91].

1.4.5 Quantum Turbulence

QT is turbulent flows in quantum fluids (e.g., superfluid helium and atomic BEC) 10. It is known

that vortices play a critical role in turbulence [4]. In classical turbulence, vortices have wide core

sizes, and the circulation may become of any real value. On the other hand, in QT, vortices have an

identical circulation with a tiny core size; therefore, it is theoretically easier to discuss turbulence

in quantum fluids than in classical fluids.

1.5 Thermal Counterflow Turbulence in Superfluid Helium-4

The study of turbulence in He II often employs the thermal counterflow involving the normal

fluid carrying the heat away from the heat source while the superfluid flows in the opposite direction

to conserve the total mass. Supposed the velocity is one-dimensional in the direction from the heater

to the helium bath x̂, the speed of the normal and superfluid components are given by

vn =
W

ρsT
(1.145)

vs = −ρn
ρs
vn, (1.146)

where W is the injected heat flux. Then, the relative speed is written as

vns := vn − vs =
W

ρssT
. (1.147)

When the relative speed is small enough and both flows are laminar, the velocity equations (Equa-

tions 1.83 and 1.84) are written as

0 = −ρs
ρ
∇p+ ρss∇T − Fns (1.148)

0 = −ρn
ρ
∇p− ρss∇T + Fns + ηn∇2vn. (1.149)

10QT in superfluid helium-3 is also studied, e.g., [92].
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By combining these two equations, we obtain:

0 = −∇p+ ηn∇2vn. (1.150)

Supposed that the flow is one-dimensional in the x̂ direction in a circular pipe of the radius R, the

velocity is obtained as

ux(r) =
1

4ηn

dp

dx

(
R2 − r2

)
(1.151)

which is called the Hagen–Poiseuille flow [48].

On the other hand, when the relative speed between the two fluid components exceeds a small

critical value, turbulence is generated in the superfluid as a tangle of quantized vortex lines even

though the normal fluid flow is laminar, which is called the T-1 turbulent state [50]. Once the

relative speed exceeds the second critical value, the normal fluid component also becomes turbu-

lent, which is called the T-II turbulent state [93–95]. These vortex lines all have identical cores

with a thickness of about 1Å, each carrying a single quantum of circulation κ = h/m4. Despite

tremendous progress in studying counterflow turbulence, unsolved problems remain and require

careful consideration.

1.5.1 Vortex Dynamics

When a cylinder with circulation Γ is placed in a flow v∞, it experiences a lift force ρv∞ × Γ

which is known as the Magnus effect. H. E. Hall and W. F. Vinen [96] introduced a Magnus force for

the quantized vortex in a similar manner. Considering a vortex segment located at s and moving

with the velocity vL, the Magnus force is written as

fM = ρsκs
′ × (vL − vsl) (1.152)

where vsl is the local superfluid velocity and s′ := ∂s/∂ξv is the derivative of s with the arc length

along the vortex line ξv. The mutual friction Fns is believed to occur due to roton-like collisions

above 1K. Hence, the drag force fD may be approximated as

fD = −αρsκs′ ×
[
s′ × (vn − vsl)

]
− α′ρsκs

′ × (vn − vsl) , (1.153)

where α and α′ are the temperature-dependent parameters.

It is known that the effective mass of a quantized vortex is fairly small [26,48], and the inertia

of the vortex core should be negligible. As a result, the total force acting on a vortex segment

should be balanced as:

fD + fM = ρsκs
′ ×
[
(vL − vsl) − αs′ × (vn − vsl) − α′ (vn − vsl)

]
= 0. (1.154)
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We then obtain

vL = vsl + αs′ × (vn − vsl) − α′s′ ×
[
s′ × (vn − vsl)

]
. (1.155)

This equation is employed to describe the motion of the quantized vortices in three-dimensional He

II.

1.5.2 Energy Dissipation in Superfluid Component

The normal fluid energy dissipates to thermal energy by viscosity. However, this is not the

case in superfluids, where viscosity is absent. Instead, energy loss may be caused in counterflow

turbulence mostly due to the Kelvin waves emission on the order of the inter vortex distance scale

l = L−1/2 [97, 98]. The energy loss rate can be approximated by νsκ
2L2 with an effective viscosity

denoted as νs. The effective viscosity is roughly of order κ [99] and can be incorporated into the

equation of vs (Equation 1.83) as

∂vs
∂t

= −1

ρ
∇p+ s∇T + νs∇2vs

+
ρn
2ρ

∇ (vn − vs)
2 − 1

ρs
Fns. (1.156)

1.5.3 Vinen Equation

In principle, we can model counterflow turbulence by numerically tracking quantized vortices’

movements using Equation 1.155. However, this approach demands significant computational re-

sources and becomes impractical with high VLD. Vinen proposed a time-evolution equation of the

averaged VLD L by using dimensional analysis [51, 100–102]. Firstly, such an equation should be

expressed as
dL
dt

= G + D (1.157)

where G and D denote the generation and decay terms, respectively. Since the mutual friction

increases VLD, the terms should consist of the mutual speed Vns := |vn − vs| and the averaged

VLD L. Then, the generation term formula is given by

G = χ1αVnsL3/2 (1.158)

where χ1 is a non-dimensional const of order unity. On the opposite, the vortex reconnection causes

the dissipation of VLD L. The typical time scale of the vortex collision is l/vs, and each collision
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dissipates the energy of the order of v2s . The velocity vs induced by a vortex tangle of the length

scale l is roughly vs ≈ κ/2πl. Therefore, the dissipation term D ≈ v3s/l can be expressed as

D = −χ2
κ

2π
L2 (1.159)

where χ2 is a non-dimensional constant of order unity. Thus, the time evolution equation can be

written as
dL
dt

= χ1αVnsL3/2 − χ2
κ

2π
L2 (1.160)

which is called the Vinen equation.

In the steady state dL/dt = 0, the averaged VLD is given by

L1/2 = γVns, (1.161)

γ :=
2π

κ

αχ1

χ2
. (1.162)

This result shows that the averaged VLD at the steady state L is proportional to the square of the

counterflow velocity Vns, which has been confirmed by many experiments.

1.5.4 Mutual Friction

To close the HVBK equations, the formula of Fns is needed. Gorter and Mellink [103] proposed

an empirical formula in thermal counterflow turbulence of He II as

F̄ns = AGMρnρsv̄
2
nsv̄ns, (1.163)

where vns := vn − vs, AGM is the Gorter–Mellink coefficient depending on the temperature and

tube shape, and the notation of bar (¯) means averaging. Vinen later modified it as

F̄ns = αρsκLv̄ns, (1.164)

where α(T ) is a temperature-dependent parameter [104] and L is the averaged vortex line density

(VLD), i.e., length of vortices per unit volume. The above equations are about the averaged mutual

friction F̄ns, but the local force formula Fns is still under discussion. So far, the well-accepted

formula is [105,106]

Fns = αρsκLvns, (1.165)

which is the natural extension of Equation 1.164. In rotating He II, all vortices are polarized in

the direction of the vorticity; hence the averaged VLD may be expressed as L = |∇× vs| /κ. The

mutual friction force Fns is important for the counterflow turbulence in He II, and we will discuss

the details later.
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CHAPTER 2

ANGULAR MOMENTUM TRANSFER DURING

MERGING OF ROTATING BOSE–EINSTEIN

CONDENSATES

Vortices play a critical role in turbulence, and rotational motion is usually associated with vortices

[4, 48]. Angular momentum conservation can cause exciting effects in the rotating fluid systems,

for example, eddies in the ocean flow [107] and accretion discs [108, 109]. The merging of rotating

classical drops leads to the Kelvin-Helmholtz instability generating spiral vortices at the interface

[110]. The viscous shear stress then transfers the angular momentum in classical fluids [48]. On the

other hand, quantum fluids have no viscosity and have a wave property that may lead the merging

to wave interference. Therefore, the corresponding mechanism is little known.

The merging dynamics of isolated BECs have been a comprehensive topic including matter-

wave interferometry [111–114], nonlinear quantum hydrodynamics [115, 116], galactic dark matter

[117], superfluid helium droplet [118–120], and the creation of quantized vortices [121–123] or dark

solitons [124–126]. Past studies mainly research BEC merging in the context of the Kibble–Zurek

mechanism [127–130], which describes the formation of phase defects (e.g., quantized vortex in

BECs) following the merging of isolated condensates with random phases during a rapid second-

order phase transition [131,132]. Such past studies assumed static condensates with uniform phases.

However, if the BEC has a vortex, velocity and phase gradient exist. We have conducted two-

dimensional (2D) and three-dimensional (3D) GP simulations to study how the angular momentum

is transferred from the initially rotating condensate to the initially static condensate. This chapter

summarizes our published works regarding the BEC merging [1, 2, 133]. Our 2D simulations of

concentric condensates show the emergence of a spiral dark soliton having a sharp endpoint in the

merging process. We have revealed that this endpoint behaves like a fractional vortex [134, 135]

and can induce angular momentum transfer even without quantized vortices. Furthermore, our

3D simulations present that rapid angular momentum transfer accompanies a corkscrew-shaped

soliton-like structure at the interface of the two BECs. This transfer does not need fluid advection

or shift of quantized vortices. Instead, the solitonic corkscrew can exert a torque that directly
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creates or annihilates angular momentum in BECs. To understand this fascinating dynamic, we

have systematically studied the merging process under various conditions in 2D and 3D spaces.

2.1 Two-Dimensional Merging

2.1.1 Method

Two-Dimensional Gross–Pitaevskii Equation. In the long cylindrical potential [136] or

the pancake-shaped potential [137], we may approximate the system as a 2D system. The following

briefly discusses the derivation of the 2D GP equation in those two cases.

In the cylindrical potential, we may assume translational symmetry in the z-direction and ignore

the z-dependence. The GP equation may be written as

iℏ
∂ψ(x, y; t)

∂t
=

[
− ℏ2

2m
∇2

2D + U(x, y; t) + U0|ψ(x, y; t)|2 − µ

]
ψ(x, y; t). (2.1)

where ∇2
2D = ∂2

∂x2
+ ∂2

∂y2
.

In the pancake-shaped potential

U(x, y, z; t) =
1

2
m
[
ω2
⊥
(
x2 + y2

)
+ ω2

zz
2
]

= U2D(x, y) + Uz(z), (2.2)

the excitation in the z-direction is negligible, and the wave function may be approximated as

ψ(x, y, z; t) = ψ2D(x, y; t)Z(z) where Z is the ground state in the z-direction and is normalized as∫
|Z|2dz = 1. By taking an integral with z, we may rewrite the GP equation (Equation 1.64) into

the 2D formula as

iℏ
∂ψ2D

∂t
Z = − ℏ2

2m

[
Z∇2

2Dψ2D + ψ2D
∂2Z

∂z2

]
+
[
U2D(x, y) + Uz(z) + U0|ψ2D|2|Z|2 − µ

]
ψ2DZ (2.3)

→ iℏ
∂ψ2D

∂t
= − ℏ2

2m
∇2

2Dψ2D +

[
U2D(x, y; t) + U0

(∫
|Z|4dz

)
|ψ2D|2

]
ψ2D

+

[
ℏ2

2m

∫ ∣∣∣∣∂Z∂z
∣∣∣∣2 dz +

∫
Uz(z)|Z|2dz − µ

]
ψ2D

=

[
− ℏ2

2m
∇2

2D + U2D(x, y) + U0,2D|ψ2D|2 − µ2D

]
ψ2D (2.4)

where

U0,2D = U0

∫
|Z|4dz, (2.5)

µ2D = µ− ℏ2

2m

∫ ∣∣∣∣∂Z∂z
∣∣∣∣2 dz − ∫ Uz(z)|Z|2dz. (2.6)
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The coherent length (Equation 1.66) is then expressed as

ξ =

√
ℏ2

2mµ2D
(2.7)

where µ2D = U0,2Dn0,2D and n0,2D is the bulk density of the 2D wave function ψ2D. The Equations

2.1 and 2.4 are the 2D GP equations. In this section, we omit the notation of ’2D’ as

iℏ
∂ψ

∂t
=

[
− ℏ2

2m
∇2 + U(x, y) + U0|ψ|2 − µ

]
ψ. (2.8)

Figure 2.1: (a) Schematic of the potential U(r, t) for the 2D GPE simulation. (b) The
initial density profile of the condensates in the absence of rotational motion in the con-
densates. Adapted from Figure 1 in T. Kanai et al. [1]

Configuration for Numerical Simulation. To observe the merging dynamics of two con-

centric BECs with different rotational velocities in 2D space, we set the potential U = Utrap + Uw,

where Utrap represents the cylindrical-shaped box potential trapping the condensates, and Uw

is the coaxial barrier separating the ring and disk condensates (Figure 2.1a). We set the ra-

dius of Utrap as 25ξ because the range of typical condensate sizes in real experiments is about

10ξ − 102ξ [122, 130, 138, 139]. The potential barrier Uw has a square shape with a width of 5ξ in

the radial direction and has a height in the range of µ− 10µ, where the typical values in the past

experiments are in the range of µ− 102µ [121,130,138–141].

We use a computational region r ∈ [−25ξ, 25ξ]× [−25ξ, 25ξ] with a mesh grid of 500×500 nodes

for our simulations. The time step is ∆t = 10−4τ , where τ is the characteristic time of the sound
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speed defined by

τ =
ℏ
µ
. (2.9)

Figure 2.1b shows a typical initial density profile of static BECs. We introduce rotational motion by

printing a phase on the wave function and apply the imaginary time propagation method to prepare

the initial state (Section 1.2.3). The circulation associated with the supercurrent can be any integer

m multiplied by the quantum circulation κ = h/m. At t = 0, we suddenly remove the energy barrier

Uw and let the two condensates merge. The dynamical evolution of the condensate wavefunction

during merging can be obtained by numerically integrating the GP equation (Equation 2.8) using

an implicit method in an alternating direction [142].

2.1.2 Simulation Results

Figure 2.2: Representative snapshots showing the time evolution of the BEC density ρ for
Uw = µ. Here ρ0 = 8 × 10−4ξ−2. (a) The initial state is a static inner disk condensate
with a rotating outer ring condensate carrying a circulation of κ. (b) The initial state is a
static outer ring condensate with a rotating inner disk condensate having a single vortex
point at the center. Adapted from Figures 2 and 3 in T. Kanai et al. [1]

Figure 2.2 shows representative images of the time evolution of the condensate density ρ = |ψ|2

with Uw = µ. Figure 2.2a shows the case that the inner disk condensate is static and the outer ring

condensate rotates with a circulation of κ at t = 0. Figure 2.2b is for the case in that the outer

disk condensate is static and the inner ring condensate rotates with a circulation of κ containing a

single vortex point at the center at t = 0. A spiral stripe characterized by a depleted condensate
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density appears in both scenarios. Across this stripe, there is an abrupt phase step ∆ϕ. This stripe

corresponds to a gray soliton, similar to the ring gray solitons observed during the expansion of

2D disks and annular condensates [124–126]. Since the soliton velocity is controlled by the phase

step ∆ϕ as Equation 1.79, a dark soliton with complete density depletion (i.e., ρ = 0 at the center)

has ∆ϕ = π and zero soliton velocity with a thickness on the order of ξ. When ∆ϕ decreases, the

soliton becomes wider and shallower, increasing its velocity. At the dark soliton point (∆ϕ = π), the

relative phase between the inner and the outer condensates changes sign. The soliton then develops

two ends, with one end spiraling in and the other extending out. The difference in the chirality of

the spiral solitons between those cases reflects the distinction of the relative phase winding between

the two condensates.

The spiral soliton stripe has an exciting interaction with quantized vortex points. Firstly,

besides the actual vortices, the endpoint of the phase branch-cut behaves as a phase vortex with

a phase winding of 2π around it but does not induce rotational flow. The soliton stripe rapidly

evolves a sharp inner end spiraling toward the center in the condensate. In the case of Figure

2.2a, as the sharp inner end of the soliton stripe approaches the center, snake instability occurs

where the local curvature radius of the inner end becomes comparable to ξ [122,138,139], resulting

in the nucleation of a quantized vortex near the center. In Figure 2.2b, as the inner end of the

soliton stripe approaches the center, the vortex point merges with the soliton stripe, resulting in a

vortex-free condensate. This vortex-free structure can be observed in Figure 2.11b, specifically at

t = 7τ . During the long-term evolution, the solitons in both cases eventually decay into quantized

vortices via snake instability.

Effect of Potential Barrier Height. We examine the effect of the potential barrier height

Uw in the condensate merging dynamics. Figure 2.3 shows representative pictures of the time

evolution of the condensate density with Uw = 10µ. By comparing the soliton profiles in the

snapshots for Uw = µ (Figure 2.2) and Uw = 10µ (Figure 2.3), it is apparent that the spiral soliton

develops a sharp inner endpoint that spirals toward the condensate center in both cases. Here the

length of the soliton stripe is longer for Uw = 10µ than that for Uw = µ. This result is likely due to

the steep drop in the initial condensate density in the potential barrier area for the Uw = 10µ case.

This significant density gradient provides more potential energy for the soliton formation once Uw

is removed.
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Figure 2.3: Representative snapshots showing the time evolution of the BEC density ρ for
Uw = 10µ. Here ρ0 = 8 × 10−4ξ−2. (a) The initial state is a static inner disk condensate
with a rotating outer ring condensate carrying a circulation of κ. (b) The initial state is a
static outer ring condensate with a rotating inner disk condensate having a single vortex
point at the center. Adapted from Figures 2 and 3 in T. Kanai et al. [1]

Angular Momentum Transfer. To analyze the transfer of the rotational motion, we cal-

culate the angular momentum density per particle defined as

Lz(r, t) =
1

N

(
ψ∗L̂zψ

)
. (2.10)

For example, Figure 2.4a shows some snapshots of the condensate density, phase, and angular

momentum of the case in Figure 2.2a. The angular momentum initially contained in the outer

condensate can spread to the internal condensate along the spiral channel formed by the soliton

stripe. Interestingly, quantized vortices are absent during this angular momentum transfer while

conserving the total angular momentum. An intriguing observation becomes apparent by closely

analyzing the depicted flow in Figure 2.4a. The counterclockwise direction of the flow within the

initially rotating condensate prevents it from entering the outward spiral channel created by the

soliton. Consequently, the rotational movement observed in the initially stationary disk condensate

must be triggered by an alternative mechanism that operates independently of quantized vortices.

We have identified this novel mechanism as due to the rotational flow induced by the sharp

endpoint of the spiral soliton. As depicted in Figure 2.4a, due to the phase change across the

boundary of the soliton, the sharp inner endpoint has a phase winding of ∆ϕ around it. This phase
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Figure 2.4: (a) Snapshots of the condensate density, phase, and angular momentum density
Lz for the case shown in Figure 2.2a. Here ρ0 = 8 × 10−4ξ−2 and L0 = 7 × 10−4m/τ . (b)
Schematics illustrating the underlying mechanism for the mass and angular momentum
transfer. Adapted from Figure 4 in T. Kanai et al. [1]

winding leads to a rotational motion in the condensate, making the sharp endpoint effectively a

’vortex point’ that carries a fraction of a quantized circulation given by κ∆ϕ/2π. It is essential

to highlight that the circulation, which is the integral of velocity along a closed contour around

the endpoint, remains zero due to the presence of opposite phase velocities within the soliton’s

density-depleted region. The motion induced by the endpoint results in mass transportation within

the condensate from the inner to the outer region, guided by the spiral channel. Consequently, a

phase increases along the boundary of the soliton. This phase increment generates a radial phase

gradient within the condensate, which in turn drives an inward flow of mass. In the shallow section

of the soliton stripe, where the condensate density is not depleted, there is a significant mass flow

from the outer region through the soliton boundary towards the inner part. This mechanism results
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in the establishment of a mass circulation that effectively mixes the condensates and facilitates the

transport of angular momentum.

