Electric Power

- **single-phase (1~) systems**
 - One source
 - Two energy-carrying wires
 - Pulsating instantaneous power (2f)

- **three-phase (3~) systems**
 - Three sources, 120° phase shifted

Single Phase Power

Definition:

\[p(t) = v(t) \cdot i(t) \]

Lagging, for \(\phi > 0 \)

\[p(t) = V_m \cos(\omega t) \cdot I_m \cos(\omega t - \phi) \]

\[V = \frac{V}{|Z| \angle \phi} = |V| \angle -\phi \]

\[I = \frac{V}{Z} = \frac{|V|}{|Z| \angle \phi} = |I| \angle -\phi \]

Instantaneous and Average Power

trigonometric identity:
\[
\cos \alpha \cdot \cos \beta = \frac{1}{2} \left[\cos(\alpha - \beta) + \cos(\alpha + \beta) \right]
\]

the instantaneous power equation:
\[
p(t) = \frac{V_m I_m}{2} \left[\cos \phi + \cos(2\omega t - \phi) \right]
\]

the average of \(\cos(2\omega t - \phi) \) over a cycle is zero

the average power over one cycle:
\[
P = \frac{1}{2} V_m I_m \cos(\phi)
\]

Average Power from RMS Values

\[
V_{rms} = \frac{1}{T} \int_0^T V^2(t)dt = \frac{1}{\sqrt{2}} V_m \quad \text{for} \quad V(t) = V_m \sin(\omega t)
\]

Root mean square (rms) of an arbitrarily (periodic) AC waveform delivers the same power to a resistor as the corresponding DC quantity.

The average power in terms of rms:
\[
P = V_{rms} I_{rms} \cos(\phi)
\]

Notation convention (this lecture, not in general):
Voltage and currents given in rms if not stated otherwise.

\[\text{e.g. } 208 \text{ V } \angle -30^\circ \text{ means } V_m = \sqrt{2} \cdot 208 = 294 \text{ V}_{pk} \]
Power Factor

\[P = V_{rms} I_{rms} \cos(\phi) \]

\[\text{power factor} \]

Lagging Power Factor

Leading Power Factor

Load behaves like \(R \parallel j\omega L \)

\[\text{R \parallel } 1/j\omega C \]

Complex Power

General case:

\[V = |V| \angle \gamma \]

\[I = |I| \angle \gamma - \phi \]

Complex or Apparent Power:

\[S = V \cdot I^* = |V| \cdot |I| \angle \phi \]

Real Power:

\[P = |V| \cdot |I| \cos(\phi) \quad (W) \]

Reactive Power:

\[Q = |V| \cdot |I| \sin(\phi) \quad (VAR) \]

\[S = P + jQ \quad (VA) \]

Positive Angle \(\phi \): Lagging PF

Negative Angle \(\phi \): Leading PF
Power Triangle

Power Factor: \[\cos \phi = \cos \left(\arctan \left(\frac{Q}{P} \right) \right) = \frac{P}{\sqrt{P^2 + Q^2}} = \frac{P}{|S|} \]

\[S = V I^* \]
\[Q = V I \sin \phi \]
\[P = V I \cos \phi \]

+ Q = Lagging Power Factor
 Inductive Load (Consuming)

- Q = Leading Power Factor
 Capacitive Load (Consuming)

Example: Power Factor

See Book, Problem 1-18, p. 54

Assume that the voltage applied to a load is \(V = 208 \, V \angle -30^\circ \) and the current flowing through the load is \(I = 5 \, A \angle 15^\circ \).
(a) Calculate the complex power \(S \) consumed by this load.
(b) Is this load inductive or capacitive?
(c) Calculate the power factor of this load?
(d) Calculate the reactive power consumed or supplied by this load. Does the load consume reactive power from the source or supply it to the source?
Example: Power Factor

(a) The complex power S consumed by this load is
\[S = VI^* = (208\angle -30^\circ \text{ V})(5\angle 15^\circ \text{ A})^* = (208\angle -30^\circ \text{ V})(5\angle -15^\circ \text{ A}) \]
\[S = 1040\angle -45^\circ \text{ VA} \]

(b) This is a capacitive load.

(c) The power factor of this load is
\[PF = \cos(-45^\circ) = 0.707 \text{ leading} \]

(d) This load supplies reactive power to the source. The reactive power of the load is
\[Q = VI\sin \theta = (208 \text{ V})(5 \text{ A})\sin(-45^\circ) = -735 \text{ var} \]

Wye (Y) Connected Systems

3-wire system: $I_N = 0$, Balanced system: $I_a = I_b = I_c$
Three Phase Time Domain Signals

