1 p461, #29, §1 Asked

Given: A circular cylinder of varying radius r and height h. At a given time, $r = 6$ inch, $\dot{r} = 0.2$ in/sec, $h = 8$ in, $\dot{h} = -0.4$ in/sec.

Asked: \dot{V} and \dot{A} at that time.

2 p461, #29, §2 Solution

\[V = \pi r^2 h \quad A = 2\pi rh + 2\pi r^2 \]

\[dV = \frac{\partial V}{\partial h} \, dh + \frac{\partial V}{\partial r} \, dr \]

\[\dot{V} = \pi r^2 \dot{h} + \pi 2rh\dot{r} = 15.08 \text{ in}^3/\text{sec} \]

\[\dot{A} = 2\pi r \dot{h} + (2\pi h + 4\pi r) \dot{r} = 10.05 \text{ in}^2/\text{sec} \]