Figure 2.5: Calculated vortex charge Z in the condensate along the radial lines represented
by the solid yellow lines shown in the inset for (a) Uw = µ and (b) Uw = 10µ. Adapted
from Figure 5 in T. Kanai et al. [1]

To show that the inner endpoint behaves like a fractional vortex point, we introduce a vortex

charge parameter Z, defined as Z = m
ℏ |r×v(r)| = m

ℏ rvθ, where vθ is the velocity along the azimuth

angle direction. When a vortex point is located at the center, Z is a constant and equals the

winding number of the vortex. Figure 2.5 shows the calculated Z values along some radial lines in

the condensate when the inner endpoint of the spiral soliton is located around the center. Near the

endpoint around the center, the Z values are nearly 0.4 for the Uw = µ case and nearly 0.48 for

the Uw = 10µ case, which matches well with the measured phase step across the soliton boundary

near the inner endpoint (i.e., ∆ϕ ≃ 0.8π for Uw = µ and ∆ϕ ≃ 0.95π for Uw = 10µ). In the tail

38



part of the soliton line, there are palpable mass flows across the soliton boundary from the outer

region. Then Z increases toward one, which is expected for the flow in the initial ring condensate.

Figure 2.6: Time evolution of the condensate density ρ, phase ϕ, and angular momentum
density Lz when the static inner disk condensate merges with the rotating outer ring
condensate that carries a circulation of (a) 2κ and (b) 5κ. The potential barrier Uw = µ.
The maximum angular momentum L0 is (a) 1.4 × 10−3m/τ and (b) 3.5 × 10−3m/τ .
Adapted from Figure 6 in T. Kanai et al. [1]

Multiple Quantum Circulation Cases. We have also investigated the merging dynamics

between a stationary inner disk condensate and a rotating outer ring condensate with an axially

symmetric supercurrent with multiple quantum circulations. Figure 2.6 shows typical snapshots

of the time evolution of ρ, ϕ, and Lz for the outer ring condensate having a circulation of 2κ

(in Figure 2.6a) and 5κ (in Figure 2.6b) with Uw = µ. Notably, multiple spiral dark solitons are

observed in these cases, where the number of soliton stripes matches the flow’s winding number,

equivalent to the number of quantum circulations present in the initial ring condensate. Similar to

the mechanism discussed in the previous section, each soliton develops a sharp inner endpoint that

induces rotational motion in the initially static disk condensate, facilitating angular momentum
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transfer. As the local curvature radius near the inner ends of the solitons decreases, vortex points

detach from the inner ends of the solitons. It is important to note that when multiple soliton stripes

and vortices are present in the condensate, the flow field becomes highly complex. The flows induced

by neighboring solitons and vortices can significantly influence soliton stripes. As a result, snake

instability occurs more quickly, breaking the inner ends of the solitons into segments and vortices

as shown in Figure 2.6a at t = 12τ . In both cases presented in Figure 2.6, the net vorticity,

considering both positive and negative vortices, in the condensate always matches the quantum

circulation number in the initial outer ring condensate. Additionally, we have conducted tests

where a static outer ring condensate merges with a rotating inner disk condensate with multiple

vortex points. Similarly, spiral solitons emerge during the merging process, and the number of

soliton stripes corresponds to the number of vortices initially present in the disk condensate. It

appears that the formation of spiral soliton stripes during condensate merging is determined by the

relative winding number (i.e., relative circulation) between the two condensates. The underlying

mechanism responsible for this exciting soliton formation process shall be discussed in Section 2.2.3.

Merging of Condensates with Constant Phase Difference. The previous subsection

presents the observations indicating that the relative winding number between the disk and the

ring condensates determines the number of spiral solitons. Consequently, one may wonder about the

outcome when the two condensates merge from an initial configuration without any relative motion.

One might expect that no spiral soliton should emerge in this situation. We have examined two

representative scenarios, as depicted in Figure 2.7. The first case (Figure 2.7a) involves merging a

static ring condensate with a static disk condensate. The second case (Figure 2.7b) entails merging

a rotating ring condensate with a corotating disk condensate containing a single quantized vortex

point at the center. In both cases, ring-shaped dark solitons are created at the interface between the

two condensates following merging. These gray ring solitons undergo expansion in radius, bounce

from the trap boundary, and then shrink towards the center of the condensate. This expansion-

shrinking cycle can occur many times. This observed soliton behavior is similar to the formation

and propagation of planar solitons observed during the merging of 3D condensates with constant

phase differences [143]. Over time, fluctuations in the simulation accumulate, leading to snake

instability. In both cases, the ring solitons finally break up into vortex pairs (e.g., see Figure 2.7a

at t = 40τ and Figure 2.7b at t = 32τ). One notable distinction between the ring solitons and

the spiral solitons described earlier is that the spiral solitons possess distinct inner endpoints that
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Figure 2.7: Time evolution of the BEC density ρ and phase ϕ when the initial phase
difference between the ring and the disk condensates is constant across their interface with
the potential barrier Uw = µ. (a) Both condensates are initially static. (b) The rotating
ring condensate carries a circulation of κ merging with a corotating disk condensate with
a single charged quantized vortex point at the center. Adapted from Figure 7 in T. Kanai
et al. [1]

can induce rotational motion, resembling vortices, within the condensate. These sharp endpoints

enable angular momentum transfer between the two regions of the condensate. However, when the

two condensates are static or exhibit corotation without relative motion, the angular momentum

transfer between them becomes unnecessary. Consequently, the ring solitons remain unbroken,

unlike the spiral shape soliton. It is important to emphasize that while soliton formation during

the merging of condensates is a well-known phenomenon, the current simulation has confirmed a

crucial point: it is the relative motion between the condensates before merging that triggers the

breaking of solitons and the development of sharp endpoints. This novel characteristic of solitons

would not have been observed in earlier simulation studies that focused on condensate merging

with uniform phases or no relative motion.

41



2.1.3 Discussion

Figure 2.8: Schematics illustrating the underlying mechanism on how a soliton at the
interface of the two BEC domains breaks up and develops multiple spiral stripes. Adapted
from Figure 8 in T. Kanai et al. [1]

The simulation results explained in the previous sections provide valuable insights into under-

standing the formation of spiral solitons with the exact number of soliton stripes matching the

relative winding number of the two condensates. As an illustration, we can examine the phase

profile at the initial time (t = 0) for the scenario in which the outer ring condensate possesses a

supercurrent with a circulation of 5κ, as depicted in Figure 2.8. The inner disk condensate initially

has a constant phase (i.e., ϕ = 0), while the phase in the outer ring condensate progressively in-

creases in the counter-clockwise direction between the branch-cut lines. Consequently, the phase

difference ∆ϕ across the interface between the two condensates varies along the interface. Notably,

there are five points (highlighted as red dots in the schematics) across which the phase difference

∆ϕ changes sign. It is worth noting that, as seen from Equation 1.79, a soliton stripe moves in the

opposite direction to the phase step ∆ϕ across the soliton boundary. For a soliton stripe created

at the interface between the ring and the disk condensates, the stripe on either side of a red dot
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Figure 2.9: Schematic for estimating the angular momentum density possessed by the
merged condensate in the axially symmetric trap. Adapted from Figure 9 in T. Kanai et
al. [1]

tends to move in opposite directions due to the change in sign of the phase step, breaking up the

stripe at these locations. Notably, the breakup of the soliton stripe occurs concurrently with its

formation. Consequently, instead of witnessing the formation of a complete ring soliton followed by

its subsequent breakup into five pieces, what transpires is the gradual development of five soliton

stripes that possess two ends, with one end spiraling inward and the other end extending outward.

Our simulation results demonstrate that quantized vortices are unnecessary for angular momentum

transfer in the merged condensate in the axially symmetric potential trap. This observation may

appear counterintuitive; therefore, we want to clarify the relevant concepts below.

Considering the angular momentum held by the ring part between r and r+dr as shown in the

yellow ring in Figure 2.9, it can be calculated as

dLz(r) =

∫
[êz · (r× v)] ρdldr = rdr

[∮
ρdl · v

]
, (2.11)

where the integral is taken only with dl. In a highly incompressible quantum fluid, the integral in

the square brackets in Equation 2.11 reduces to ρΓ, where ρ is the density and Γ is the circulation

along the closed ring, which equals the quantum circulation κ multiplied by the number of quantized

vortices inside the enclosed area. If there is no vortex in the condensate, the angular momentum

contained in the yellow ring area in Figure 2.9 should be zero. Repeating this procedure for

all concentric rings in the axially symmetric condensate, one can find that the incompressible

condensate cannot hold finite angular momentum without quantized vortices. However, highly

compressible superfluids may evolve with time and can have spatially non-uniform density, letting

the integral in Equation 2.4 have non-zero, even when the circulation Γ is zero. For our case in
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Figure 2.9, most of the yellow ring carries a flow with a tangential velocity in the counterclockwise

direction. On the other hand, the velocity of the yellow ring segment inside the soliton is clockwise

because the phase gradient is opposite. Consequently, when integrating the velocity along the entire

ring, the contributions cancel out while the circulation is zero. Nevertheless, since the condensate

density is nearly depleted in the soliton region but remains finite in the rest part of the ring, the

integral in the square brackets in Equation 2.4 for calculating angular momentum is finite.

2.2 Three-Dimensional Merging

2.2.1 Method

Figure 2.10: (a) Schematic of the potential U(r) used in our three-dimensional GP sim-
ulation. (b) Initial profile of the BEC density and phase with a single vortex line at the
center in the lower condensate. The density isosurface corresponds to 50% of the bulk
density. Adapted from Figure 1 in T. Kanai et al. [2]

Configuration for Numerical Simulation. To investigate the merging of BECs along the

rotational axis, we examine two cylindrical BECs that have the same size and are aligned along

the z-axis. This arrangement is achieved by the external potential U = Utrap + Uw, where Utrap

denotes a cylindrical hard-wall box potential to trap the condensates and Uw represents the potential

separating the two BECs from each other, as shown in Figure 2.10a. The hard-wall potential Utrap

has a length of 50ξ and a diameter of 20ξ. The potential Uw is located at the center of the hard-wall

trap with a thickness z0 = 5ξ and has a uniform height of Uw = 10µ. The imaginary time method
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in Section 1.2.3 prepares the initial state. Each condensate may have quantized vortex lines in

it. Figure 2.10b shows an example of the initial condensate density profile having a single vortex

line at the center in the lower part. We then instantaneously remove the energy barrier Uw at

t = 0, allowing the two condensates to merge. The time evolution of the condensate wave function

can be obtained by numerically integrating the GP equation (Equation 1.64) with spatial steps

∆x = ∆y = ∆z = 0.2ξ and a time step ∆t = 4 × 10−5τ .

2.2.2 Simulation Results

Figure 2.11: Merging dynamics of the two condensates when they are (a) static and (b)
corotate at t = 0. (c) BEC density evolution when only the lower condensate contains a
vortex line at t = 0. The color plots at t = 3τ and 6τ show the phase profiles. The solid
yellow lines correspond to the locations of the vorticity singularities. (d) Time evolution
of the angular-momentum density Lz corresponding to (c). The plot pictures the Lz
isosurface at 10% of the initial bulk value. Adapted from Figure 2 in T. Kanai et al. [2]

Constant Phase. We initially examine the BEC merging at t = 0 with no relative motion.

Figures 2.11a and b display two scenarios where the condensates are static and corotate with a

vortex line placed at the center, respectively, at t = 0. Upon removing the potential barrier,
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interference fringes emerge at the interface between the condensates. These fringes swiftly develop

into disk-shaped gray solitons that propagate towards the upper and lower ends of the trap. Similar

to the 2D case, the direction of the phase step ∆ϕ across the density-depleted region is opposite

to the soliton speed (Equation 1.79) [143–145]. The soliton disks eventually break up into vortices

due to the snake instability [146–149].

Angular Momentum Transfer. We now shift our attention to the angular-momentum

transfer during BEC merging. Figure 2.11c displays a representative case. At the initial time

(t = 0), the upper condensate is static with a uniform phase ϕ = 0, while the lower condensate,

which carries angular momentum, rotates with a vortex line positioned at the center. Because

of the phase winding in the lower condensate, the phase difference between the two condensates

across the barrier gap varies around the z-axis. Due to the phase winding in the lower part, the

phase gap between the two condensates across the barrier Uw varies around the z-axis. Intriguing

new characteristics appear during evolution. A soliton-like structure having a corkscrew-like shape

initially appears at the interface of the BECs around z = 0 and then extends to both ends of

the cylindrical condensate. This structure reaches the ends at about t ≈ 15τ and bounces back,

inducing complex density and velocity fields in the condensate. The yellow lines in Figure 2.11c

correspond to the locations of the vorticity singular lines. The propagation of the helical soliton

sheet in the lower condensate causes Kelvin waves [26,150,151] along the vortex line. Surprisingly,

in a relatively early stage of the evolution (i.e., t < 12τ), the vortices are almost confined to the

lower region (z < 0). Later, these vortices shift to the upper region (z > 0) accompanied by the

local flows [26]. Eventually, as shown in Figure 2.11c at t ≈ 45τ , quantum turbulence [99] carrying

angular momentum appears through the soliton decay.

Angular Momentum Density. This section is devoted to quantitative analysis of the an-

gular momentum transfer by an angular-momentum density Lz defined for the 3D wave function

in a similar manner as Equation 2.10. Figure 2.11d shows the time evolution of Lz for the case

illustrated in Figure 2.11c. The angular momentum initially possessed by the lower rotating con-

densate quickly flows to the upper region along the helical channel created by the soliton sheet.

Figure 2.12a shows the total angular momentum integrated over each region as LT =
∫
LzdV .

One may ask what the mechanism inducing the angular momentum transfer before the vor-

tices drift into the upper condensate region (t ≲ 12τ) is. Figure 2.11d may give an impression

that the fluid advection controls this transfer. To examine this appearance, we calculate the
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Figure 2.12: (a) Time evolution of the total angular momentum LT in the upper and
lower BECs. (b) The contribution of the fluid advection to the angular momentum in the
upper condensate before vortices drift to this region. Adapted from Figure 3 in T. Kanai
et al. [2]

angular momentum advection across the z = 0 plane as
∫ t
0 dt

′ ∫
z=0 d

2r vz (r, t′)Lz (r, t′), where

vz = ℏ
2im

(
ψ∗ ∂ψ

∂z + ψ ∂ψ∗

∂z

)
is the momentum density along the z-axis divided by the mass. Figure

2.12b shows that this advection contribution is minor for the total angular momentum gained by

the upper condensate. This observation is because the flow in the lower condensate is initially

perpendicular to the merging direction. The progressive rise of the advection contribution during

the time interval t ≲ 7.5τ can be explained in the following manner: the Kelvin waves propagat-

ing along the vortex line within the lower condensate cause the line to deform, adopting a coiled

configuration. This coiled shape subsequently generates a vertical flow passing through the coil,

leading to an effective advection of angular momentum towards the upper region.

2.2.3 Discussion

As shown in the previous section, fluid advection cannot be the mechanism of the observed

rapid angular-momentum transfer at short evolution times. The key is the free edge that the

helical soliton sheet has. Similarly to the 2D case, a phase step across the soliton sheet induces a

phase winding around this edge line, which generates flows in the BEC like a fractional vortex line.
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Figure 2.13: (a) Profiles of the integrated torque exerted by the soliton sheet in the upper
BEC. (b) The plot shows the density isosurface at 50% of the bulk density, showing the
soliton sheet and the vortex line. Adapted from Figure 4 in T. Kanai et al. [2]

As the soliton propagates, its phase profile can cause force and generate torque in both the upper

and lower condensates. The torque per unit volume in the BEC concerning the z-axis is written

as Tz = (r× f) · êz, where the force per unit volume f̃ can be calculated based on the change rate

of the momentum density, f = dP/dt = d
(
m |ψ|2 v

)
/dt. Figure 2.13a shows the total torque Tpl

integrated over the x-y plane and over a step length ∆z = 0.2ξ in the z-direction. This torque

profile shifts to the condensate’s top end associated with the soliton sheet’s propagation. Figure

2.13b presents the corresponding profiles of the soliton sheet and verifies that the peak of the torque

profile roughly coincides with the middle of the soliton profile in the upper BEC region. We have

also confirmed that the angular momentum created by the total torque in the upper condensate

region is the same as the difference between the two curves in Figure 2.12b, which is the remaining

after subtracting the advection contribution from the total angular momentum increment in the

upper region. These results confirm that the spatial extent of the torque matches the soliton profile,

and the torque is the missing mechanism for the angular-momentum transfer. We note that the

soliton sheet also exerts torque to the lower condensate and annihilates the angular momentum

in this region because the phase step of the soliton sheet reverts its direction across the z = 0

plane (see Figure 2.11a) resulting in the negative torque in the lower condensate. The existence

of the vortices makes plotting the exact torque profile in the lower condensate difficult. Still, the

magnitude of the total torque in the lower condensate matches that in the upper condensate, which

conserves the total angular momentum.
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We have also calculated the rate of angular-momentum transfer in the early stage, where the

torque mechanism plays a critical role. Figure 2.12b shows how we linearly fit the total angular

momentum to calculate this rate. The almost linear time dependence of LT can be understood by

examining the torque profile shown in Figure2.13a. While the torque profile changes with time,

the total torque exerted in the upper BEC region, equal to the total area below the profile curve,

remains nearly constant. Therefore, the angular-momentum transfer rate becomes nearly constant.

Figure 2.14: (a) Evolution of the BEC density when the lower part contains three vor-
tex lines. (b) The angular-momentum transfer rate dLT /dt with the initial angular-
momentum density Lz(0) for cases with various initial vortex configurations. The barely
visible error bars represent the uncertainties of the linear fit, as shown in Figure 2.12b.
The dashed line is a linear fit to the data. Adapted from Figure 5 in T. Kanai et al. [2]

We also wonder how this rate may depend on the initial angular-momentum density differ-

ence Lz(0) between the two condensates. To investigate this effect, we vary the initial angular-

momentum density difference Lz(0) by introducing multiple vortex lines in the lower condensate

while keeping the upper condensate static. Furthermore, for a given number of vortex lines in the

lower condensate, Lz(0) can be further tuned by varying the distance between the vortices and the

z-axis. Figure 2.14a shows an example case with three vortex lines in the lower condensate at t = 0.

Instead of having one soliton sheet, three solitonic corkscrews emerge and twist together. A con-

stant angular-momentum transfer rate dLT /dt is again observed at short evolution times, and this

indeed holds for every case we have studied. In Figure 2.14b, we plot the obtained dLT /dt against

the initial angular-momentum density difference Lz(0) for all the cases. It is remarkable to observe

that the rate dLT /dt is universally proportional to the initial angular-momentum density difference
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Lz(0) regardless of the vortex configurations. This universality may be understood qualitatively as

follows. The initial angular-momentum density difference Lz(0) depends on the exact vortex con-

figuration. Meanwhile, for any vortex configuration, the solitonic corkscrews are always initiated

at locations where the vortex lines are. Therefore, the solitonic corkscrews’ spatial arrangement

mimics the vortex lines’ geometric configuration. The resulting total torque depends on this spatial

arrangement, similar to the dependence of the initial angular-momentum density difference Lz(0)

on the vortex configuration. Therefore, the total torque (which equals dLT /dt when the torque

mechanism dominates) appears to be consistently proportional to the initial angular-momentum

density difference Lz(0) at short evolution times.

