Ideal gases

\[p_v = RT \]

\[u = f(T) \quad \text{only} \]
\[h = f(T) \quad \text{only} \]

for a closed system, ideal gas \(u, T \) const

then \(p_v = \text{const} \) \[u = \text{const} \]
\[h = \text{const} \]

from last time,

\[C_u = \left(\frac{\partial u}{\partial T} \right)_v \quad C_p = \left(\frac{\partial h}{\partial T} \right)_p \]

for ideal gases

\[du = C_v \, dT \]
\[dh = C_p \, dT \]
\[dU = m \, C_v \, dT \]
\[dH = m \, C_p \, dT \]

Remember,

\[h = u + pv \]

for I.G. \(pv = RT \)
\[h = u + RT \]
\[dh = du + RdT \]

\[C_{pdT} = C_v \, dT + RdT \]

\[C_p = C_v + R \quad \text{or} \quad C_p - C_v = R \quad \text{for I.G.} \]

\[\text{Likewise, } C_p - C_v = R \quad \text{for I.G.} \]
First Law as a rate equation:

\[\delta Q = \delta E + \delta W \]
\[\delta Q = dU + d(KE) + d(PE) + \delta W \]
\[\frac{\delta Q}{\delta t} = \frac{dU}{dt} + \frac{d(KE)}{dt} + \frac{d(PE)}{dt} + \frac{\delta W}{\delta t} \]

In the limit as \(\delta t \to 0 \)

\[\dot{Q} = \frac{dU}{dt} + \frac{d(KE)}{dt} + \frac{d(PE)}{dt} + \dot{W} \]

\[\dot{Q} = \frac{dE}{dt} + \dot{W} \]

--- powers \(\frac{kW}{s} \) or \(\dot{W} \); \(\frac{ft \cdot lb}{s} \) or \(\text{hp} \)

--- rate of energy change

--- rate of heat transfer \(\frac{kW}{s} \) or \(\dot{W} \); \(\frac{ft \cdot lb}{s} \) or \(\text{hp} \)
Open Systems:

Mass Conservation

\[\Delta m_i \rightarrow m_t \rightarrow \Delta m_e \]

A control volume (C.V.)
(region in space)

In a time interval \(\Delta t \), for the C.V., \(m \rightarrow m_i + \Delta t \)

the accumulation

\[(\Delta m_i - \Delta m_e) = m_i + \Delta t - m_e \]

\[\frac{\Delta m_i - \Delta m_e}{\Delta t} = \frac{m_i + \Delta t - m_e}{\Delta t} = \frac{dm_{C.V.}}{dt} \]

\[\frac{dm_{C.V.}}{dt} = \dot{m}_i - \dot{m}_e \]

where \(\dot{m} = \frac{dm}{dt} \) mass flow rate \(\frac{ka}{S} \frac{lb}{s} \)

or more generally

\[\frac{dm_{C.V.}}{dt} = \sum \dot{m}_i - \sum \dot{m}_e = \dot{m}_{in} \]
Consider flow through a pipe:

\[\mathbf{A} \xrightarrow{\text{flow}} \]

Look at a plug of fluid:

\[\delta m = \frac{A \, dx}{V} \quad \frac{A \, dx}{V} = \frac{m^3}{2g} = \text{kg} \]

If plug crosses plane A in time \(\delta t \):

\[\frac{\delta m}{\delta t} = \frac{A \, dx}{V} \quad \dot{m} = \frac{A \, \dot{V}}{V} \]

where \(\dot{m} \) is mass flow rate.

\(\dot{V} \) is the flowing substance.

Also:

\[m = \frac{V}{\rho} \]

\[\frac{dm}{dt} = \frac{dV}{dt} \quad \dot{m} = \frac{\dot{V}}{\rho} \]

\[\dot{V} = \dot{m} \rho \]

Comparing \(\dot{m} = \frac{A \, \dot{V}}{V} \) and \(\dot{m} = \frac{\dot{V}}{\rho} \):

or \[\dot{V} = \frac{A \, \dot{V}}{V} = \frac{V}{A} \]

or \[\frac{\dot{V}}{\dot{m}} = \rho \]

or \[\dot{V} \]
Steady state steady Flow (SSSF)

No accumulation \(\Rightarrow m_{cv, i} = 0 \)

\[\sum m_i - \sum m_e = 0 \Rightarrow \sum m_i = \sum m_e \]

\[\frac{dE}{dt} = 0 \] (there is no change in the energy of the control volume with time)

(but there may be a change in energy for the fluids)

Energy associated with a flowing fluid

\[W_{fw} \] = the flow work

\[\delta W_{fw} = -p_dV \] (work required to move the fluid across the control boundary of the control volume)

\[W_{net} = -p_u V \]

\[\delta W_{fw} = -p_u V \]

\[W_{fw, i} = -p_u V_i \]

\[W_{fw, e} = +p_u V_e \] (because work is being done by system to push fluid out)

\[W_{fw} = \sum p_u V_e - \sum p_u V_i \] (just the sum of all of the flow works)

For inlet, outlet, this reduces to

\[W_{fw} = p_u V_e - p_i V_i \]

and for SSSF \(m_i = m_e = m \)

\[\frac{W_{fw}}{m} = \frac{p_u V_e - p_i V_i}{m} \]

\(\frac{W}{m} \) specific work = \(\frac{W}{m} = \frac{W}{m} \)