Sequence abc

\[V_a(t) = \sqrt{2} \cdot V_p \sin(\omega t) \quad I_a(t) = \sqrt{2} \cdot I_p \sin(\omega t - \phi) \]
\[V_b(t) = \sqrt{2} \cdot V_p \sin(\omega t - 120^\circ) \quad I_b(t) = \sqrt{2} \cdot I_p \sin(\omega t - 120^\circ - \phi) \]
\[V_c(t) = \sqrt{2} \cdot V_p \sin(\omega t + 120^\circ) \quad I_c(t) = \sqrt{2} \cdot I_p \sin(\omega t + 120^\circ - \phi) \]

\[p_a(t) = V_a(t) \cdot I_a(t) = 2V_pI_p \sin(\omega t) \sin(\omega t - \phi) \]
\[p_b(t) = V_b(t) \cdot I_b(t) = 2V_pI_p \sin(\omega t - 120^\circ) \sin(\omega t - 120^\circ - \phi) \]
\[p_c(t) = V_c(t) \cdot I_c(t) = 2V_pI_p \sin(\omega t + 120^\circ) \sin(\omega t + 120^\circ - \phi) \]
Three-Phase Power, Balanced System

\[p_{3\phi}(t) = p_a(t) + p_b(t) + p_c(t) \]

\[\sin \alpha \cdot \sin \beta = \frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right] \]

\[p_{3\phi}(t) = V_p I_p \left(3 \cos \phi - \left[\cos(2\omega t - \phi) + \cos(2\omega t - 240 - \phi) + \cos(2\omega t + 240 - \phi) \right] \right) = 0 \]

\[p_{3\phi}(t) = 3 \cdot V_p I_p \cos(\phi) = P_{3\phi} = \text{const.}! \]

Complex Power, Balanced System

\[V_p = |V_p| \angle 0^\circ \quad I_p = |I_p| \angle -\phi \]

\[S_{3\phi} = 3 \cdot V_p \cdot I_p^* \quad \text{General Form of Complex Power} \]

\[= \sqrt{3} \cdot V_L \cdot I_L^* \]

\[S_{3\phi} = 3|V_p| |I_p| \angle \phi \quad \text{Phasor Form} \]

\[S_{3\phi} = 3|V_p| |I_p| (\cos \phi + j \sin \phi) \]

\[= P_{3\phi} + jQ_{3\phi} \]
Relations in the Wye Connection

\[V_{ca} = \sqrt{3} V_p \angle +150^\circ \]
\[V_{cn} = V_p \angle 120^\circ \]
\[V_{ab} = \sqrt{3} V_p \angle +30^\circ \]
\[V_{an} = V_p \angle 0^\circ \]
\[V_{bn} = V_p \angle 240^\circ \]
\[V_{bc} = \sqrt{3} V_p \angle -90^\circ \]

Relations in the Y Connection

voltage relationship

\[V_{Line} = \sqrt{3} \cdot V_{phase} \angle +30^\circ \]

current relationship

\[I_{Line} = I_{phase} \]
Three-Phase Power, Balanced System

\[P_{3\phi} = 3|V_p| |I_p| \cos \phi = \sqrt{3}|V_L| |I_L| \cos \phi \quad \text{Real Power} \]

\[Q_{3\phi} = 3|V_p| |I_p| \sin \phi = \sqrt{3}|V_L| |I_L| \sin \phi \quad \text{Reactive Power} \]

Electric Power

- **single-phase (1~) systems**
 - One source
 - Two energy-carrying wires
 - Pulsating instantaneous power (2f)

- **three-phase (3~) systems**
 - Three sources, 120° phase shifted
 - Requires only 3 energy-carrying wires to deliver 3 times the power of 1~ phase system
 - Balanced systems
 - Instantaneous power is constant
 - No torque pulsations in 3~ machines
 - Unbalanced systems
 - Instantaneous power is not constant
 - Analyze each phase individually as a 1~ system
Relations in the Delta Connection

Voltage and Current Phasor Diagrams

Relations in the Delta (Δ) Connection

\[I_a = \sqrt{3} I_p \angle +150^\circ \]
\[I_c = I_a \angle 120^\circ \]
\[I_b = \sqrt{3} I_p \angle +30^\circ \]
\[I_{ab} = I_p \angle 0^\circ \]
\[I_{bc} = I_p \angle 240^\circ \]
\[I_c = \sqrt{3} I_p \angle -90^\circ \]
\[I_a = I_{ca} - I_{ab} = I_p \angle 120^\circ - I_p \angle 0^\circ \]
\[= \sqrt{3} \cdot I_p \angle 150^\circ \]
\[I_b = \sqrt{3} \cdot I_p \angle 30^\circ \]
\[I_c = \sqrt{3} \cdot I_p \angle -90^\circ \]
Relations in the Delta Connection

voltage relationship

\[V_{\text{Line}} = V_{\text{phase}} \]

current relationship

\[I_{\text{Line}} = \sqrt{3} \cdot I_{\text{phase}} \angle + 30^\circ \]

See also Book, Table 2-1

Three-Phase Power, Balanced System

Wye Connection

\[I_p = I_L \]

\[V_p = V_L / \sqrt{3} \]

\[P_{3\phi} = 3 \cdot V_p I_p \cos(\phi) \]

Delta Connection

\[I_p = I_L / \sqrt{3} \]

\[V_p = V_L \]

\[P_{3\phi} = 3 \cdot V_p I_p \cos(\phi) \]

\[P_{3\phi} = \sqrt{3} \cdot V_L I_L \cos(\phi) \]
Homework 1

See web site
http://www.eng.fsu.edu/~steurer/eel3216.html