2.3 Conclusion

We have conducted numerical studies on the BEC merging process in 2D and 3D spaces. Our

2D simulation results of concentric disk and ring BECs show that relative motion between the two

condensates induces spiral solitons whose sharp inner endpoints can cause rotational motion like a

fractional vortex. The soliton stripe length depends on the height of the potential barrier initially

separating the BEC. These spiral solitons can boost the angular momentum transfer between the

two BECs, allowing the merged condensate to carry angular momentum even without quantized

vortices. Moreover, the number of spiral solitons emerging during the merging process matches

precisely the initial relative winding number between the two concentric BECs. The relative shear

flows of the condensates at the interface can induce the underlying mechanism for which the solitons

can break up at the condensate interface and the observed exact matching. It is well known in clas-

sical fluids that velocity shear in a single fluid or a velocity difference across the interface between

two fluids causes the so-called Kelvin–Helmholtz (KH) instability, leading to the formation of peri-

odic vortical structures at the interface [141,152]. In superfluid systems, KH instability appears at

the interfaces between two superfluid components, e.g., at the interface between superfluid 3He-A

and superfluid 3He-B [144,153], and in two-component BECs [143,145]. The identified mechanism

should be responsible for the KH instability in a single component superfluid. This angular mo-

mentum redistribution is a general mechanism that should be able to apply to condensates in 3D

when the BEC merging and the flow occur in the same plane.

We have also studied 3D merging in which the merging direction is perpendicular to the initial

flow. Our work has revealed that the soliton-like corkscrew structures formed at the interface enable
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angular-momentum transfer by exerting torques on the BECs. This transfer rate is universally

proportional to the initial angular-momentum density difference. These discoveries enrich our

understanding of BEC merging dynamics and benefit the study of other rotating coherent matter-

wave systems.

We want to emphasize that the configurations adopted in our simulations can be realized in BEC

experiments. For example, there are past experiments studying the Kibble-Zurek mechanism and

superfluid weak link utilizing the interference patterns of a ring condensate and a disk condensate

during free expansion [130, 154]. Their setup can be adapted to realize the configuration for our

2D simulation. Indeed, there are past experiments implementing the 3D box potential [155, 156],

and separating the BEC in a box geometry like in Figure 2.10 using tailored optical potentials is

straightforward. The size of our BECs and the height of the potential barrier are typical in the

experiments (i.e., typical BEC size of about 10ξ−102ξ [122,130,138,139], and typical U in the range

of µ− 100µ [122,130,138,140,141]). Furthermore, the phase imprinting method can be applied to

create the rotational motion in BECs [157]. We would also like to note that our 3D configuration

is similar to that used in the experiment studying interface instability between superfluid 3He-A

and 3He-B phases [152, 153], even though that experiment utilized two immiscible superfluids and

the merging dynamics was not directly related to our case.
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CHAPTER 3

TWO-DIMENSIONAL QUANTUM TURBULENCE

In 2D turbulence, large-scale persistent vortex structures are often observed, e.g., soap film vortex

[158] and gigantic vortex in Jupiter’s atmosphere [159]. To understand the emergence of these

large-scale persistent vortex clusters, L. Onsager [160] introduced a simplified point-vortex model

and showed that energy injection to a finite-sized 2D fluid containing many pointlike vortices

might form persistent clusters of like-signed vortices, i.e., Onsager vortex (OV) clusters, having

the high kinetic energy. This OV state is ordered with less entropy and higher energy; hence, the

temperature associated with the OV state should be negative. The point vortex model has provided

worthwhile understandings about general 2D turbulence [161, 162] and is particularly relevant to

2D superfluids, such as planar BECs [163, 164] and superfluid helium films [165, 166], where the

vortices are pointlike topological defects with a quantized circulation [26].

Figure 3.1: Schematics of the limiting two-dimensional OV cluster configuration with zero
angular momentum in (a) planar disk-shaped BEC and (b) spherical shell BEC. The red
and blue points represent vortices and antivortices, respectively. Adapted from Figure 1
in T. Kanai et al. [3]

T. Simula et al. [167] and T.P. Billam et al. [168] numerically discovered that a pair of OV

clusters with opposite signs could form without any energy input during the evolution of 2D su-

perfluid turbulence in a uniform 2D BEC. This fascinating spontaneous emergence of order from

disorder has stimulated vast research [169–176]. They explained that this remarkable spontaneous

order is due to the vortex evaporative heating mechanism, i.e., vortex-antivortex pair annihilation.
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Such pairs of vortices induce negligible flows in the BEC and have relatively small energy in the

vortex system. Those annihilations thus decrease the number of vortices but mostly keep the total

energy of the vortex system, thereby boosting the mean energy per vortex. Specifically, their initial

state contains many vortices and antivortices in a disk-shaped BEC with a radius R carrying zero

angular momentum. During the evolution of the BEC, the vortices keep annihilating, and the vor-

tex system goes into a negative temperature state, eventually approaching a limiting configuration

illustrated in Figure 3.1a consisting of two vortex clusters separated symmetrically around the disk

center [169]. This limiting configuration corresponds to the state having the highest kinetic energy

per vortex.

Spherical shell BECs have recently attracted much interest [177–181]. Creating such a 2D BEC

manifold in a spherical bubble trap was proposed in 2001 [182], but later research showed that

uniform spherical shell BEC could be achieved only in a microgravity environment because the

atoms would fall to the bottom of the trap by gravity [183, 184]. Nevertheless, the NASA cold

atom laboratory recently installed an experimental setup at the International Space Station and

observed small BEC bubbles [185–187]. In a spherical shell BEC with zero angular momentum, any

dipole OV cluster configuration is always associated with a finite angular momentum; therefore, the

formation of OV clusters is prohibited. We may then expect a quadrupole limiting configuration

containing two pairs of the same signed OV clusters across perpendicular diameters (Figure 3.1 b)

because the quadrupole state carries the highest kinetic energy with zero angular momentum.

The vortex evaporative heating mechanism should be general in 2D BECs. Nevertheless, our

search for exotic OV states shows that OV clusters do not appear in a boundaryless 2D spherical

BEC despite the vortex pair annihilations. Our analysis shows that contrary to prevailing thought,

vortex-pair annihilation emits intense sound waves, dampening all vortices’ motion and suppressing

the formation of OV clusters. Uncovering this mechanism advances our understanding of sponta-

neous emergent vortex orders in 2D superfluid manifolds driven far from equilibrium. This chapter

explains our published study about 2D turbulence [3].

3.1 Numerical Method

We simulate quasi-2D BECs in the disk and the spherical shell geometries by the three-

dimensional GP equation (Equation 1.64). Note that r is the radius in the radial plane in the

disk case and in the 3D space in the spherical shell case in this chapter. We apply the confining
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potential used in Reference [167] to create a disk-shaped BEC:

U(r) = Uwall

[
tanh

(
r2D −R

aosc

)
+ 1

]
+

1

2
mω2z2, (3.1)

where r2D is the radius in the radial plane in the disk case, and Uwall and ω are parameters relevant

to the trap strength in the radial plane and along the z-axis. aosc =
√
ℏ/mω is the characteristic

length of the trapping potential in the z direction that controls the thickness of the disk, and R

sets the disk’s radius. To create a spherical BEC shell, we apply the radial potential:

U(r) =
1

2
mω2 (r −R)2 . (3.2)

We set the parameters as U0N/ℏωa3osc =
√

125 × 104 and Uwall/ℏω = 64, matching with those in

the past theoretical and experimental studies [167, 188]. We choose the radius for the disk-shaped

BEC as R = 30aosc so that Kelvin waves along the quantized vortices are suppressed enough [189]

1. Also, we take the radius for the spherical BEC shell as R = 15 a so that it has the same surface

area as that of the disk-shaped BEC. We then apply the phase imprinting method [2, 133, 179]

to create 80 vortices and 80 antivortices in the BECs while keeping their angular momentum

nearly zero [167]. Equation 1.64 evolves in imaginary time for a short period for the vortex-

core density structure [190]. We then obtain the dynamical evolution of the macroscopic wave

function by numerically integrating Equation 1.64 with a time step of 10−3 and spatial resolutions

∆x = ∆y = ∆z = 0.1aosc using the fourth-order Runge-Kutta method [142].

3.2 Simulation Results and Discussions

Figure 3.2a and b are snapshots of the BEC density during the time evolution on the z = 0

plane for the disk-shaped BEC and on the r = R surface for the spherical BEC shell, respectively.

We prepare typical initiate states in these geometries. In the disk-shaped BEC, the identical sign

vortices form ephemeral clusters growing with time, eventually leading to two large persistent OV

clusters. The frequency of vortex pair annihilation decreases with time and becomes extremely low

upon forming the OV clusters. These observations are similar to those of past studies, e.g., [167].

1We want to note that this thin BEC behaves as two-dimensional for vortex system but three-dimensional for
wave system. Therefore, the ideal-2D GP simulation implicitly supposes zero-thickness BEC in turbulence studies
containing many waves.
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Figure 3.2: (a) and (b) show the evolution of the condensate density ρ = |ψ|2 for the
quasi-two-dimensional BEC in the disk geometry and the spherical shell geometry, respec-
tively. The green and cyan dots correspond to the location of vortices and antivortices,
respectively. The shaded areas in the disk BEC visualize coherent OV clusters. (c) and (d)
show the time evolution of the total vortex number N(t) (black circles). The red circles in
the disk BEC case illustrate the division of decaying vortices, separating the contribution
from pair annihilation process ∆Npair and that from vortices exiting the boundaries ∆Nb.
Adapted from Figure 2 in T. Kanai et al. [3]

3.2.1 Decay Scaling of Vortex Number

Figures 3.2c and d show the total vortex number N(t) in the disk-shaped BEC and spherical

shell BEC, respectively. The vortex-pair annihilations result in a more rapid decay of the total

vortex number in the spherical BEC shell. Note that in ideal 2D BECs, two vortices annihilate

essentially via a multi-vortex interaction process [191–194]. In ideal 2D BECs, vortex-antivortex

pair annihilation requires a third vortex due to energy conservation. Otherwise, the pair becomes

stable and moves at a constant velocity [26]. This annihilation generates a long-lived nonlinear

density wave, which Nazarenko and Onorato first identified as a soliton [191] and was later called

“crescent-shaped” wave [192] or “vortexonium” [170]. This nonlinear wave may decay into phonons

when it collides with a fourth vortex [170,193]. Baggaley and Barenghi [194] numerically substan-

tiated examined decaying homogeneous turbulence in a boundaryless ideal 2D square BEC with

periodic boundaries and confirmed that the anticipated vortex decay through a four-vortex process.

Generally speaking, when an n-vortex process dominates the vortex decay, the time evolution of the

total vortex number is dN(t)/dt ∝ −Nn, and hence we can expect a scaling of N(t) ∝ t−(1/n−1).
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Baggaley and Barenghi [194] discovered that the total vortex number scales as N(t̃) ∝ t−1/3 at

large decay times, suggesting a four-vortex process. Furthermore, some dissipation intentionally

added to the ideal 2D BEC can change the decay scaling to n = 3 because the dissipation can

dampen the soliton wave without a fourth vortex. We will show additional results of square BECs

supporting our argument later.

Our result in Figure 3.2c and d shows that at a later time but before the OV clusters form in

the quasi-2D BECs, N(t) can be fitted well by this scaling with n = 2.4 for the disk-shaped BEC

and n = 3 for the spherical shell BEC. The interaction between the sound waves and the vortices

becomes stronger in quasi-2D BECs than in ideal 2D BECs [167], inducing effective damping in

ideal 2D BECs. Therefore, the n = 3 decay scaling in boundaryless quasi-2D BECs corresponds

to the vortex-antivortex pair annihilation. We can then interpret that the n = 2.4 decay scaling in

the quasi-2D disk BEC is due to the interplay of the vortex-pair annihilation process (n = 3) and

vortex exiting process (n = 2). Figure 3.2c shows that 1/3 of the decayed vortices in the disk BEC

result from the vortex exiting process.

Figure 3.3: Time evolution of the incompressible kinetic energy EV in (a) the disk-shaped
BEC and (b) the spherical shell BEC. E∗(N) is a reference energy above which vortex
clusters are readily observable and Ec(N) is the threshold energy for transition to the
negative temperature state. Adapted from Figure 3 in T. Kanai et al. [3]

According to Figure 3.2b, regardless of the more quick decay of vortex number through the

pair annihilation in the spherical BEC shell, no clear vortex clusters appear at any time. For more
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concrete evidence to judge whether or not OV clusters ever form in a BEC, we evaluate the vortex

energy [195]. The total kinetic energy of a BEC consists of three parts [40]:

• Incompressible kinetic energy due to the flow field induced by the vortices

• Compressible kinetic energy due to sound waves

• Compressible kinetic energy due to quantum pressure.

The following explains how to estimate the incompressible part by the point vortex model.

3.2.2 Point Vortex Thermodynamics

The incompressible kinetic energy can be evaluated by first determining the vortex locations of

all vortices and then applying the point-vortex Hamiltonian [167–169,172,173]:

H = −ρ0κ
2

4π

∑
i<j

sisj ln
(∣∣r′i − r′j

∣∣2)−∑
i

s2i ln
(

1 − r′
2
i

)

−
∑
i<j

ln
(

1 − 2r′i · r′j +
∣∣r′i∣∣2 ∣∣r′j∣∣2)

 . (3.3)

where ρ0 is the mean density, κ = h/m is the quantized circulation, and r′i = ri/R is the normalized

position vector of the i-th vortex with a winding number si = ±1. For vortices in the spherical

shell, we adopt the same procedures with the Hamiltonian [196,197]:

H = −ρ0κ
2

4π

∑
i<j

sisj ln
(
1 − r′i · r′j

)
. (3.4)

Figure 3.3 displays the normalized incompressible kinetic energy variations EV = (4π/ρ0κ
2)H

in both BEC geometries and also shows the threshold energy Ec(N) above which the corresponding

2D neutral N -vortex system becomes the negative temperature state. We use the Markov chain

Monte-Carlo method [198] to derive this Ec(N) using the above Hamiltonians [169]. To apply the

Monte Carlo method evaluating the thermodynamic properties of the vortex system, we consider

a neutral point-vortex system with a total vortex number N in a disk-shaped BEC (R = 30aosc)

and in a spherical BEC shell (R = 15aosc) having zero angular momentum. We use the Markov

chain to generate a considerable ensemble (i.e., 5 × 106) of vortex configurations with a given

temperature T based on the Boltzmann distribution e−EV T0/NT as detailed in Reference [198], where

T0 = Nρ0κ
2/4πkB is a characteristic temperature. Note that the generated vortex configurations

are restricted to have nearly zero BEC angular momentum (i.e., negligible vortex dipole moment
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Figure 3.4: Temperature dependence of (a) the mean energy Ē and (b) the mean
quadrupole moment Q̄ for neutral point-vortex systems in a spherical shell with N = 120
vortices and zero BEC angular momentum. TOV = T0/16 corresponds to the transition
temperature for the ideal point-vortex super-condensation. Adapted from Figure S1 in T.
Kanai et al. [3]

d =
∑

i sir
′
i for the spherical BEC shell case). The mean energy of the vortex system Ē(T ) is

obtained as the average of EV overall vortex configurations.

The following shows the results of the spherical shell case. Figure 3.4a plots Ē versus T for a

representative vortex system with N = 120. We have also calculated the quadrupole moment Q

for each vortex configuration, defined as Q = (
∑

l q
2
l )

1/2 where ql(l = x, y, z) are the eigenvalues of

the quadrupole tensor:

Qll′ =
1

2

∑
i

si
[
3
(
r′i · êl

) (
r′i · ê′l

)
− δll′

]
. (3.5)

The limiting vortex configuration (as shown in Figure 3.1b) has four compact vortex clusters, each

containing N/4 like-signed vortices, and achieves the maximum quadrupole momentQMax/N ≃

3
√

2/4. Figure 3.4b shows the mean quadrupole moment Q̄(T ) determined as the ensemble average

of Q at different T . Ē(T ) and Q̄(T ) rise quickly as T → −0, indicating a transition to the Onsager-

vortex phase. Applying an energy-entropy balancing analysis [195] to estimate TOV above which

the vortex system undergoes a super-condensation transition, we can obtain TOV = −T0/4 for the

disk BEC [167–169] and TOV = −T0/16 for the spherical BEC shell. Figure 3.4 also includes two

representative microcanonical vortex configurations at temperatures much lower or close to TOV .
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Figure 3.5: The mean quadrupole moment Q̄ as a function of the mean vortex energy
Ē. The reference energies Ec and E∗ are determined as the main text explains. Adapted
from Figure S2 in T. Kanai et al. [3]

Next, we evaluate two key reference energies, Ec and E∗. The threshold energy Ec is the value

of Ē in the limit of T̃ → −∞. We apply the method discussed in Reference [169] to determine

Ec reliably, and Figure 3.5 plots Q̄(T ) versus Ē(T ), where the data near Q̄(T ) = 0 follows a
√
Ē

scaling [169]. The intersect of this scaling curve with the Ẽ-axis corresponds to Ec. Since the OV

clusters can emerge at temperatures slightly lower than TOV , we also introduce a phenomenological

reference energy E∗(N) at which the mean vortex quadrupole moment (dipole moment for the disk

case) equals 30% of the value for the limiting configuration illustrated in Figure 3.1. Comparing

Figure 3.4 and Figure 3.5 shows that the E∗ corresponds to the level where the Ē curve starts to

rise quickly.

We repeat this analysis with different N and collect the obtained Ec and E∗ in Figure 3.6. We

then perform a polynomial fit with the form Ē =
∑7

i=0 aiN
i to the Ec and E∗ data to determine

the dependence on the vortex number N . Figure 3.3 shows that in the disk BEC the vortex energy

EV quickly increases to above E∗(N), which agrees that clear OV clusters emerge. We note that

Ec(N) and E∗(N) change with time since the total vortex number N(t) decays. On the other

hand, EV for the spherical BEC shell barely reaches above Ec(N) and is always lower than E∗(N),

thereby verifying that we can hardly observe the formation of OV clusters in the spherical BEC

shell.

The contrasting fate comes from the difference in the vortex decay processes in the disk BEC

and the spherical BEC shell, which calls for an explanation. The vortex-pair annihilation process
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Figure 3.6: Vortex number dependence of the Ec and E∗. The solid red curves are
polynomial fits with the form E =

∑7
i=0 aiN

i. Adapted from Figure S3 in T. Kanai et
al. [3]

works in both geometries, but the vortex-exiting process can occur only in the disk geometry.

To understand what this difference causes, we simulate ideal cases of these processes. For the

annihilation process, we first place a vortex-antivortex pair at close separation in bulk and then

evolve the GP equation with a small added damping through the imaginary time propagation so

that the two vortices approach each other while propagating [194]. When the vortex separation is

around the coherent length, we set t = 0 and remove the artificial damping so that the dissipation

does not influence the following annihilation process. For the exiting process, We adopt similar

procedures for the initial state having a single vortex near the BEC boundary. Figure 3.7 displays

the results. We can see that the pair annihilation in bulk BEC generates intense sound waves due to

the linear momentum conservation. Conversely, during the vortex exiting process, the vortex merges

into the zero-density area, resulting in a much fewer generation of sound waves. Sound waves can

dampen the vortex motion and dissipate the incompressible kinetic energy in the BEC. [191]. This

process is similar in nature to superfluid helium in that the normal-fluid component dampens the

quantized vortices in the superfluid component through the mutual friction [199–201]. Therefore,

we conclude:

1. The vortex pair annihilation process alone does not lead to the OV cluster formation because

of the intense sound emission

2. The vortex exiting process on the BEC boundaries, which boosts the mean vortex energy

with minimum sound wave emission, is responsible for the spontaneous OV orders.

60



Figure 3.7: Time evolution of the condensate density in the disk-shaped BEC when (a) a
vortex-antivortex pair undergoes annihilation and (b) a vortex exits from the disk bound-
ary. Adapted from Figure 4 in T. Kanai et al. [3]

The following presents three complementary tests that can produce unequivocal supporting evidence

to verify these conclusions.

