Long Term Performance and Large Scale Implementation of Bio-Oxidation of Landfill Gases to Mitigate Greenhouse Gases and Reduce Odors

A research project funded by
Florida Center for Solid and Hazardous Waste Management

Progress Report 2
by
Tarek Abichou
FAMU – FSU College of Engineering

Jeff Chanton and Dave Powelson
Florida State University

March 2006
BioCells and BioCovers:

Placement of a BioCells composed of a glass cullet dispersion layer and a mulch layer over an intermediate soil cover at the Tallahassee MSW Landfill reduced methane emissions by a factor of 10 and doubled the % oxidation of methane relative to a non-treated control area of the landfill. The BioCells became more effective than the control in oxidizing methane three months after its initial emplacement. Over the one-year period of study, the difference in methane emission rate and methane oxidation percentage in the control and the BioCells were statistically significant ($p < 0.001$). Following the initial three-month curing period, the mean % oxidation for the BioCells was 41%, and the mean % oxidation for the control was 14% ($p < 0.001$). Following the three month curing period we observed 29 negative CH$_4$ fluxes and 27 zero fluxes in the BioCells, while only 6 negative fluxes and 22 zero fluxes were observed in the control area. Negative fluxes indicate uptake of atmospheric methane. These zero and negative fluxes represent 100% oxidation and therefore the means for % oxidation for the BioCells and control areas increase to 56% and 39% respectively. Individual flux chambers showed a negative correlation between soil moisture and % oxidation and a positive correlation between soil temperature and % oxidation. Neither flux nor % oxidation exhibited a distinct seasonality, perhaps due to relatively warm temperatures throughout the year or the effects of soil moisture buffering the effects of temperature.

![Average Measured Flux (g/m²/day)](chart)

Fig. 1. Methane Emissions from BioCells and Control Cells in Site 1.
BioCovers consisting of thin, and thick layers of freshly chopped mulch were placed on Site 4 of the Leon County Landfill. Both Deep and Shallow Mulch BioCovers reduced methane flux by 96% in comparison to flux before mulch placement. In contrast during this period the emissions from No Mulch area increased by 61%. The Deep Mulch BioCover oxidized the greatest fraction of methane (27.06%) in comparison to Shallow Mulch (5.62%) and No Mulch (10.31%). Fig. 3 and Fig. 4 show the emissions and oxidation from all BioCovers.

Fig. 2. Methane Oxidation from BioCells and Control Cells in Site 1.

Fig. 3. Methane Emissions from Mulch BioCovers and No BioCovers
Two designs of BioFilters are being evaluated. Water-spreading BioFilters use the capillarity of coarse sand overlain by a finer sand to increase the active depth for methane oxidation. The sand was not contained but simply shaped into a ridge. Compost BioFilters consist of 238 L barrels containing a 1:1 mixture (by volume) of compost to expanded polystyrene pellets. Two replicates of each type of BioFilter were tested at an outdoor facility. Gas inflow consisted of an approximately 1:1 mixture (by volume) of CH4 and CO2. Methane output rates (J_{out}, \text{gm}^{-2}\text{d}^{-1}) were measured using the static chamber technique and the Pedersen et al. (2001) diffusion model. Methane oxidation rate (J_{ox}, \text{gm}^{-2}\text{d}^{-1}) and fraction of methane oxidized (f_{ox}) were determined by mass balance. For methane inflow rates (J_{in}) between 250 and 500 \text{gm}^{-2}\text{d}^{-1}, the compost J_{ox}, 242 \text{g m}^{-2}\text{d}^{-1}, was not significantly different (p=0.0647) than the water-spreading J_{ox}, 203 \text{g m}^{-2}\text{d}^{-1}; and the compost f_{ox}, 69\%, was not significantly different (p=0.7354) than water-spreading f_{ox}, 63\%. The water-spreading BioFilter was shown to generally perform as well as the compost BioFilter, and it may be easier to implement at a landfill and require less maintenance. The water spreading design might also be incorporated in alternative landfill cover design known as capillary barrier covers. Fig. 5 shows the oxidizing capacity of each design of BioFilters.
Fig. 5 Fraction Oxidized Measured from Two BioFilter Designs.