INTRODUCTION: Mechanical Metallurgy

- Uses the principle of mechanics and of metallurgy with the objective of rationalizing, predicting and modifying to describe the response of metals to loads.

- The central theme is structure - properties - performance triangle. Changes in one are inseparably related to changes in the others; these changes are introduced by processing.

STRUCTURE ↔ PROPERTIES ↔ PERFORMANCE

PROCESSING
General Review

• The subject strength, deformation and fracture of materials can be approached from either of two perspectives:

(a) Engineering Mechanics or Continuum approach
 - Assumes that materials are isotropic and homogeneous
 - Applies mathematical methods, using global parameters to determine stress state and materials response to external forces.
General Review Cont’d. . .

(b) Materials Science or **Microscopic** approach
- Deals with the understanding of the mechanical properties based on the knowledge of the deformation process on the atomic scale.
Tensile Response of Materials
• When subjected to external load, most metals (materials) will in general exhibit the following sequence of responses depending on the magnitude of the applied forces and the material characteristics:

(a) Elastic Deformation
 - Energy is recoverable,
 - Atomic bonds are not broken and
 - Material obeys Hooke’s Law

(b) Plastic Deformation
 - Energy is non-recoverable,
 - Atomic bonds are broken and
 - Hollomon’s equation can be used to describe the $\sigma - \varepsilon$ curve

(c) Fracture -
A typical representation of the $\sigma - \varepsilon$ curve is shown in Figure 1.1
Tensile Test

The objectives include:

• To study the relationship between stress and strain of ductile and brittle materials, when loaded in uniaxial tension.

• To determine several mechanical properties, and these are:
 – Elastic properties
 – Flow or Plastic properties
 – Fracture properties
Figure 1-1(a) Typical engineering stress-strain behavior to fracture, point F. The tensile strength TS is indicated at point M. The circular insets represent the geometry of the deformed specimen at various points along the curve.