3.2.3 Point Vortex Dynamics on Sphere

Figure 3.8: Time evolution of the vortex dynamics on a two-dimensional spherical surface
with the point-vortex model. The initial state is the same as in our GPE simulation.
Adapted from Figure 5 in T. Kanai et al. [3]

The first test examines the ideal vortex dynamics on the spherical surface (R = 15aosc). This

system has no sound waves, and removing a vortex pair with a short separation distance subtracts

a large negative value from the Hamiltonian in Equation 3.4, resulting in the increment of the
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point-vortex energy with time. Therefore, We can expect the limiting OV configuration in Figure

3.1b. We evolve point vortices by the equation of motion derived from the Hamiltonian in Equation

3.4 [196,197]:
∂r′i
dt

=
ω

2 (R/aosc)
2

∑
j ̸=i

r′i × r′j
1 − r′i · r′j

. (3.6)

where the initial distribution is the same as in our GP equation simulation (Figure 3.2b). We

remove vortex-antivortex pairs if the arc-length separation between the two vortices with different

signs is less than 0.03R/aosc to imitate the vortex-pair annihilation process [167]. Figure 3.8 shows

that four vortex clusters spontaneously form at large t, eventually evolving toward the limiting

configuration as expected. The exact time toward the OV clusters’ emergence depends on the

threshold separation for vortex-pair removal. This simulation result indicates that the evaporative-

heating mechanism will work if the sound waves are absent. Our finding also suggests the need for

careful consideration when employing the point-vortex model to understand the vortex dynamics

in BECs.
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3.2.4 Onsager Vortex State in Square-Shaped Bose–Einstein Condensates

Figure 3.9: GPE simulation of the vortex dynamics in quasi-2D square BEC with (a)
box-wall boundary condition and (b) periodic boundary condition. The green and cyan
dots correspond to the location of vortices and antivortices, respectively. Adapted from
Figure 6 in T. Kanai et al. [3]

The second test simulates a square-shaped planar quasi-2D BEC with 80 vortices and 80 an-

tivortices at random initial positions by the GP equation (Equation 1.64). We choose the identical

trapping parameters, U0 and ω, as those used for the disk BEC case and set the square’s side length

to R = 50aosc to achieve a comparable area. We then apply either the box-wall boundaries with

the hyperbolic tangent potential or the periodic boundaries [194] to directly compare the vortex

dynamics in the same BEC geometry with and without the vortex exiting mechanism. According

to Figure 3.9, showing representative snapshots of the BEC density from the same initial state

with the two different boundary conditions, large-scale OV clusters emerge only in the box-wall

boundaries case.

To substantiate our perspective regarding vortex decay scaling, we have investigated the vortex

number decay in these quasi-two-dimensional square BECs (Figure 3.10). The vortex number decay

with the periodic boundary condition shows the n = 3 decay scaling at late times, which agrees with

our viewpoint about vortex-number decay in boundaryless quasi-2D BECs. Furthermore, a decay

scaling with the box-wall boundary is n = 2.3, close to that in the disk-shaped BEC bounded by

the same type of boundary. Here, we want to mention that we simulated an ideal 2D square-shaped
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Figure 3.10: Time evolution of the total vortex number N(t) in the GPE simulations
with a square BEC with (a) a box-wall boundary condition and (b) a periodic boundary
condition. These results are related to the cases shown in Figure 3.9. Adapted from Figure
2 in T. Kanai et al. [3]

BEC with the periodic boundary condition and observed the n = 4 decay scaling as reported by

Baggaley and Barenghi [194]. Therefore, these observations substantiate our perspective that the

transition from zero to finite thickness in BEC leads to an intensified interaction between sound

and vortices, causing a shift in the decay scaling from n = 4 to n = 3 for pair annihilation.

3.2.5 Onsager Vortex State in Spherical-Cap-Shaped Bose–Einstein
Condensates

Figure 3.11: Initial density profile of the quasi-two-dimensional spherical BEC cap at
r = R. The green and cyan dots represent the location of vortices and antivortices,
respectively. Adapted from Figure S5 in T. Kanai et al. [3]

The third test simulates the vortex evolution in a curved BEC with a boundary (i.e., a quasi-2D

spherical BEC cap). We have associated the spontaneous emergence of OV clusters with vortices

exiting from the BEC boundaries, a process decreasing the vortex number with fewer sound waves.
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Then, we consider that the absence of such boundaries causes the OV clusters to be absent in the

quasi-2D spherical BEC shell. However, confirming that OVs can emerge on the curved surface

when solid-wall boundaries are restored is worthwhile because the curvature may affect the vortex

dynamics [181]. For this purpose, we have conducted supplementary simulations of the vortex

dynamics in a quasi-2D spherical BEC cap using the GP equation. This spherical BEC cap is

generated by utilizing the following potential:

U(r) =
1

2
mω2(r −R)2 + Uwall

[
tanh

{
R

aosc
(θ − θmax)

}
+ 1

]
, (3.7)

where we choose the curvature radius as R = 45aosc and the maximum polar angle as θmax = 0.216π

such that the cup surface area is the same as that for the disk and the spherical shell BECs. As

the other cases, we apply the same coupling constant U0 and potential parameters Uwall and ω

in the GP equation. We introduce 80 vortices and 80 antivortices into the initial BEC cap at

random positions, ensuring the initial angular momentum is close to zero. Figure 3.11 illustrates

the initial density profile on the cross-section at r = R from various polar angles. Figure 3.12

Figure 3.12: Time evolution of the condensate density at r = R for the spherical BEC
cap, viewed from the top. The shaded regions correspond to the persistent OV clusters.
Adapted from Figure S6 in T. Kanai et al. [3]

shows the representative top-view images of the BEC density during the GP equation evolution

and illustrates two persistent OV clusters observed at large times, similar to those in the disk

BEC case. This result confirms our perspective that the vortex-exiting process through the solid-

wall boundaries is essential for the spontaneous formation of the OVs. These findings undeniably

showcase the vital significance of the boundaries where vortices exit in the spontaneous emergence

of OV orders.
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3.3 Conclusion

We have examined the evolution of vortices in both planar and spherical 2D BECs. In a disk-

shaped quasi-2D BEC, we have observed the OV cluster state, which has a high incompressible

kinetic energy and entropy. On the other hand, our results show that OV clusters do not appear

in a spherical shell quasi-2D BEC. This difference is due to the existence of the BEC boundary

and the amount of sound waves. The quantized vortices may decay through two processes: vortex-

antivortex pair annihilation process and vortex exiting process. The vortex-antivortex annihilation

process emits intense sound waves even though the vortex-exiting process produces fewer sound

waves. In a boundaryless spherical shell quasi-2D BEC, vortices may decay only through the

vortex-antivortex pair annihilation process, which emits fewer sound waves, damping the vortex

energy. A comprehensive understanding of the mechanism underlying the spontaneous vortex

orders is achieved, representing significant progress in studying the far-from-equilibrium dynamics

of 2D superfluids. Our findings may also motivate future experiments in 2D spherical BECs at the

International Space Station.
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CHAPTER 4

ANISTROPY OF THERMAL COUNTERFLOW

TURBULENCE IN SUPERFLUID HELIUM-4

Figure 4.1: Schematic of turbulent eddies in counterflow turbulence. (a) and (b) show the
size dependency and orientation dependency, respectively.

Turbulence in classical fluids tends to become more homogeneous and isotropic as the scale

decreases, even if it is highly anisotropic at large energy injection scales [91]. However, Biferale et

al. [202] predicted that counterflow turbulence can become more anisotropic in He II as the length

scale reduces. Turbulent He II counterflow is influenced by a mutual friction force (Equation 1.165),

which is balanced by the chemical potential gradient established due to the applied heat current

in He II on average [55]. Turbulent eddies can cause velocity fluctuations in the two fluids as us

and un. When these eddies have no overlapping and no correlation (i.e., us ̸= un), unbalanced

mutual friction effectively damps out these eddies. However, if turbulent eddies are correlated in the

two fluids, mutual friction dissipation remains small, allowing these eddies to survive for sufficient

time to maintain an energy cascade. This energy dissipation mechanism has two effects on the
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distribution of the coupled turbulent eddies. Turbulent eddies initially coupled are swept apart

due to the opposite mean flows. First, the population of the coupled eddies must be suppressed

as the scale reduces because larger eddies can remain correlated for longer times, while smaller

eddies become uncorrelated quickly and are promptly damped, as illustrated in Figure 4.1a. J.

Gao et al. [203] and Bao et al. [204] have verified this phenomenon by measuring the streamwise

energy spectrum via molecular tagging velocimetry (MTV). Secondly, Biferale et al. [202] have

theoretically suggested that coupled eddies being initially elongated along with the mean flow

or the perpendicular directions have different suppression magnitude, leading to anisotropy in

counterflow. As shown in Figure 4.1b, the eddy elongated to the mean flow direction has a longer

overlap time and is more weakly suppressed than that elongated to the perpendicular direction.

Quantitative measurement of this anisotropy is critical to develop the theoretical framework of

counterflow turbulence.

4.1 Experimental Method

Measuring the thermal counterflow is commonly achieved through second-sound attenuation,

which provides the averaged vortex line density (VLD), i.e., total vortex line length per unit vol-

ume. Our Cryogenics team has devised a state-of-the-art experimental setup that merges laser

optics with helium cryogenics to enhance comprehension of velocity fluctuation and correlation.

Our innovative system utilizes laser beams to generate metastable helium molecules, which allows

for flow visualization. The optical system originates the required laser beams, which are then

transmitted to the cryogenics system. These lasers generate a trace line in the thermal counterflow

within a helium channel. A. Marakov and J. Gao, former members of our Cryogenics lab, built the

original system for their 1D measurement in the mean flow direction [95,199,203,205–208], and we

have developed the cryostat for our 2D measurements.

4.1.1 Vortex Line Density Measurement

We first briefly explain the measurement of the averaged VLD by the second-sound attenuation.

In our system, the second sound wave is stranded between two oscillating superleak transducers

(OSTs) [209], each consisting of a porous membrane and a plastic membrane (Figure 4.2). When

the plastic membrane is pulled, only the superfluid can follow it, while the normal fluid cannot

pass through the porous membrane. Conversely, when the plastic membrane is pushed, the stored

superfluid flows into the helium channel. As a result, the vibration of the plastic membrane moves
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Figure 4.2: Schematic of the membrane for the second sound generation and measurement.

the variations of ρs and ρn out of phase, causing the second wave to stand. The other transducer

can measure the attenuation of the second sound. Quantum turbulence in He II is a tangle of

vortex cores attenuating the second sound by mutual friction [96], and the decay of the second

sound depends on the VLD as [210]:

L =
6π∆0

Bκ

(
A0

A
− 1

)
. (4.1)

Here, A is the amplitude of a Lorentzian resonant peak in the second sound frequency spectrum,

A0 is the amplitude in the absence of vortices, B is a mutual friction coefficient depending on the

temperature [211], and ∆0 is the full width at half maximum (FWHM) of the resonant peak.

4.1.2 Metastable Helium Triplet Molecules

Our experiment uses the MTV method with metastable helium molecules He∗2 to visualize

normal fluid flows in He II. These molecules are formed by exciting or ionizing ground-state helium

atoms using a femtosecond regenerative amplifier laser with a wavelength of 800 nm through the
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following processes:

He+ + e− + He → He∗2 (4.2)

He∗ + He → He∗2, (4.3)

where the notation of ’∗’ means the excited electronic state. The excited He∗2 can exist in spin-

singlet or triplet states. Once generated, the molecules emit scintillation photons as they quench

to their singlet ground state (A1
∑+

u ) or triplet ground state (a3
∑+

u ) [212]. The singlet ground

state (A1
∑+

u ) radiatively decays in the order of nanoseconds, which is much shorter than our

observation time scale [213]. Therefore, we utilize the triplet ground state (a3
∑+

u ) with a long

radiative lifetime of roughly 13 s because the radiative transition to two free helium atoms of the

ground state necessitates spin flipping [214]. These He∗2 molecules form tiny bubbles with a radius

ap of about 6 Å in liquid helium. The motion of a tiny particle can be described by an equation of

motion:

ρpΘ
dup

dt
= Fp (4.4)

where ρp is the particle density, Θ = 4
3πa

3
p is the particle volume, and up is the velocity of the

particle. The force Fp acting on this tiny particle mainly consists of six forces [215,216].

• F (g): The gravitational force given by F (g) = (ρp − ρ) Θg, where g is the gravitational

acceleration vector.

• F
(d)
n : The viscous drag force from the normal fluid.

• F
(i)
c : The inertial force from the normal fluid (c = n) and the superfluid (c = s) given by

F
(i)
c = ρcΘ

Dvc
Dt

• F
(a)
c : The added mass force from the normal fluid (c = n) and the superfluid (c = s) given

by F
(a)
c = 1

2ρcΘ
(
Dvc
Dt − dup

dt

)
The particle Raynolds number is small (i.e., Rep = 2ρnap |vn − up| /ηn << 1), and the viscous

drag force for a spherical particle can be approximated as F
(d)
n ≈ 6πapηn (vn − up). Therefore, the
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equation of motion is written as

ρpΘ
dup

dt
= 6πapηn (vn − up) + (ρp − ρ) Θg (4.5)

+
∑

c={n,s}

ρcΘ

(
3

2

Dvc
Dt

− 1

2

dup

dt

)
(4.6)

⇔ dup

dt
=

9ηn
2 (ρp + ρ/2) a2p

(vn − up) +
ρp − ρ

ρp + ρ/2
g (4.7)

+
∑

c={n,s}

3ρc
2 (ρp + ρ/2)

Dvc
Dt

(4.8)

Then, the viscous relaxation time τp is expressed as

τp =
2ρp + ρ

9ηn
a2p, (4.9)

which is fairly small at our experimental temperatures (e.g., τp ≈ 4.5 ps at T = 1.65 K). Therefore,

the viscous normal fluid fully entrains the molecules, and they are ideal tracer particles for normal

fluid flow above T = 1 K. On the other hand, these particles are trapped by quantized vortices at

adequately low temperatures (i.e., T < 0.6 K); the quantized vortices may be directly visualized in

that temperature region [217].

Figure 4.3: Schematic diagram illustrating the relevant metastable states of the He∗2 triplet
molecules and the optical transitions related to the flow visualization. The labels of 0, 1,
and 2 correspond to the vibrational levels for each electronic state.

He∗2 molecules can be barely seen, and we employ a technique called cycling-transition laser-

induced fluorescence (LIF) to visualize He∗2 molecules [218,219]. Figure 4.3 illustrates the relevant

metastable states of the He∗2 triplet molecules and their low-lying optical transitions. The triplet

ground state a3
∑+

u can be excited to the electronic state d3
∑+

u by two infrared photons of 905

nm wavelength. Over 90% of the molecules in the d3
∑+

u state then emit red photons of 640 nm
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and decay to the b3Πg state within 10 ns. We detect these red photons using intensified charge-

coupled device (ICCD) cameras. The b3Πg state decays to the a3
∑+

u state through the rotational

and vibrational levels between these states, and the a(1) and a(2) states have a long vibrational-

relaxation time (i.e., about 1 s). Two lasers having 1073 nm and 1099 nm wavelengths are applied

to excite these two states to the c3
∑+

u states, which quickly decay to the a(0) state [219,220].

4.1.3 Laser Optical System

Figure 4.4: Design of the optical table

We combine multiple lasers on the optical table for the MTV visualization. The schematic of

the optical table is shown in Figure 4.4. To create a femtosecond (fs) laser beam with a wavelength

of 800 nm creating He∗2 molecules, we use a Spitfire Ace amplifier seeded by a Mai Tai pulsed laser

and pumped by an Empower-45 laser. In addition, a pulsed laser beam with a wavelength of 905

nm and a frequency of 500 Hz is generated by an EKSPLA Nd:YAG pulsed laser to excite He∗2

molecules. To enhance the He∗2 cycling transition, we use two fiber diode continuous wave (CW)

laser beams with the wavelengths of 1073 nm and 1099 nm, each with about 1W, which damp
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the low-lying vibration modes a(1) and a(2) by exciting from a(1) to c(0) and a(2) to c(1) levels,

respectively.

Laser beams expand during traveling, and the optical table is designed to adjust the focal

point and the entrance beam diameter appropriately (Figure 4.4). The ideal laser intensity profile

is Gaussian, corresponding to the ground transverse electromagnetic ground mode, i.e., TEM00.

Supposed that the wavefront is flat and the radius of the 1/e2 irradiance contour is w0 at z = 0,

the curvature radius of the wavefront after propagating a distance z is given by

R(z) = z

√
1 +

(
πw2

0

λz

)2

, (4.10)

where λ is the wavelength of the light. The radius of the 1/e2 contour at a distance z is then

written as

w(z) = w0

√
1 +

(
λz

πw2
0

)2

. (4.11)

In our experimental setup, the radius at the center w(0) is about 60 µm. At large z, the 1/e2

irradiance contours approach a cone of angular radius λ/πw0.

4.1.4 Cryogenics System

The design of our cryogenics system is illustrated in Figure 4.5. The system comprises a

helium channel, thermal shields, and a transparent heater. The streamwise and laser directions are

represented by the x- and z-direction, respectively. The helium channel is a square stainless steel

channel with a cross-section dimension of roughly 9.4 mm× 9.4 mm and a length of approximately

30 cm. The top of the channel connects to a helium bath, and the temperature is accurately

controlled with an accuracy of 0.1 mK by regulating the pressure. The bottom of the channel has

a sapphire glass window coated with indium tin oxide (ITO) on the outside. Passing a current

through the ITO coating generates heat that drives a thermal counterflow in the helium channel.

The induced heat drives a thermal counterflow in the helium channel. We utilized a four-wire

measurement for the resistance measurement, and the resistance is about 2.5 kΩ in our temperature

range.

The channel passes through a stainless-steel cube, in which the normal fluid flow is visualized.

The cube has two cylindrical side flanges featuring an indium-sealed sapphire window each. To allow

for the passage of the combined laser beams, a pair of vertical slows measuring 8 mm × 12 mm is

penetrated through the cube and the channel wall, minimizing laser light scattering and preventing
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Figure 4.5: Schematic of the cryogenics system in our experimental setup.

laser-induced damage to the windows. Additionally, a sapphire view window is situated on the

front side of the cube to enable the ICCD camera to capture images of the molecules being dragged

in the x-direction. To pass the laser beam coming through the cryostat, the sapphire windows

were installed perpendicular to the view directions; the channel has a vertical slot with a rectangle-

shaped cross-section of 2.54 mm × 12.7 mm on the opposing sides. The space between the outer

shell and the helium channel is vacuum, and the heat conduction between them is negligible. Hence,

thermal radiation [221] is the main heat source for the helium system and can be suppressed by

the two thermal shields. The outer shield is connected to liquid nitrogen (T ∼ 77 K), and the inner

shield is connected to liquid helium (T ∼ 4.15 K).

4.1.5 Image Data Analysis

The resolution of the ICCD cameras is not high enough to tack the individual He∗2 molecules.

Therefore, we apply the tracer line tracking (TLT) method utilizing a thin tracer line of triplet-

state He∗2 molecules to visualize normal fluid flows in the thermal counterflow turbulence. In our

experiments, we capture photos with the ICCD cameras and determine the location of the tracer

line by the Newton method, in which a curved line is fitted with the fluorescence profile under
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Figure 4.6: Typical Tracerlines. (Left) Baseline and (Right) drift line from the side view.
The temperature is T = 2.00 K, the heat current is q = 431 mW/cm2, and the drift time
is ∆tD = 20.46 ms.

the assumption of a Gaussian noise around it [222]. The thickness of the molecular tracer line

is controlled by the width of the femtosecond laser beam w0 = λf/πwf with the focal length of

the lens f and the incident beam radius wf . For the velocity measurement, we first take baseline

images in the absence of heat current with zero drift time to determine the initial location of the

tracer line. Then, tracer line images are captured after a certain drift time ∆D. Figure 4.6 shows

typical baseline and drift line pictures. By comparing them, the velocity can be calculated by

v(z) =
rdrift(z) − rbase(z)

∆tD
. (4.12)

Analyzation of numerous samples under the same condition provides a probability density of the

velocity. We typically take 100 to 150 samples for each case. The probability density function is

fit with the Gaussian distribution to determine the mean speed va and standard deviation wa for

a ∈ {x, y} (Figure 4.7). The bubbles trapping the He∗2 molecules may diffuse during the drifting,

and the visualization line may be expanded. However, this effect is estimated to be negligible in

our temperature range [218,223].

4.2 Experimental Results and Discussions

At low levels of heat flux q in which the flow remains laminar, the velocity in the streamwise

direction vx is expected to be Hagen–Poiseuille-like flows (Equation 1.151). However, once the heat
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Figure 4.7: Probability density function of velocity with T = 1.85 K and q = 210.10 mW/cm2.

flux surpasses a critical value, the superfluid flows become turbulent (i.e., T-I state). In this study,

we focus on T-II states where both the normal fluid component and the superfluid component are

turbulent.

Figure 4.8 shows the velocity profiles va(z) and the compensated energy spectra k5/3Ea(k) for

a ∈ {x, y}. In this case, the temperature and heat flux are T = 1.85 K and q = 380.58 mW/cm2,

in which the flow is in the T-II state. To discuss the turbulent nature, we calculate the velocity

fluctuation ua(z) = va(z) − ⟨va(z)⟩im, where ⟨⟩im denotes the ensemble average over the images.

When examining turbulence, the energy spectrum can provide valuable insights. In isotropic 3D

turbulence, the energy spectrum depends only on the amplitude of the wave number vector. How-

ever, angular dependency is present in anisotropic turbulence. To gain insight into the anisotropy

of thermal counterflow turbulence, we plot the 1D energy spectra along both the streamwise and

perpendicular directions given by

Ea(k) =
∑

k≤k′<k+∆k

⟨|ŭa(k′)|2⟩im , (4.13)

where ŭa(k) is the 1D Fourier series of ua(z) along the tracer line in z-direction defined as

ŭa(k) =
1

N

∑
z

ua(z)e−ikz (4.14)
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Figure 4.8: (a) Averaged velocity profile and (b) energy spectrum compensated by k5/3

in the stream direction and perpendicular directions. The parameters are T = 1.85K and
q = 380.58 mW/cm2.

with the total grid number N . The energy spectra in Figure 4.8b confirm the anisotropic nature

of thermal counterflow turbulence in He II, and the streamwise component (a = x) carries more

turbulent energy than the perpendicular component (a = y).

Figure 4.9 shows the ensemble-averaged velocity ⟨va(z)⟩im and turbulent velocity defined by

wa(z) =
√

⟨|va(z) − ⟨va(z)⟩im |2⟩im. (4.15)

We obtain the profile of velocity fluctuation from these data and calculate the energy spectra and

structure functions as shown in the following.

Figure 4.10 shows the energy spectra with various temperatures T ∈ {1.65 K, 1.85 K, 2.00 K}.

The spectra can be classified into three intervals [204]: the energy-containing interval, the cascade-

dominated interval, and the mutual-friction-dominated interval. The energy is injected into the

turbulent flows in the outer scale of turbulence (k < k0), where k0 := 2π/r0 with r0 ≈ 2 mm

near the peak of the structure-function as explained later [203]. There is a competition between

the mutual friction term and the convection term. The decoupling wave number k× is estimated

as k× := κL/Vns. Below k×, the mutual friction term is small and the energy spectrum is in the

cascade-dominated interval, in which the energy spectrum is expected to be similar to the classical

Richardson-Kolmogorov cascade Ea(k) ∝ k−5/3. Above k×, the mutual friction is the primary

mechanism of energy dissipation, and the energy spectrum quickly decreases as the wavenumber k

increases. This range is called the mutual-friction-dominated interval. In the case with T = 1.85 K
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Figure 4.9: (a-c) Ensemble-averaged velocity in the streamwise direction ⟨ux(z)⟩im. (d-f)
Ensemble-averaged velocity in the perpendicular direction ⟨uy(z)⟩im. (g-i) Turbulent fluc-
tuation in the streamwise direction wx(z). (j-l) Turbulent fluctuation in the perpendicular
direction wy(z).
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Figure 4.10: 1D energy spectra compensated by the K41 scaling k5/3Ea in (a-c) the stream-
wise direction and (d-f) the perpendicular direction.

and q = 210.10 mW/cm2 in Figure 4.8, these key wavenumbers are calculated as k0 ≈ 3.14 mm−1

and k× ≈ 9.08 mm−1. The energy spectra in each case have two cascades, denoted as E ∝ k−m
C
a

in the cascade-dominated interval and E ∝ k−m
F
a in the mutual-friction-dominated interval for

a ∈ {x, y}. Since the key wave numbers k0 and k× are just estimations, we choose power indexes

mJ
a for J ∈ {C,F} to maximize the k interval where the compensated energy spectrum k−m

J
aE(k)

is almost constant.

To probe the energy spectrum, we calculate the 1D second-order structure function defined as

Sa(R) = ⟨[ua(R+ z) − ua(z)]2⟩z,im a ∈ {x, y} (4.16)

where ⟨⟩z,im indicates the combination of the spatial average with all discretized positions on the

line z and the ensemble average over the images. As seen in these results, the peak exists at

z ≈ 2mm, which agrees with the primary 1D measurement [203].

Our experimental results summarized in Table 4.1 show interesting results. We anticipate that

the power index of the energy spectra in the cascade-dominated interval (ma,C for a ∈ {x, y})

will conform to Kolmogorov scaling, which is roughly 1.67. Nonetheless, we have observed a
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Figure 4.11: Structure function compensated by the K41 scaling R−2/3Sa(R) in (a-c) the
streamwise direction and (d-f) the perpendicular direction.

discrepancy that progressively grows with temperature. At 2.00 K, distinguishing between the

cascade-dominated interval and the mutual-friction-dominated interval based on the power indexes

becomes troublesome. This variation occurs due to the dissipation of energy by mutual friction,

which is clarified by the Gorter-Mellink formula (Equation 1.163). The coefficient AGMρsρn dis-

played in Table 4.2 climbs with temperature. Additionally, mutual friction increases cubicly as the

counterflow velocity increases (i.e., v3ns). Greater mutual friction can effectively dampen the energy

and influence the power index of the energy spectra in the cascade-dominated interval.

4.3 Simulation Method

To examine our experimental results, we work on the simulations with the HVBK equation

(Equations 1.84, 1.156, 1.165) by the Fourier spectrum method.

4.3.1 Equations for the Thermal Counterflow Turbulence

We employ the HVBK equation (Equations 1.84, 1.156, 1.165) to simulate the velocity fields

vc(r, t) of the superfluid component (c = s) and the normal fluid component (c = n) in the
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Table 4.1: Experimental conditions and results. Columns 1-3: the experimental setups.
Column 4: the estimated mutual velocity. Columns 5-8: the fitted power low of the energy
spectrum. Columns 9-10: the fitted power low of the second-order structure function.

T [K] q[mW/cm2] ∆tD [ms] Vns [mm/s] mC
x mF

x mC
y mF

y nx ny

1.65 177.35 29.75 27.47 2.29 3.62 1.47 3.85 1.48 0.73
228.30 19.76 35.36 2.20 3.70 1.47 4.20 1.56 0.99
279.26 14.73 43.34 1.99 3.36 1.77 3.63 1.46 1.14

1.85 293.88 19.71 27.58 1.51 4.03 0.92 4.32 1.51 0.79
380.57 19.84 35.72 1.89 3.43 1.57 3.81 1.52 1.10
462.29 14.71 43.39 2.01 3.42 1.90 3.43 1.49 1.31

2.00 335,58 29.78 27.59 2.65 2.96 1.71 3.52 1.72 1.32
430.85 19.73 35.43 2.68 2.67 2.29 3.16 1.63 1.32
526.13 14.64 43.25 2.52 2.55 2.24 2.89 1.58 1.39

Table 4.2: Coefficient of the Gorter–Mellink formula of the mutual friction.

T [K] AGMρsρn[kg s/mm5]

1.65 2.13 × 10−9

1.85 4.86 × 10−9

2.00 6.55 × 10−9

counterflow turbulence:

∂vc
∂t

+ vc ·∇vc = −∇pc
ρc

+ νc∆vc + Fc (4.17)

∇ · vc = 0 (4.18)

with

pn =
ρn
ρ

[
p+

ρs
2
|vn − vs|2

]
(4.19)

ps =
ρs
ρ

[
p− ρn

2
|vn − vs|2

]
(4.20)

Fn =
1

ρn
Fns (4.21)

Fs = − 1

ρs
Fns. (4.22)

Here, the velocities of both components are incompressible (i.e., ∇ · vc = 0). Decomposing the

velocities into the space averaged velocity Uc = ⟨vc⟩ and the velocity fluctuation uc (i.e., vc =

Uc + uc), we obtain the equations of the velocity fluctuations:

∂uc
∂t

+ (Uc + uc) ·∇uc = −∇p′c
ρc

+ νc∆uc + fc + ϕc (4.23)

∇ · uc = 0, (4.24)
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where p′c and fc are the fluctuation part of the pressure and the mutual friction force, respectively.

Also, we introduce external forces ϕc, and the details are discussed later. Note that the fluctuation

of the mutual friction forces is given by fs = −(ρn/ρs)fn = fns, where fns = ακL(un − us)

(Equation 1.165).

Applying a curl to Equation 4.23, we obtain the equation for the vorticity fluctuation:

∂ωc
∂t

+ Uc ·∇ωc −∇× (uc × ωc) = νc∆ωc + gc + ∇× ϕc (4.25)

∇ · ωc = 0, (4.26)

where ω = ∇ × v = ∇ × u is the vorticity fluctuation and gs = −(ρn/ρs)gn = ∇ × fs =

ακL (ωn − ωs) is the mutual friction for vorticity. Also, from a formula of the vector calculus

(u ·∇)u =
1

2
∇u2 − u× (∇× u) , (4.27)

we obtain

∇× {(u ·∇)u} = ∇×
{

1

2
∇u2 − u× (∇× u)

}
(4.28)

= −∇× (u× ω) . (4.29)

We apply this relationship to the convection term. We use this vortex fluctuation equation (Equa-

tion 4.25) in our simulations because the pressure term does not appear, and the number of Fourier

and inverse-Fourier transforms for the convection term can be reduced.

Wavenumber Space. The discretized Fourier transform is given by

ǔ (kx, ky, kz) =
1

N3

∑
x,y,z

u(x, y, z)e−ik·r (4.30)

u (x, y, z) =
∑

kx,ky ,kz

ǔ(kx, ky, kz)e
ik·r, (4.31)

where N is the grid number in each direction. In this calculation, we suppose the periodic boundary

conditions with system size L, and the wave number vector is given by

k =
2π

L
(nx, ny, nz) . nx, ny, nz ∈ {0, 1, 2, · · · , N} . (4.32)
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Applying the Fourier transform (Equation 4.31) to the equation for the vorticity fluctuation

(Equation 4.25) and the incompressible condition (Equation 4.26), we obtain

∂ω̌s
∂t

= −
(
iUskx + νsk

2
)
ω̌s + ακL (ω̌n − ω̌s)

+ik × ϕ̌s +
1

N3

∑
r

∇× (us × ωs) e
−ik·r

=: Hs(t), (4.33)

∂ω̌n
∂t

= −
(
iUnkx + νnk

2
)
ω̌n + α

ρs
ρn
κL (ω̌s − ω̌n)

+ik × ϕ̌n +
1

N3

∑
r

∇× (un × ωn) e−ik·r

=: Hn(t), (4.34)

k · ω̌c = 0. (4.35)

Since ∇×ω = ∇× (∇× u) = ∇(∇ ·u) − ∆u = −∆u, the velocity fluctuation ǔ(k, t) can be

derived from the vorticity fluctuation ω̌(k, t) as

ik × ω̌(k, t) = k2ǔ(k, t) (4.36)

except at k = 0. The bulk velocity is supposed to be constant, so the components at k = 0 should

always be zero (i.e., ǔ(0, t) = 0 and ω̌(0, t) = 0).

4.3.2 Fourier-Spectrum Method

We apply the Fourier-spectrum method, evolving the fields in k-space [224]. Due to the incom-

pressible condition (Equation 4.35), the three-dimensional field has only two degrees of freedom.

Corresponding to this fact, we define two variables ξ̌1(kx, ky, kz) and ξ̌2(kx, ky, kz) to represent the

three-dimensional vorticity fluctuation field ω̌ as follows:

if kx ̸= 0

ξ̌1 = ω̌y, ξ̌2 = ω̌z, (4.37)

else if ky ̸= 0

ξ̌1 = ω̌z, ξ̌2 = ω̌x, (4.38)

else if kz ̸= 0

ξ̌1 = ω̌x, ξ̌2 = ω̌y, (4.39)

else (i.e., kx = 0, ky = 0, and ky = 0)

ξ̌1 = 0, ξ̌2 = 0. (4.40)
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Then, the components of the velocity fluctuation field v̌ are expressed with ξ1 and ξ2 as follows:

if kx ̸= 0

ǔx =
i

k2
(
ky ξ̌2 − kz ξ̌1

)
(4.41)

ǔy = − i

k2kx

{
kykz ξ̌1 +

(
k2z + k2x

)
ξ̌2
}

(4.42)

ǔz =
i

k2kx

{(
k2x + k2y

)
ξ̌1 + kykz ξ̌2

}
, (4.43)

else if ky ̸= 0

ǔx =
i

k2ky

{(
k2y + k2z

)
ξ̌1 + kzkxξ̌2

}
= i

1

ky
ξ̌1 (4.44)

ǔy =
i

k2
(
kz ξ̌2 − kxξ̌1

)
= i

kz
k2y + k2z

ξ̌2 (4.45)

ǔz = − i

k2ky

{
kzkxξ̌1 +

(
k2x + k2y

)
ξ̌2
}

= −i ky
k2y + k2z

ξ̌2, (4.46)

else if kz ̸= 0

ǔx = − i

k2kz

{
kxky ξ̌1 +

(
k2y + k2z

)
ξ̌2
}

= − i

kz
ξ̌2 (4.47)

ǔy =
i

k2kz

{(
k2z + k2x

)
ξ̌1 + kxky ξ̌2

}
=

i

kz
ξ̌1 (4.48)

ǔz =
i

k2
(
kxξ̌2 − ky ξ̌1

)
= 0. (4.49)

The evolution equations (Equations 4.33 and 4.34) are discretized with the second-order Adams-

Bashforth method [142] as

ω̌s(t+ ∆t) = ω̌s(t) +
∆t

2
(3Hs(t) −Hs(t− ∆t)) (4.50)

ω̌n(t+ ∆t) = ω̌n(t) +
∆t

2
(3Hn(t) −Hn(t− ∆t)) . (4.51)

The calculation of Hc(t) follows three steps:

84



1. We calculate the convection term associated with the zeroth order velocity, the dissipation

term, and the mutual friction term (e.g., −
(
iUskx + νsk

2
)
ω̌s +ακL (ω̌n − ω̌s) for the super-

fluid component)

2. A random force ϕ̌c is generated to calculate the random force term (i.e., ik × ϕ̌c)

3. The convection term (i.e.,
∑

r ∇× (uc × ωc) e
−ik·r/N3) is calculated.

In the third step, we calculate the convection term in real space to avoid the correlation calcu-

lation in the k-space. Since the u× ω term can be expressed by the velocity field as follows:

(u× ω)x = uyωz − uzωy

= uy (∂xuy − ∂yux) − uz (∂zux − ∂xuz)

=
1

2
∂x
(
u2y + u2z

)
− uy∂yux − uz∂zux

=
1

2
∂x
(
u2y + u2z

)
− ∂y (uxuy) − ∂z (uzux) + ux (∂yuy + ∂zuz)

=
1

2
∂x
(
u2y + u2z − u2x

)
− ∂y (uxuy) − ∂z (uzux) (4.52)

(u× ω)y =
1

2
∂y
(
u2z + u2x − u2y

)
− ∂z (uyuz) − ∂x (uxuy) (4.53)

(u× ω)z =
1

2
∂z
(
u2x + u2y − u2z

)
− ∂x (uzux) − ∂y (uyuz) , (4.54)

we may write the ∇× (u× ω) term as

(∇× (u× ω))x = ∂y (u× ω)z − ∂z (u× ω)y

= ∂y∂z
(
u2y − u2z

)
−
(
∂2y − ∂2z

)
(uyuz) + ∂x (∂z (uxuy) − ∂y (uzux)) (4.55)

(∇× (u× ω))y = ∂z∂x
(
u2z − u2x

)
−
(
∂2z − ∂2x

)
(uzux) + ∂y (∂x (uyuz) − ∂z (uxuy)) (4.56)

(∇× (u× ω))z = ∂x∂y
(
u2x − u2y

)
−
(
∂2x − ∂2y

)
(uxuy) + ∂z (∂y (uzux) − ∂x (uyuz))

= −∂x∂y
(
(u2z − u2x) + (u2y − u2z)

)
−
(
∂2x − ∂2y

)
(uxuy) + ∂z (∂y (uzux) − ∂x (uyuz)) . (4.57)
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Taking the inverse Fourier series from ǔ(k) to u(r), we can simplify the calculation by taking the

Fourier series of of the independent terms (i.e., uxuy, uyuz, uzux, u2y − u2z, and u2z − u2x) such as

1

N3

∑
r

(∇× (uc × ωc))x e
−ik·r = −kykz

­

(
u2y − u2z

)
+
(
k2
y − k2

z

)
­(uyuz)

−kx

(
kz ­(uxuy) − ky ­(uzux)

)
(4.58)

1

N3

∑
r

(∇× (uc × ωc))y e
−ik·r = −kzkx ­(u2z − u2x) +

(
k2
z − k2

x

)
­(uzux)

−ky

(
kx ­(uyuz) − kz ­(uxuy)

)
(4.59)

1

N3

∑
r

(∇× (uc × ωc))z e
−ik·r = kxky

(
­(u2z − u2x) + ­(u2y − u2z)

)
+
(
k2
x − k2

y

)
­(uxuy)

−kz

(
ky ­(uzux) − kx ­(uyuz)

)
. (4.60)

It is worth noting that the kinetic energy per volume in k-space is given by

Ec =
1

2V

∫
dV u2c(r, t)

=
1

2V

∫
dV
∑
k,k′

ǔ∗
c(k)ǔc(k

′)ei(k
′−k)·r

=
1

2

∑
k,k′

ǔ∗
c(k)ǔc(k

′)δ
(
k′ − k

)
=

1

2

∑
k

|ǔc(k)|2, (4.61)

and the energy density at k in k-space can be expressed by ξ1 and ξ2 as

1

2
|ǔ(k)|2 =


[(
k2x + k2y

)
|ξ1|2 +

(
k2z + k2x

)
|ξ2|2 + kykz (ξ∗1ξ2 + ξ1ξ

∗
2)
]
/2k2xk

2 (if kx ̸= 0)[(
k2y + k2z

)
|ξ1|2 +

(
k2x + k2y

)
|ξ2|2 + kzkx (ξ∗1ξ2 + ξ1ξ

∗
2)
]
/2k2yk

2 (else if ky ̸= 0)[(
k2z + k2x

)
|ξ1|2 +

(
k2y + k2z

)
|ξ2|2 + kxky (ξ∗1ξ2 + ξ1ξ

∗
2)
]
/2k2zk

2. (else if kz ̸= 0)

(4.62)

To compare the simulation results with our experimental results, we need to calculate the 1D

Fourier series of the velocity (Equation 4.14) at x = y = 0 given as

ŭa(kz) =
1

N

∑
z

ua(0, 0, z)e
−ikzz (4.63)

=
∑
kx,ky

∑
k′z

1

N

∑
z

e−ikzzeik
′
zzǔa(kx, ky, k

′
z) (4.64)

=
∑
kx,ky

∑
k′z

δ(k′z − kz)ǔa(kx, ky, k
′
z) (4.65)

=
∑
kx,ky

ǔa(kx, ky, kz). (4.66)
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4.3.3 External Force

External forces ϕc for c ∈ {s, n} are introduced to inject energy into the flows, and modeling

external forces is not simple. Past studies usually utilized Gaussian random forces. In uniform and

isotropic classical turbulence, the specific formula for the random force is not very important as

long as the energy injection rate is similar. However, in He II counterflow turbulence, the random

force’s properties are critical due to its two-component anisotropic nature and the mutual friction.

Biferale et al. [225, 226] implemented time-varying Gaussian random forces ϕc,j for c ∈ {s, c}

and j ∈ {x, y, z}:

⟨ϕc,j(k, t)ϕ∗c,j(k′, t′)⟩ =
σ2k
3k3

δ(k − k′)δ(t− t′)fw(k; kmin, kmax) (4.67)

where σk is the amplitude of the random force. Also, we have introduced a function fw to define

the energy injection range as

fw(k; kmin, kmax) =

1 (kmin ≤ k ≤ kmax)

0. otherwise
(4.68)

Polanco and Krstulovic [227] numerically demonstrated the k−5/3 inverse cascade in thermal

counterflow turbulence by utilizing the HVBK equation with time-constant Gaussian force defined

as

⟨ϕc,j(k)ϕ∗c,j(k
′)⟩ = σ2Lδ(k − k′)fw(k; kmin, kmax). (4.69)

where σL is the amplitude of the random force.

4.4 Simulation Results and Discussions

We follow some past studies with our parameters to confirm if our experimental results agree

with their past simulation results. Our calculation utilized the second-order Adams–Bashforth

method with the grids N = 2563 [142].

Firstly, we follow the study of Polanco and Krstulovic [227], reporting the inverse cascade in

low-k modes. Their parameters are provided as

νn = 1.2 × 10−4 ξ2PK/τPK, νs = 1.5 × 10−4 ξ2PK/τPK

α = 0.206, ρs/ρ = 0.574468

Uns = 10 ξPK/τPK, L = 2π ξPK,
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Figure 4.12: Energy spectrum Etot(k) of the steady state with the parameters of Equation
4.70. The blue and red lines correspond to the cases with time-constant and time-varying
random forces, respectively.

where the corresponding temperature is T = 1.9 K. They also normalized the quantities by their

typical length ξPK and time τPK. In their calculations, the vortex line density is estimated by

κL =
√
⟨|ωs|2⟩/2 or fixed it a value in a range 4 τ−1

PK ≤ κL ≤ 20 τ−1
PK. To inject energy, they applied

a time-constant Gaussian random force (Equation 4.69) only in a band 14.8 ξ−1
PK ≤ k ≤ 15.2 ξ−1

PK.

In this simulation, we choose κL = 20 τ−1
PK, and σL = 0.06 ξPK/τ

2
PK. The grid number is N = 2563

and the discretized time step is ∆t = 5.0× 10−4 τPK. Figure 4.12 shows the total energy spectrum

per unit volume Etot(k) defined as

Etot(k) =
1

ρ

∑
c={n,s}

k≤k′<k+∆k

ρc|v̌c(k′)|2, (4.70)

where ∆k := 2π/L is the grid size in the discretized k-space The blue curve corresponds to the

case with time-constant random force, which they utilized, and the red one represents the case with

time-varying random force [228]:

⟨ϕc,j(k, t)ϕ∗c,j(k′, t′)⟩ = σ2Lδ(k − k′)δ(t− t′)fw(k; kmin, kmax) (4.71)

with kmin = 14.8 ξ−1
PR and kmax = 15.2 ξ−1

PR. The inverse cascade appears with the steady force

(i.e., blue curve). However, it does not appear in the case with the time-varying random force (i.e.,

red curve). These results indicate that the time-dependence of the random force is critical for the

inverse cascade. It is also worth noting that the power index of the energy spectrum in the low-k

interval depends on the intensity of the random force.
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Furthermore, their parameters are not realistic in our system. At T = 1.9 K, the normal

fluid viscosity is νn = 2.208 × 10−2 mm2/s, and the typical counterflow velocity in experiments is

Uns = 30 mm/s. Therefore, their typical length and time can be estimated as

ξPK ≈ 61 mm, τPK ≈ 20 s, (4.72)

and the corresponding system size L and vortex line density L are calculated as

L = 2π ξPK ≈ 3.8 × 102 mm (4.73)

L ≈ 10 mm−2. (4.74)

However, in our experimental configuration, the system size is about 10 mm, and the corresponding

vortex line density is about 2.5×103 mm−2. Due to the significant discrepancy, their results cannot

be directly applied to our cases.

Figure 4.13: Time-averaged energy spectrum Ei(k) for i ∈ {x, y} of the steady states.
The energy is injected in the low-k region by (a) the isotropic random force and (b)
the polarized random force. The orange and purple circles correspond to the energy
spectra in the x and y directions, respectively. 400 samples are taken with a period of
0.1 s. The parameters correspond to the case with T = 1.85 K, q = 380.57 mW/cm2,
σk = 15.0 mm−1/2s−2

Next, we examine the method of Biferale et al. [202, 226]. They employed an isotropic time-

varying random force (Equation 4.67) localized within a small band in low-k modes. We conduct

similar simulations for our configuration. The grid number isN = 2563 and the discretized time step

is ∆t = 2.5 × 10−4 s. The energy injection range is given by kmin = 0.5 mm−1, kmax = 3.5 mm−1.
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The physical parameters correspond to the case in Figure 4.8 such as:

νn = 2.5 × 10−2 mm2/s, νs = 2.5 × 10−2 mm2/s

α = 0.181, ρs/ρ = 0.63645

L = 9.4 mm, Uns = 35.72 mm/s. (4.75)

Figure 4.13 shows time-averaged 1D energy spectra Ea(k) = ⟨|ŭa(k)|2⟩ in the streamwise direction

(a = x) and the perpendicular direction (a = y). Figure 4.13a corresponds to the case with the

isotropic random force (Equation 4.67) and confirms that the thermal counterflow spontaneously

becomes anisotropic even though the energy injection is isotropic. However, the behavior in low-k

modes does not agree with our experimental observation, in which Ex is about ten times larger

than Ey. According to our experimental results in Figure 4.10, the energy spectra are strongly

anisotropic within the energy-containing interval (k < k0), indicating that the energy injection

should be anisotropic.

To investigate the anisotropic effects of the energy injection, we introduce the polarized Gaussian

random force:  ⟨ϕc,x(k, t)ϕc,x(k′, t′)⟩ =
σ2k
k3
δ(k − k′)δ(t− t′)fw(k; kmin, kmax)

ϕc,y(k, t) = ϕc,z(k, t) = 0.

(4.76)

which has a finite value only in the streamwise direction (i.e., x-direction). With the polarized

Gaussian random force (Equation 4.76) in Figure 4.13b, Ex becomes larger than Ey, but the differ-

ence is smaller than our experimental observation. Hence, we need to revise the forcing method in

the simulations by considering the origin of the energy injection in experiments.

The origin of the energy injection is still subtle, but one of the possible mechanisms is the

instabilities of mean flow in the channel [204]. The instabilities are expected to be stronger in the

mean flow direction, i.e., the x direction, and conserve the total momentum in the system (i.e.,

ρsϕs+ρnϕn = 0). Therefore, we introduce a polarized Gaussian random force conserving the total

momentum as 
⟨ϕs,x(k, t)ϕ∗s,x(k′, t′)⟩ =

σ2k
k3
δ(k − k′)δ(t− t′)fw(k; kmin, kmax)

ϕn,x(k, t) = − ρs
ρn
ϕs,x(k, t)

ϕc,y(k, t) = ϕc,z(k, t) = 0.

(4.77)

Figure 4.14 shows the corresponding result. In this case, the flow becomes more anisotropic due

to the large mutual velocity, and Ex becomes about 10 times larger than Ey, which aligns with the

90



Figure 4.14: Time-averaged energy spectra Ea(k) of the steady states. The orange and
purple circles correspond to the energy spectra in the x and y directions, respectively.
The energy is injected by a time-varying 1D Gaussian random forces in the low-k modes
(0.5 mm−1 ≤ k ≤ 3.5 mm−1) defined as Equation 4.77. 400 samples are taken with
a period of 0.1 s. The amplitude of the random forces is σk = 15.0 mm−1/2 s−2. The
physical parameters correspond to the case with T = 1.85K and q = 380.57mW/cm2.

experimental observation shown in Figure 4.10. The anisotropy of the thermal counterflow comes

from the mutual friction, which becomes stronger as the mutual velocity becomes larger. When

the random forces ϕn and ϕs are opposite, as in this case (Equation 4.77), the mutual velocity is

expected to be maximized, making the anisotropy stronger. However, the mutual friction dumps

the energy, and the energy spectra drop more quickly than in the simulation results shown in Figure

4.13. This result is because the mutual friction term enhances the anisotropy and dissipates the

energy.

Based on the above results, the energy injection should be anisotropic and conserve the total

momentum. These assumptions can be justified because the energy injection is expected to arise

from the instability of the mean flow, which points toward the streamwise direction. However,

there is a discrepancy between the experimental observation and simulation results. The simula-

tion’s energy spectra decay much faster than those in the experiments. This difference suggests

a mechanism exists to sustain the energy in the mutual-friction-dominated interval. This mech-

anism should originate from the mesoscopic phenomena and cannot be directly derived from the

macroscopic models. One may wonder if the quantum peak is crucial in the high-k modes. In a

similar fashion to the Kvov–Nazarenko–Volovik spectrum in 3He-B [229], the energy spectrum of

the superfluid component presumably has a quantum peak resulting from superfluid motion near
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vortex cores [230]. This mechanism is expected to appear in 4He. Unfortunately, we cannot di-

rectly implement the quantum contribution to the HVBK equations because the HVBK equations

are valid only when the length scale is much larger than the intervortex distance l, and the quan-

tum peak exists around the length l [230]. Mesoscopic-scale simulations, such as vortex filament

simulations [201], may provide the information needed to determine the appropriate way of the

energy injection in the high-k intervals.

4.5 Conclusion

We have performed experimental and numerical studies of counterflow turbulence of He II in the

T-II state, in which both normal and superfluid flows are turbulent, to examine its anisotropic na-

ture. Our experimental results show the three intervals: the energy-containing interval, the cascade

interval, and the mutual-friction-dominated interval, which classification was initially introduced

by Bao et al. [204] Numerical approaches proposed by past studies to examine the anisotropy of

the thermal counterflow turbulence missed two critical factors. First, the energy injection must be

anisotropic and conserve the total momentum. Second, a mesoscopic-scale mechanism is expected

to sustain the energy even at the high k range. The energy spectra in our simulations decay faster

than those in our experiments, and such a mechanism may make this decay slower. To examine this

effect, mesoscopic-scale simulations, such as vortex filament simulations [201], are needed. Still,

such calculations require high computational resources with our experimental parameters and are

not feasible at the current stage.
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CHAPTER 5

ELECTRON QUBIT FLOATING ON SOLID NEON

Figure 5.1: Schematic of the device. A single electron is trapped on a solid neon surface.

Electrons levitated on superfluid 4He are a promising qubit system, but they suffer from de-

coherence caused by ripplons. Nonetheless, recent experiments have achieved a sufficiently long

coherence time in an electron charge qubit trapped on a solid neon (Ne) surface (Figure 5.1),

whose surface is rigid and ripplon-free [231, 232]. Yet, they observed a curious phenomenon when

the electric trapping potential was reduced: the electron remained trapped, opposite to what was

expected. To better understand this behavior, we carefully studied the interaction between the

electron and a small protrusion on the neon surface. By meticulously assessing the image charge

induced by the electron on the curved neon surface, we proficiently solve the Schrödinger equation

and determine the electron states on the protrusion surface. Our findings uncover an intriguing

revelation: a diminutive surface bump can spontaneously ensnare an electron, giving rise to dis-

tinctive ring-shaped quantum states that elucidate the experimental observations. Furthermore, we

examined the impact of bump size and applied magnetic fields, demonstrating how the electron’s

excitation energy can be finely adjusted to facilitate convenient qubit operation. As a result, our

study solves the mystery of the electron-on-Ne qubit’s performance and provides valuable insights

for optimizing the system’s design.
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5.1 Quantum Computing

Quantum computing has the potential to offer immense computational power by realizing quan-

tum algorithms, which are new high-speed algorithms [233]. Despite much effort and progress in

the past, realizing a quantum computer remains a significant challenge. This section explains the

fundamentals of the electron qubit system floating in a vacuum above a cryogenics substrate, such

as superfluid He or solid Ne.

5.1.1 Qubit

Qubit or quantum bit is the information unit in quantum computing, being represented as a

linear sum (or an entangle) of two states ψ0 and ψ1 as

ψ = a0ψ0 + a1ψ1. ∀a0, a1 ∈ C (5.1)

Here, ψ0 and ψ1 are usually taken as the ground and first excited states. The evolution of quantum

state ψ(r, t) follow the Schrödinger equation:

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ + V (r)ψ, (5.2)

where V (r) is the external potential. Experimental realization of qubits still has many challenges,

and the primary issues are the decoherence and scalability of the system. A wholly isolated or

closed system is ideal for qubits, but environmental interactions must exist. The qubit state is

fragile with environmental noise and can easily undergo decoherence, i.e., the loss of the entangled

state. Decoherence processes are usually classified into longitudinal relaxation (i.e., energy relax-

ation of the excited state ψ1 to the ground state ψ0) and transverse relaxation (i.e., dephasing).

The robustness of entangled states is characterized by the coherence time, i.e., the characteristic

time that the qubit sustains the entangled state, and the coherence time for the longitudinal and

transverse relaxations are denoted by T1 and T2, respectively.

Scalable and stable qubits are pursued, and numerous qubit platforms are studied [234–236],

such as superconducting circuits [237–243], semiconductor quantum dots [244–254], and trapped

atoms or molecules [255–263]. We involve electron qubits floated on solid Ne. The idea of this

electron qubit was initially developed by the electron-on-He system. The following briefly reviews

the electron charge qubit floating on superfluid helium.
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Figure 5.2: Schematic of a microelectrode submerged at the depth hs in superfluid helium.

5.1.2 Electron Qubit on Liquid Helium

During the 1950s and 1960s, many experiments were conducted to investigate the structure and

charge transport in superfluid He. The electrons hover in a vacuum over the surface of superfluid

helium at the height where two opposing forces are balanced. The first force is the attractive force

generated by the surface charge, while the second is the repulsive force caused by the Pauli exclusion

principle between the excess electron and atomic shell electrons. Notably, these experiments led

to the observation of quantized vortex rings [264, 265] and the discovery of a transition between

a quasi-free electronic state to a localized electron bubble state [266]. After the discovery of the

potential barrier on the superfluid helium surface to an electron [267–271], Bruschi et al., [272]

first demonstrated the electrostrictive binding of electrons to the surface of liquid helium in 1966.

The resulting system was among the earliest 2D electron systems [273–275] which resulted in

the first realization of the Wigner crystal [276–278]. This system is ideal to study 2D quantum

phenomena due to less impurities [277–284], and the development is discussed in reviews and

monographs [285–287]. In 1999, Platzman and Dykman [288] proposed the electron-on-He qubit

concept, which uses the Rydberg states (i.e., the motion states in the perpendicular direction to

the helium surface) of an electron floated above a microelectrode submerged in helium by the depth

of about hs ≈ 0.5µm and confined in the parallel plane by an external potential V∥ (Figure 5.2).

This proposal immediately caught the attention of experimentalists [289,290].
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First, let us consider the electron wave function ψ on a flat surface of dielectric material.

Supposed that a charge q is placed at r = (0, 0, ze) and dielectric material with the dielectric

constant ϵ occupies the half-space z < 0 in the cylindrical coordinate (r, θ, z), the electric field D

is given by [291]

D(x, y, z) =


ez
4π

[
(z−ze)q

{r2+(z−ze)2}3/2
+ (z+ze)q1

{r2+(z+ze)2}3/2

]
(z > 0)

ez
4π

(z−ze)q2
{r2+(z−ze)2}3/2

, (z ≤ 0)
(5.3)

where ϵ0 is the dielectric constants of the vacuum, ez is the unit vector in the perpendicular direction

to the substrate surface, and the image charges q1 and q2 are given by

q1 = −ϵ− ϵ0
ϵ+ ϵ0

q (5.4)

q2 =
2ϵ

ϵ+ ϵ0
q. (5.5)

Here, the surface charge distribution is

σflat(r) = [ϵ− ϵ0]E(z = −0) · ez

=
q

4π

ϵ− ϵ0
ϵ+ ϵ0

−2ze

(r2 + z2e )3/2
, (5.6)

and the scalar potential at the electron position is

ϕe =
1

4πϵ0

q1
4ze

= − 1

4πϵ0

ϵ− ϵ0
ϵ+ ϵ0

q

4ze
. (5.7)

The potential is then given by [286]

Ve(r) = V0θstep(−z) − Λ

z + z0
θstep(z) + Vext(r) (5.8)

Λ =
e2

16πϵ0

ϵ− ϵ0
ϵ+ ϵ0

(5.9)

where θstep(z) is the unit step function and Vext is the external potential. The first term is the

potential barrier of the substrate, and V0 ≈ 1.1 eV in superfluid helium [268, 292]. The second

term represents the static potential generated by the surface charge. The potential is invalid near

the surface, so a cut-off z0 is introduced. In superfluid 4He, z0 is approximately 1 Å [293]. The

dielectric constant of superfluid 4He is relatively small, at about ϵ ≈ 1.0572ϵ0. Therefore, the

electron is located at a height about ze ≈ 10nm, much greater than the cut-off value z0. In the
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limit U0 → ∞, z0 → 0 with the absence of the external potential Vext, the energy spectrum is given

by

Ej(k∥) = E⊥
j +

ℏ2k∥2

2me
, ∀j ∈ Z+ (5.10)

E⊥
j = − meΛ

2

2ℏ2(j + 1)2
(5.11)

where k// is the 2D wave vector parallel to the surface, l is the quantum number of the perpendicular

motion, and me is the mass of the electron. Here, the wave function of the j-th state is written as

ψj(r, z) = ψ⊥
j (z)ψ∥(r) (5.12)

ψ∥(r) =
1√
SA

eik∥·r (5.13)

with the surface area SA. The energy spectrum in the perpendicular direction E⊥
l is similar to the

hydrogen one [293–296], hence the 1D eigenstates in the perpendicular direction ψ⊥
l (z) are called

the Rydberg states. The ground and first-excited states are given by

ψ⊥
0 (z) = 2γ3/2e ze−γez (5.14)

ψ⊥
1 (z) =

γ
3/2
e√
2

(
1 − γez

2

)
ze−γez/2 (5.15)

with γe := meΛ/ℏ2 where ⟨ψ⊥
0 | γe |ψ⊥

0 ⟩ ≈ 114 Å and ⟨ψ⊥
1 | γe |ψ⊥

1 ⟩ ≈ 456 Å. The original system

proposed by Dykman and Platzman [288,297,298] applies microwave photons and forms a coherent

state by these two states χ0 and χ1. Next, let us estimate the penetration length λ in the substrate

to validate the assumption V0 → ∞. By solving the one-dimensional (1D) Schrödinger equation

with an external potential

V (z) =

{
0 (z ≥ 0)
V0 (z < 0)

, (5.16)

the wave function ψ in z < 0 is obtained as

ψ⊥
j (z) ∝ ez/λ (5.17)

λ = ℏ/
√

2m(V0 − E⊥
l ) ≈ ℏ/

√
2mV0 (5.18)

where the approximation is justified because E0 ≈ 0.01 eV ≪ V0 ≈ 1 eV. In superfluid 4He, the

penetration depth is around λ ≈ 2 Å, significantly shorter than the electron height γe. As a result,

the assumption V0 → ∞ remains valid. The exact electron states above an electrode are discussed

in [299–301].
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The electron-on-He system is relatively resilient to surface impurities because of the electron’s

distance from the helium surface. Nonetheless, the electron may undergo decoherence mainly

through four processes: phonon, helium vapor, ripplon, and electrode [302, 303]. The phonon

effects are suppressed when the electron is localized at ultra-low temperatures, such as in the

qubit system [303]. Decoherence through the elastic scattering due to helium vapor and the one-

ripplon process becomes negligible at the temperatures in typical experiments (T < 1 K) [304–308].

However, inelastic scattering due to the two-ripplon process cannot be suppressed even at ultra-

low temperatures [306–308]. The scattering can decay the excited electron states and dephase

the electron qubit state [303]. Recently, Kawakami et al. measured the relaxation time through

the two-ripplon process at 135 mK [309]. The decoherence through the electrode is caused by

the voltage noise from an external lead or source [303]. The high-frequency noise, mostly due to

sources, can be filtered out by a low-pass filter, and the low-frequency noise, mostly from thermal

noise on the lead, can be suppressed by cooling down the lead temperature.

To utilize this system as a qubit, it is critical to have an experimental technique that can

accurately control and determine the qubit state. The floating electrons can be moved by using a

piezoelectric surface sound wave [310] or in a similar way to the charge-coupled device [311, 312].

Grimes and Brown were pioneers in measuring transitions from the ground state to the low-lying

excited states using a cryogenic bolometer [293,295]. This bolometer detected microwave absorption

saturation caused by the excitation of the Rydberg states. However, this method is only applicable

when dealing with a sufficient number of electrons [294–296,313,314]. Platzman and Dykman [288]

originally planned to use the method developed by Williams et al. [273], which measures the lifetime

of the Rydberg state, but it is destructive and not ideal. Recently, Kawakami et al. [315] and

Zou and Konstantinov [316] developed a novel non-destructive method detecting image-charge by

measuring the image current caused in a capacitor circuit. Nonetheless, this method requires many

electrons and is not applicable to a single electron qubit.

Various other qubit options are currently being developed, including in-plane orbital or spin

states [317–322]. The spin qubit is expected to have a much longer coherence time, but it requires

a coupling between the spin and charge states, even though the system has no such coupling

inherently. Therefore, past studies introduced an artificial coupling, such as spin-photon coupling

under a nonuniform magnetic field [318] and electric dipole spin resonance with a stray magnetic

field [321].
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Recently, an electron-on-He system with a superconducting resonator has been developed and

provides a strong dipole coupling between electrons and microwave photons [246, 323–325]. This

system may also achieve a strong spin-photon coupling by using a spatially varying magnetic

field, enabling spin qubits [317, 326]1. However, the decoherence rate was much higher than the

theoretical estimation. It is believed that the mechanical vibration causes the fluctuations of the

helium surface level, inducing the decoherence. This system has lately been applied to the solid

neon system, where such a level fluctuation is suppressed.

5.1.3 Electron Qubit on Solid Neon

The potential barrier on the substance surface also exists on other substances, e.g., solid hy-

drogen and solid Ne [329, 330]. The solid Ne has a rigid surface, and ripplon is suppressed. The

coherence time is, therefore, expected to be longer. On the other hand, the dielectric constant of the

solid Ne is relatively high (ϵ ≈ 1.244ϵ0) compared with liquid helium, and the height of the electron

position is low; therefore, the electron can be disturbed by surface irregularities. Recently, Zhou et

al. [231,232] developed an electron charge qubit on solid Ne with a superconducting resonator and

achieved a time scale of 0.1 ms for both T1 and T2, which is sufficiently long for practical usage.

The details are discussed in the following. Similarly to the electron-on-He system, the possibility

of spin qubit on solid Ne is under discussion [331].

1This technique creating a strong spin-photon coupling has been developed in silicon qubit system [247, 248, 327,
328].
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5.2 System Configuration

Figure 5.3: Potential and ground-state of an excess electron approaching a flat solid Ne
surface. The peak of the probability density |ψ|2 is located around z = 1 nm.

Neon can form an uncontaminated surface in a vacuum, making it an optimal substrate for ultra-

low temperature experiments due to the lack of uncontrollable impurities or electromagnet noise at

ultra-low temperatures. The experiments [231,232] cool down the system to 10 mK. Electrons are

thermionically emitted from a pair of tungsten filaments inside the cell. When an excess electron

approaches the solid Ne surface, two forces combine to bind it at a specific height above the surface.

The first is the attractive force from the surface charge, while the second is the repulsive force due

to the Pauli exclusion principle between the excess electron and atomic shell electrons. Figure 5.3

shows a simulation result of a one-dimensional Schrödinger equation perpendicular to the surface,

which is defined as the z-axis, with a potential

V (z) = = V0θstep(−z) − e2

4πϵ0

ϵ− ϵ0
ϵ+ ϵ0

1

z
θstep(z) (5.19)

where V0 = 0.7 eV and the second term has a cut-off between z = 0 and 0.23nm due to the potential

invalidity near the surface [292,332–334]. The hybrid circuit quantum electrodynamics device used

in the experiments is illustrated in Figure 5.1. It features a double-stripline resonator coupled with

coplanar waveguides. The trap and resonator guards are applied with voltages in pairs to tune the

trapping potential. The device has a tiny amount of Ne coating, estimated to be between 5 and 10

nm thick. The electron is trapped by an electric potential in the 2D surface parallel to the neon

surface, and the in-plane electric potential V2D(x, y) can be approximated by the harmonic function

around the electron at the origin as

V2D(x, y) =
1

2
m
(
ω2
xx

2 + ω2
yy

2
)

(5.20)
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where ωx and ωy are the angular frequency on the x- and y-axes, respectively, and are determined

by the electrode geometry. The angular frequency is set as ωy ≪ ωx so that the electron is strongly

confined in the x-axis, and the orbital states in the y-axis are utilized as a qubit. Microwave photons

are applied to excite the orbital ground state to the first excited state.

5.3 Numerical Method

Figure 5.4: Schematic of coordinates. z is the height from the bottom, r is the distance
from the z axis in the x − y plane, and θ is the azimutal angle around the z axis. The
light blue dots and the red distribution on the curved surface represent the electrons and
the surface charge, respectively.

We have conducted numerical calculations to find the electron states around a Gaussian-shaped

surface bump

zσ(r, θ) = H exp

(
− r2

2w2

)
(5.21)

where H and w are the height and standard deviation. The numerical calculations consist of the

following two steps. The first step calculates the static potential acting with a test charge in the

cylindrical coordinates (Figure 5.4a). Placing a test charge representing an electron at 1 nm above

the surface, we calculate the surface charge generated by the test charge. We can then compute the

electric field E at the position of the test charge. By taking an integral of the tangential component

E∥, the static potential ϕe is determined as

ϕe(l) = −
∫ l

0
E∥(l

′)dl′ (5.22)

where l is the distance from the z-axis on the surface. Note that l and r have a 1-to-1 correspondence

on the surface.

Secondly, we solve the one-dimensional Schrödinger equation with the potential Ve = −eϕe

on the curved surface. Since the electron is supposed to be confined in a curved 2D surface
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with cylindrical symmetry around the Gaussian surface deficit, the wave function has a form of

ψ
∥
nr,mz(r, θ) = Rnr(r)eimzθ where nr is the radial quantum integer and mz is the angular quantum

integer. We solve the equation for the radial component Rnr(r). The details of this calculation are

shown later.

5.3.1 Equations for Electric Field

In dielectric systems, electric charges can be decomposed into the true charge and the induced

charge as ρ = ρe + ρσ:

ρe(r) = −eδ(r − re) (5.23)

ρσ(r) = σ(x, y, zσ)δ(z − zσ) (5.24)

=

∫
S
dSσσ(rσ)δ(r − rσ) (5.25)

where e is the elementary charge, re is the position of the electron, σ is the surface charge, and zσ

is the surface location. The induced charge ρσ can be expressed by the polarization vector P as

ρσ = −∇ · P and is given in linear dielectric material (i.e., P = χE) by

ρσ = −∇ · (χE) . (5.26)

In this case, Gauss’s equation is written as

∇ · (ϵE(r)) = ρe (5.27)

where ϵ = ϵ0 + χ. Also, the surface charge is given as

σ = P · n = χE · n (5.28)

where n is the normal vector vertical with the dielectric surface. Here, the boundary conditions on

the dielectric surface are [291]

D1 · n = D2 · n, (5.29)

E1 · t = E2 · t, (5.30)

where t is the normal vector tangential with the dielectric surface.

We decompose the electric field as E(r) = Ee(r) + Eσ(r) where Ee is the electric field by the

true charge and Eσ(r) is the part generated by the surface charge:

Eσ(r) =

∫
S
dSσΥσ(rσ)(r), (5.31)
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where Υσ(rσ)(r) is the electric field generated by the surface charge of the position rσ to the position

r. Then the Gauss’s equation∇ ·E(r) = ρ/ϵ0 becomes

∇ ·Ee = ρe/ϵ0, (5.32)

∇ ·Eσ = ρσ/ϵ0

⇔ ∇ ·
∫
S
dSσΥσ(rσ)(r) =

1

ϵ0

∫
S
dSσσ(rσ)δ(r − rσ)

⇔ ∇ ·Υσ(rσ)(r) =
1

ϵ0
σ(rσ)δ(r − rσ) (5.33)

Supposed the spherical symmetry around each surface charge, the electric field is written as

Ee(r) =
−e

4πϵ0

r − re
|r − re|3

, (5.34)

Υσ(rσ)(r) =
σ(rσ)

4πϵ0

r − rσ
|r − rσ|3

(r ̸= rσ) (5.35)

Eσ(r) =

∫
S
dSσΥσ(rσ)(r)

=
1

4πϵ0

∫
S
dSσσ(rσ)

r − rσ
|r − rσ|3

(5.36)

5.3.2 Spacial Discretization

When we discretize the surface, since the electric field of the surface charge Υσ(rσ)(r) diverges

at r = rσ in Equation 5.35, we have to estimate Υσ(rσ)(r) in the grid at r = rσ by another way.

We may use the boundary condition (Equation 5.29) for this purpose as follows:

ϵ0

Ee − ∆S(r)Υσ(r) +
∑
r′ ̸=r

∆S(r′)Υσ(r′)

 · n

= ϵ

Ee + ∆S(r)Υσ(r) +
∑
r′ ̸=r

∆S(r′)Υσ(r′)

 · n, (5.37)

⇔ ∆S(r)Υσ(r) · n =
ϵ0 − ϵ

ϵ0 + ϵ

Ee +
∑
r′ ̸=r

∆S(r′)Υσ(r′)

 · n. (5.38)

where ∆S(r) is the surface are of the discretized space at r. The surface charge is then given by

Equation (5.28) as

σ(r) =
ϵ− ϵ0
ϵ+ ϵ0

1

2π

−e r − re
|r − re|3

+
∑
r′ ̸=r

∆S(r′)σ(r′)
r − r′

|r − r′|3

 · n (5.39)

This equation contains the surface charge σ on both sides, so we iterate the equation until the

values σ on both sides are close enough. The interaction term amount surface segments consume
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time, and we introduce a threshold distance rthr. As a result, the equation for iteration from the

old surface charge profile σold to the new profile σnew is given by

σnew(r) =
ϵ− ϵ0
ϵ+ ϵ0

1

2π

−e r − re
|r − re|3

+
∑
r′ ̸=r

∆S(r′)σold(r′)
r − r′

|r − r′|3

 · n, (5.40)

and we repeat this iteration until the condition

|σold(r) − σnew(r)|
σold(r)

< 10−13 (5.41)

satisfies any location r.

5.3.3 Laplacian Operator

The Schrödinger equation contains a Laplacian, and the following derives its formula on the 2D

curved space. In the coordinates, whose measure is written as

dl2 =
∑
j

h2jdx
2
j , (5.42)

the Laplacian operator for a scalar Φ is given by [335]

∇ ·∇Φ =
1

h
∂j

(
h

h2j
∂jΦ

)
(5.43)

where h =
∏
j hj [335].

On a Gaussian surface in the cylindrical coordinates, the position vector is written as

rG =

(
r cosθ, r sinθ,H exp

(
− r2

2w2

))
(5.44)

where r =
√
x2 + y2 and θ is the azimuthal angle from the x-axis. The tangent vectors are given

by

rG,r =

(
cos θ, sin θ,−Hr

w2
exp

(
− r2

2w2

))
(5.45)

rG,θ = (−r sinθ, r cosθ, 0) , (5.46)

and hence,

hr =
√
r2G,r

=

√
1 +

H2r2

w4
exp

(
− r2

w2

)
, (5.47)

hθ =
√
r2G,θ

= r. (5.48)
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Therefore, the Laplacian is written as

∇ ·∇Φ =
1

hrr

[
∂r

(
r

hr
∂rΦ

)
+ ∂θ

(
hr
r
∂θΦ

)]
=

1

r2

[
r

hr
∂r

(
r

hr
∂rΦ

)
+ ∂2θΦ

]
. (5.49)

5.3.4 Shape of Surface and Electron Contour

The Gaussian surface is written as

rG =

(
r cos θ, r sin θ,H exp

(
− r2

2w2

))
, (5.50)

and the electron floats on the surface described by

r′G = rG + hên =

(
r′ cos θ, r′ sin θ,H exp

(
− r2

2w2

)
+ h′

)
(5.51)

r′ = r

1 +

Hh
w2 exp

(
− r2

2w2

)
√

1 + H2r2

w4 exp
(
− r2

w2

)
 (5.52)

h′ =
h√

1 + H2r2

w4 exp
(
− r2

w2

) , (5.53)

where ên is the unit vector normal to the surface. The surface contour of the electron is not

Gaussian, and the Laplacian operator needs a correction. However, in our configuration Hh/w2 ≪

1, we may approximate r′ ≈ r and h′ ≈ h, which lets us assume the contour has a Gaussian shape.

5.3.5 Grids in Cylindrical Coordinates

The surface charge is highly localized around the foot of the electron location (i.e., the perpen-

dicular projection of the electron’s location on the curved surface); therefore, we need a fine grid

around the foot, but the grid size can be large where far away from the electron. To satisfy this

configuration, we adopt the cylindrical coordinates whose center is located at the foot (Figure 5.5).

The grid size linearly increases with the distance from the foot location. Supposed the electron and

its foot are respectively located at

re =

(
xe, 0, ze = H exp

(
−x

2
e + y2

2w2

)
+ h′

)
(5.54)

rf =

(
x0, 0, z0 = H exp

(
−x

2
0 + y2

2w2

))
, (5.55)
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Figure 5.5: Schematic of the discretized coordinates around the foot of the electron

the position vector on the surface is expressed as

rG =

(
x− x0, y,H exp

(
−x

2 + y2

2w2

))
. (5.56)

The space in the radial direction r is then discretized so that the step size linearly increases as

∆r = a+ br, where the constants a and b are determined from the fixed ∆r at two locations

∆r = ∆rmin @ r = ∆rmin/2, (5.57)

∆r = ∆rc @ r = rc. (5.58)

as

a =
rc − ∆rc/2

rc − ∆rmin/2
∆rmin, (5.59)

b =
∆rc − ∆rmin

rc − ∆rmin/2
. (5.60)

In the flat case, the surface charge is given from Equation 5.6 and is expected to be confined in the

order of h = 1 nm. For enough accuracy, we take ∆rmin = 0.01 nm, ∆rc = 0.15 nm, and rc = 50

nm, which give a ∼ 9.986×10−3 nm and b ∼ 1.502×10−3 for the case with H = 30 nm and w = 15

nm. We take the grid number in the radial direction as Nr = 1200, which gives the maximum

radius of about 99 nm for the case with H = 30 nm and w = 15 nm. Also, the grid number in the

azimuthal direction is given by Nθ = 40. Because of the mirror symmetry with the x-axis, we can

half the calculation space and reduce the grid number Nθ to half.
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5.3.6 Schrödinger Equation with External Electromagnetic Fields

In our calculations, there is an electric field from the surface charge. Also, an external magnetic

field is applied to solve the degenerated states in the azimuthal direction. The following briefly

explains the derivation of the Schrödinger equation with electromagnetic field.

The Dirac equation is given by [336]

[
cα · (p− qA) +mc2β + qϕe

]
Ψ = ϵDΨ, (5.61)

where c is the speed of light, ϵD is the relativistic eigenvalue, m is the mass of the particle, A is the

vector potential, and ϕe is the scalar potential. Also, α and β are normalized as (αi)
2 = β2 = 1

and satisfy the anti-commutation relations

{αi, αj} = 0 (i ̸= j) (5.62)

{αi, β} = 0. (5.63)

By taking the Weyl or chiral representation

α = ŝz ⊗ ŝ =

(
ŝ 0
0 −ŝ

)
(5.64)

β = ŝx ⊗ Î ,=

(
0 Î

Î 0

)
(5.65)

with the Pauli matrix ŝ, the Dirac equation is represented as(
Pt − ŝ · P −mc2
−mc2 Pt + ŝ · P

)(
ΨR

ΨL

)
= 0 (5.66)

where Pt := (ϵD − qϕe)/c, P := (p− qA), and ΨR and ΨL are right-handed and left-handed chiral

states, respectively. These equations may be written as

(Pt + ŝ · P ) (Pt − ŝ · P ) ΨR = m2c4ΨR (5.67)

(Pt − ŝ · P ) (Pt + ŝ · P ) ΨL = m2c4ΨL. (5.68)

Since

PtP − PPt = iℏ
qE

c
(5.69)

P × P = iℏqB, (5.70)
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the Dirac equation can be decomposed as(
P 2 − ℏq

(
B − i

E

c

)
· ŝ
)

ΨR =
1

c2
(
Pt −mc2

) (
Pt +mc2

)
ΨR (5.71)(

P 2 − ℏq
(
B + i

E

c

)
· ŝ
)

ΨL =
1

c2
(
Pt −mc2

) (
Pt +mc2

)
ΨL. (5.72)

In the non-relativistic limit, we obtain

ϵD = ϵ+mc2 (5.73)

Pt +mc2 = ϵ− qϕe + 2mc2 ≈ 2mc2, (5.74)

and then the Dirac equations are written as[
P 2 − ℏq

(
B − i

E

c

)
· ŝ
]

ΨR = 2m (ϵ− qϕe) ΨR (5.75)[
P 2 − ℏq

(
B + i

E

c

)
· ŝ
]

ΨL = 2m (ϵ− qϕe) ΨL. (5.76)

Adding these equations, we obtain(
P 2

2m
− ℏq

2m
B · ŝ + qϕe

)
ΨS + i

ℏq
2mc

E · ŝΨA = ϵΨS . (5.77)

where

ΨS :=
1√
2

(ψR + ψL) (5.78)

ΨA :=
1√
2

(ψR − ψL) . (5.79)

In the non-relativistic limit, the difference between the chiral states is negligible (i.e., ΨA ≈ 0) and[
(p− qA)2

2m
− ℏq

2m
B · ŝ + qϕe

]
ΨS = ϵΨS . (5.80)

Taking the gauge as A = 1
2B × r, the momentum term is written as

(p− qA)2 = p2 − q (p ·A + A · p) +
q2

4
B ·B (5.81)

= p2 − q

[
(B × r) · p +

1

2
(p · (B × r))

]
+
q2

4
B ·B (5.82)

= p2 − qB ·L +
q2

4
B ·B, (5.83)

and the Schrödinger equation in the electromagnetic field is obtained as[
p2

2m
− q

2m
B · (L + 2S) + qϕe +

q2

4
B ·B

]
ΨS = ϵΨS . (5.84)
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where S = ℏŝ/2 is the spin matrix.

We apply an external magnetic field pointing toward the z direction as B = −B0êz. Since the

system is symmetry under the rotation around the z-axis, the parallel wavefunction has a form of

ψ∥ = R(r)eimzθ, ∀mz ∈ Z (5.85)

and the Schrödinger equation for our 2D system can be converted into a 1D equation

ψ∥ = R(r)eimzθ ∀mz ∈ Z (5.86)

ϵR(r) = − ℏ2

2me

1

r2

[
r

hr
∂r

(
r

hr
∂rR

)
−m2

zR

]
+ [V (r) − µBB0ℏ (mz + 2s)]R (5.87)

V (r) = −eϕe(r) +
e2B2

0

8me
r2, (5.88)

where µB = eℏ/2me is the Bohr magneton and s = ±1/2 represents the spin in the z-direction.

The spin-up and -down states are separated with the Zeeman energy ∆EZeeman = gsµBB0 ≡ ℏω.

For example, when B0 = 0.15T , the corresponding Zeeman frequency is f = ω/2π ≈ 4.2GHz, which

lies in the microwave C band.

The scalar potential ϕe is evaluated as follows. There must be a potential due to the Pauli

repulsive force from the electrons in the neon. However, since the repulsive force is supposed to

be canceled with the perpendicular component of the attractive force, the scalar potential can be

calculated by integrating the tangential component of the electric force as

E · t = − (∇ϕe) · t (5.89)

ϕe(r) = −
∫ r

0
E · td (r · t) (5.90)

= −
∫ r

0
E · td (r · t)

dr
dr (5.91)

= −
∫ r

0
E · thrdr (5.92)

where t = pr/hr.

In our simulations, we apply the finite difference method to the 1D Schrödinger equation with

the central difference. The system size is Lr = 12w, and the grid number is Nr = 6000. For a

typical case with H = 30 nm and w = 15 nm, the grid size is ∆r = 3.0 × 10−2 nm.
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Figure 5.6: Two-dimensional probability density distribution of the electron ⟨ψ∥|r⟩ ⟨r|ψ∥⟩
on the curved electron contour with H = 30 nm and w = 15 nm. (Left top) Ground
state |ψ∥⟩ = |nr = 0,mz = 0⟩. (Right top) First excited state in the radial direction
|ψ∥⟩ = |nr = 1,mz = 0⟩. (Bottom) First excited states in the angular direction, nr = 0.
The density is normalized by each state’s maximum density ρ0.

5.4 Results

Figure 5.6 presents the electron density of the ground and low-lying states bounded around a

bump with H = 30 nm and w = 15 nm. The electron may be spontaneously bounded without

an external potential and form these ring-shaped states. The electron can be excited in the radial

and angular directions. Under this configuration, the energy of the second excited state in the

radial direction is higher than the binding potential, and an electron in such a state or higher

excited state in the radial direction may escape from the bump. The excitation energies in the

right- and left-handed angular directions are degenerate, and any state of a linear combination of

|nr,mz⟩ = |0, 1⟩ and |0,−1⟩ can be the first-excited states in the radial direction in the absence of

the magnetic field. On the other hand, at a finite magnetic field B0 ̸= 0, the degeneracy between

these two states |nr,mz⟩ = |0, 1⟩ and |0,−1⟩ is resolved. We propose that the states bound around

the bump can be utilized as a qubit. Since the photon excitation changes the rotational motion,

it may excite the electron from the ground state |nr = 0,mz = 0⟩ to the first angular excited state

|0, 1⟩ or |0,−1⟩, where these two excited states are degenerate in the absence of external magnetic

field.

Figure 5.7 shows the radial cross-section of the lateral potential Ve = −eϕe(r) and the electron

density of the ground and first radial-excited states that are bound near a depression or protrusion

on a solid neon surface. When situated above a depression (Figure 5.7a), the electron becomes
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Figure 5.7: Cross-section of the potential V and the probability density profile of the

electron in the r-direction r|ψ∥
nr,mz=0|2 around (a) a valley of H = −30 nm and w = 15

nm or (b) a bump of H = 30 nm and w = 15 nm.

trapped around the center. It is worth noting that the ground state has no node at the center of

the valley, even though the bound states with finite nr ̸= 0 must be zero at the center to prevent

divergence of the centrifugal potential. The node of the ground state at r = 0 in Figure 5.7a

comes from the radius factor. Conversely, when situated near a protrusion, the electron adopts a

ring-shaped geometry with a radius of about 2w (Figure 5.7b). The second excited state is not

bound in this trapping potential.

To utilize these bound electron states as a qubit, choosing the proper bump size is crucial

to ensure excitation energy matches that of the microwave photon in experiments (e.g., about

26.6 µeV [231]). Therefore, the following searches the excitation energies with various bump sizes

in H = 10 nm to 40 nm and w = 10 nm to 40 nm. Figure 5.8a shows the maximum depth of

the binding potential Vbind, which increases the bump size. Figure 5.8b displays angular excitation

energy from |nr,mz⟩ = |0, 0⟩ state to |0,±1⟩ state. The excitation energy primarily comes from

the centrifugal potential ℏ2m2
z/2mer

2 and depends on the electron radius, increasing with w. Our

results confirm this relationship. Based on these results, we select a pump size of H = 30 nm and

w = 15 nm, providing comparable excitation energy to the typical photon energy in experiments

and binding only a single electron. A single bump may trap multiple electrons if the potential is

too deep.

111



Figure 5.8: (a) Binding potential depth Vbind. (b) Excitation energy in the angular di-
rection from |nr,mz⟩ = |0, 0⟩ to |0, 1⟩. The data is taken every 1 nm in both H and w
directions.

Figure 5.9a shows the typical energy bands with the angular index mz. When a finite magnetic

field is present, the ground state may have a non-zero angular index, referred to as m∗ in the

following. ∆E+1 and ∆E−1 represent the excitation energies from the ground state mz = m∗ to

the neighboring states m∗ + 1 and m∗ − 1, respectively. Figure 5.9b illustrates the magnetic field

dependence of these excitation energies. At zero magnetic field B0 = 0 T, the first excited states

are degenerate, and these two excitation energies are the same. Once an external magnetic field

B = −B0ẑ is applied, the left excitation energy ∆E−1 decreases and the right one ∆E+1 increases.

The ground state shifts to m∗ = 1 around the magnetic field B0 = 0.5 T. The excitation energies

change similarly as the external magnetic field increases. These results show that the external

magnetic field can fine-tune the excitation energy.

5.5 Discussion

We have demonstrated that a surface bump may bind the electron, forming a ring-shaped state

spontaneously. As shown in Figure 5.7a, the electron feels a repulsive force when it approaches the

depression from far away. Therefore, a low-energy electron has a low chance of entering the valley.

However, the bump has a bottom of the potential on the rim, and the electron may be trapped

there (Figure 5.7b). The following discusses the mechanism making the potential bottom.
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Figure 5.9: (a) Energy band and (b) excitation energies from the ground state
|nr = 0,mz = m∗, s = 1/2⟩ to the right state |0,m∗ + 1, s = 1/2⟩ or to the left state
|0,m∗ − 1, s = 1/2⟩, which are denoted by ∆E+1 and ∆E−1, respectively. The ground
state m∗ changes from m∗ = 0 to m∗ = 1 around B0 = 0.5 T. The bump size is H = 30
nm and w = 15 nm

.

5.5.1 Force Acting on the Electron

One may wonder why the lateral potential Ve has a peak at the center. The reason is that

the surface charge is strongly localized below the electron with a finite size, and the sign of the

tangential force F∥ depends on the local curvature. Figure 5.10 a and b show the force profile acting

on the electron from the surface charge in the perpendicular and normal directions, respectively.

In both figures, the force is normalized by the perpendicular component of the force acting on the

electron on the flat surface Fflat. Near the center, the curvature radius is about 7.5 nm and is the

order of the electron height h = 1 nm. Therefore, the perpendicular force F⊥ becomes less with

a large percentage. It is worth noting that since Fflat points to the negative direction, the ratio

F∥/Fflat becomes negative when the parallel force F∥ is positive and repulsive.
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Figure 5.10: (a) Perpendicular component of the force acting on the electron F⊥. (b)
Parallel component of F∥ and the third derivative of the distance function with respect to
l. The bump size is H = 30 nm and w = 15 nm

Distance between electron and bump. We have carefully analyzed the distance between

the electron and the Gaussian surface to discuss the dependence. On the x− z surface (i.e., y = 0),

the position vector of the bump is written by

rG =

(
x, 0, H exp

(
− x2

2w2

))
. (5.93)

Supposed the foot position is (x0, z0), the position of an electron is

(xe, ze) =

(
x0

(
1 +

z0
w2
h′
)
, H exp

(
− x20

2w2

)
+ h′

)
(5.94)

where h′ = h/
√

1 + z20x
2
0/w

4. The distance between the electron and a point (x, z) on the bump

surface is

D(x) =
√

(xe − x)2 + (ze − z)2

=

√
(xe − x)2 +

{
ze −H exp

(
− x2

2w2

)}2

. (5.95)

Defining l as the distance from the center of the bump along the bump surface (i.e., l(x) =∫ x
0 hl(x

′)dx′), When the distance function is Taylor expanded as

D(l) =
∞∑
n=0

dnD

dln

∣∣∣∣
l=le

(l − le)
n , (5.96)
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here le is the location of the electron foot. The first two terms are zero, and the second-order

term does not contribute to the tangential force because of the symmetry. Therefore, the leading

contributing term is the third-order term and changes the sign around r ≈ 35 nm, which agrees

with the bottom position of the lateral potential. Here, the perpendicular component is almost the

same as the force on the flat surface around the electron position around r ≈ 36 nm. This behavior

is because the local curvature radius is much larger than the electron height h far from the center.

5.5.2 Finite Thickness Effect

Figure 5.11: Comparison of the lateral potential Ve(r) for an electron held at h = 1 nm
above a representative neon surface versus the averaged potential Ve(r) that is weighted
by the electron’s probability |ψ⊥(h)|2 shown in Figure 5.3.

We have assumed that the electron is strongly confined within the 2D space at h = 1 nm

above the Ne surface. Nevertheless, it is not feasible to confine electrons in such a manner due

to the uncertainty principle. In fact, Figure 5.3 shows that the electron’s density has a finite

thickness in the perpendicular direction. The finite thickness effect can be estimated by deriving

the lateral potential Ve(r) = −eϕe(r) with various floating heights of the test charge and averaging

them with a weight function proportional to the electron’s density. For this purpose, we denote

the lateral potential Ve for an electron fixed at h as Ve(r;h). Figure 5.11 shows that the lateral

potential calculated with h = 1 nm and the weight-averaged potential based on the density |ψ⊥(h)|2.

According to the results, the thickness effect is negligible near the potential bottom.
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Figure 5.12: (a) Energy Band with B0 = 0.12 T. (b) Excitation energies from the ground
state |nr = 0,mz = m∗, s = 1/2⟩ to the near states with different angular index mz. The
index of the transitions is described in the main text. The bump size is H = 30 nm and
w = 15 nm.

5.5.3 Spin Qubit

We have discussed the charge qubit using only the spin-up state above. The following examines

the possibility of spin qubits in our electron-on-Ne system. The spin qubits using the spin-up and

-down states of the same orbital state are more robust, and the spin dephasing time is expected to

be over 100 s for electron-on-He system [317]. Historically speaking, the electron-on-Ne system is an

extension of the electron-on-He system, and there are discussions about spin qubits on liquid helium

(e.g., [318, 321, 322]). The coherence time of the spin states may be longer than 100 s [317]. The

orbital electron states parallel to the helium surface can be coupled with the microwave photons via

a superconducting resonator, letting the spin states be coupled with the orbital states by introducing

local magnetic field gradient [318]. We follow the spin manipulate method using a stray magnetic

field in the electric dipole-spin resonance (EDSR) manner [337] proposed by E. Kawakami et al.,
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in which the stray magnetic field makes the Rydberg transition energy depend on the spin state in

the electron-on-He system [321]. We apply a static magnetic field in the z-direction and an electric

field oscillating in the perpendicular direction to the neon surface with a ferromagnetic pillar placed

below the solid Ne, The pillar is magnetized, creating a stray magnetic field. The center position

of the electron oscillates, and the magnetic field at the electron position varies with time, allowing

the excitation of the spin state. The following discusses the transition rate by this method. We

apply a uniform magnetic field B0ez and a stray magnetic field b = brer + bzez where er and ez

are the unit vectors in the r and z-directions, respectively. Then, the Hamiltonian is given by

H = H0 +Wz +Wr, (5.97)

here H0 is the original Hamiltonian of the electron-on-He system with a correction of the magnetic

field as B = br(re, ze)er + [B0 + bz(re, ze)] ez with . Also, Wr and Wz are the terms due to the

spatial gradient of stray magnetic field and are given by

Wz = 1
2gµB

[
∂bz
∂z (z − ze) + ∂2bz

∂r2
(r − re)

2
]
ŝz (5.98)

Wr = 1
2gµB

∂br
∂r (r − re) ŝr (5.99)

where the stray magnetic field and its gradients on the right-hand side are estimated at the electron

position (i.e., r = re and z = ze). Owing to the magnetic field gradient, the ground state may be

excited to the first excited state. The transition rate is

Γ = lim
t→∞

d

dt

∣∣∣∣∣ 1

(iℏ)2

∫ t

0
dt′′
∫ t′′

0
dt′ ⟨f(t′)|H(t′)H(t′′) |i(t′′)⟩

∣∣∣∣∣
2

δ(ωf − ωi − ω). (5.100)

Here,

⟨f(t′)|H(t′)H(t′′) |i(t′′)⟩ (5.101)

=
∑
β

⟨f(t′)|
(
V (t′) +Wr

)
|β(t′)⟩ ⟨β(t′′)|

(
V (t′′) +Wr

)
|i(t′′)⟩ (5.102)

=
∑
β

[
⟨f(t′)|V (t′) |β(t′)⟩ ⟨β(t′′)|V (t′′) |i(t′′)⟩ + ⟨f(t′)|V (t′) |β(t′)⟩ ⟨β(t′′)|Wr |i(t′′)⟩

+ ⟨f(t′)|Wr |β(t′)⟩ ⟨β(t′′)|V (t′′) |i(t′′)⟩ + ⟨f(t′)|Wr |β(t′)⟩ ⟨β(t′′)|Wr |i(t′′)⟩
]
. (5.103)

Under the rotational wave approximation, the transition rate can be approximated as

Γ ≈ lim
t→∞

∑
β

d

dt

∣∣∣∣∣ 1

(iℏ)2

∫ t

0
dt′′
∫ t′′

0
dt′
[
⟨f(t′)|V (t′) |β(t′)⟩ ⟨β(t′′)|Wr |i(t′′)⟩

+ ⟨f(t′)|Wr |β(t′)⟩ ⟨β(t′′)|V (t′′) |i(t′′)⟩
]∣∣2 δ(ωf − ωi − ω). (5.104)
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Here, the first term is written as

1

(iℏ)2
lim
t→∞

∑
β

d

dt

∫ t

0
dt′′
∫ t′′

0
dt′ ⟨f(t′)|V (t′) |β(t′)⟩ ⟨β(t′′)|Wr |i(t′′)⟩

=
1

(iℏ)2
lim
t→∞

∑
β

d

dt

[∫ t

0
dt′′
∫ t′′

0
dt′ ⟨f |U |β⟩ e−i(ωβ−ωf+ω)t

′′ ⟨β|Wr |i⟩ e−i(ωi−ωβ)t
′

∫ t

0
dt′′
∫ t′′

0
dt′ ⟨f |U † |β⟩ e−i(ωβ−ωf−ω)t′′ ⟨β|Wr |i⟩ e−i(ωi−ωβ)t

′

]
(5.105)

=
1

(iℏ)2
lim
t→∞

∑
β

i

ωi − ωβ

d

dt

[
⟨f |U |β⟩ ⟨β|Wr |i⟩

∫ t

0
dt′′
(

1 − e−i(ωβ−ωf+ω)t
′′
)

+ ⟨f |U † |β⟩ ⟨β|Wr |i⟩
∫ t

0
dt′′
(
e−i(ωi−ωf−ω)t′′ − e−i(ωβ−ωf−ω)t′′

)]
(5.106)

≈ 1

(iℏ)2

∑
β

i

ωi − ωβ
⟨f |U |β⟩ ⟨β|Wr |i⟩ . (5.107)

Similarly, the second term may be written as

1

(iℏ)2
lim
t→∞

∑
β

d

dt

∫ t

0
dt′′
∫ t′′

0
dt′ ⟨f(t′)|Wr |β(t′)⟩ ⟨β(t′′)|V (t′) |i(t′′)⟩

≈ 1

(iℏ)2

∑
β

i

ωβ − ωf
⟨f |Wr |β⟩ ⟨β|U |i⟩ . (5.108)

Therefore, the transition rate may be written as

γ ≈ 1

ℏ2

∣∣∣∣∣∣
∑
β

⟨f |U |β⟩ ⟨β|Wr |i⟩
ωi − ωβ

+
⟨f |Wr |β⟩ ⟨β|U |i⟩

ωβ − ωf

∣∣∣∣∣∣
2

δ (ωf − ωi − ω) . (5.109)

By adjusting the applied magnetic field and its gradient, we can control the possible states of β.

For example, we can pick up the m = m∗ + 1 and m = m∗ − 1 states for β as:

|nr = 0,mz = m∗, s = 1/2⟩ →
U(1)

|nr = 0,mz = m∗ − 1, s = 1/2⟩

→
W

(1)
r

|nr = 0,mz = m∗, s = −1/2⟩ (5.110)

|nr = 0,mz = m∗, s = 1/2⟩ →
W

(2)
r

|nr = 0,mz = m∗ + 1, s = −1/2⟩

→
U(2)

|nr = 0,mz = m∗, s = −1/2⟩ (5.111)

|nr = 0,mz = m∗, s = 1/2⟩ →
U(3)

|nr = 0,mz = m∗ + 1, s = 1/2⟩

→
W

(3)
r

|nr = 0,mz = m∗, s = −1/2⟩ (5.112)

|nr = 0,mz = m∗, s = 1/2⟩ →
W

(4)
r

|nr = 0,mz = m∗ − 1, s = −1/2⟩

→
U(4)

|nr = 0,mz = m∗, s = −1/2⟩ (5.113)
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where U = eEx/2. Figure 5.12a shows the first and second transition paths in the band, and

Figure 5.12b shows the excitation energy corresponding to the Wr term for each path with a bump

of H = 30 nm and σ = 15 nm.

5.6 Conclusion

We have investigated the electron states around a surface deficit, such as a bump and valley,

through numerical analysis. Our results demonstrate that the ground and low-lying states can

spontaneously bind around the bump without an external potential. These states may provide as

a qubit. By searching the excitation energies with various bump sizes, we have determined the

appropriate bump sizes in which the excitation energy matches the photon energy. Furthermore,

we propose building a spin qubit with the ground state by introducing a stray magnetic field. This

system can be a quantum sensor to detect magnetic fields that pass through the ring state.

We have supposed the surface is smooth, but the effectiveness of the continuous model is

uncertain. It is unclear how much the atomic arrangement affects the electron state. For example,

the lattice parameter is about 0.44 nm [338], close to the electron height 1 nm but sufficiently small

compared with the bump sizes in our simulations. Quantum Monte Carlo calculations may provide

helpful information, which will be a future topic.
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[128] R. Carretero-González, B. P. Anderson, P. G. Kevrekidis, D. J. Frantzeskakis, and C. N.
Weiler. Dynamics of vortex formation in merging Bose-Einstein condensate fragments. Phys-
ical Review A, 77(3):033625, March 2008.

[129] G. Lamporesi, S. Donadello, S. Serafini, F. Dalfovo, and G. Ferrari. Spontaneous creation of
Kibble–Zurek solitons in a Bose–Einstein condensate. Nature Physics, 9(10):656–660, October
2013.
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H. Perrin. Producing superfluid circulation states using phase imprinting. Physical Review
A, 97(4):043615, April 2018.

[158] H. Kellay and W. I. Goldburg. Two-dimensional turbulence: a review of some recent experi-
ments. Reports on Progress in Physics, 65(5):845–894, May 2002.

[159] A. Adriani, A. Mura, G. Orton, C. Hansen, F. Altieri, M. L. Moriconi, J. Rogers, G. Eichstädt,
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