From the New Dean

I am very excited to join the FAMU-FSU College of Engineering as the Dean, effective July 1, 2012.

I am already working with faculty, staff, students, and the administrations of Florida A&M and Florida State Universities to build on the College's 30 years of success in providing engineering education. Now is the time to enhance, through teamwork, stronger collaboration, cohesiveness and sense of community in the college as we continue achievements in “Quality, Growth and Diversity” in engineering education.

The FAMU-FSU College of Engineering offers great potential through its uniqueness, advantages and the numerous opportunities offered. As the Dean of Engineering I will work to continue building on the College’s many positive attributes. I am excited about the career challenges of the future and anticipate us working together on a shared vision to move the College to the next level.

(Continued on page 2)
From the Dean

(Continued from page 1)

I plan to fully utilize my background and experience from industry (General Electric) and academia (MIT, Clark Atlanta and Penn State) and the tremendous assets of the college in the form of human capital, facilities and programs in leading the FAMU-FSU College of Engineering in becoming one of the best engineering education organizations nationally and internationally as I join colleagues at two great institutions of higher education in the wonderful city of Tallahassee. I am most thankful to have these experiences and opportunities.

I would like to share some of the College’s most recent exciting achievements:

• Fall 2012 enrollment was almost 2500 students.

• Three engineering faculty members won National Science Foundation CAREER Awards: William Oates of Mechanical Engineering, Anant Paravastu of Chemical and Biomedical Engineering and Sungmoon Jung of Civil and Environmental Engineering who join another NSF CAREER recipient, Hui (Helen) Li.

• The American Society of Civil Engineering Student Chapter hosted the Southeast Regional Competition and won second place overall.

• Electrical and Computer Engineering students won the 2012 IEEE SoutheastCon robotics competition.

• Bing Energy relocated to Tallahassee to partner with FSU on high-tech fuel cells developed by FAMU-FSU College of Engineering researchers.

I look forward to us working together to attain the best for our students, assisting our faculty in their scholarly pursuits and staying connected in growing our engineering programs and the national and international stature of the College. I invite you to visit the College and be part of the excitement.

The FAMU-FSU College of Engineering:
Two Universities – One College – Twice the Opportunities.

Have a safe and healthy New Year!

Best Regards,

Dr. Yaw D. Yeboah, Dean and Professor, FAMU-FSU College of Engineering, Chemical and Biomedical Engineering
First Annual Engineering Design Project Day - Fall 2012

–By Office of Associate Dean for Student Affairs and Curriculum

The Executive Council of the College of Engineering proclaimed November 21, 2012 as “Engineering Design Project Day.” All engineering students were strongly encouraged to use this day to collaborate with teammates to finalize class and/or senior design projects. To facilitate this collaboration, all classes held on Wednesday, 11/21 at the College of Engineering were suspended.

A proclamation approved by the Executive Council of the College of Engineering and signed by the council chair, Dean Yaw Yeboah, mentioned that all undergraduate degree programs at the College are accredited by the Engineering Accreditation Commission of ABET, Inc. It also mentioned that ABET requires that all engineering students have the ability to design and function on multidisciplinary teams. Dr. Reginald Perry, associate dean, noted the Council understands the time demands placed on engineering students to complete class and/or senior design projects during the final weeks of the semester.

It is hoped that this day gave students an opportunity to meet face-to-face as a group to help finalize these assignments. Faculty members who normally teach a class on Wednesday, 11/21 were encouraged to instead hold office hours during their regularly scheduled class time. Please direct any questions regarding this event to the Office of the Associate Dean at (850) 410-6423 or studentsupport@eng.fsu.edu.

Engineering students shown here participating in an industry-sponsored design team competition as part of an Industry Day event held at the FAMU-FSU College of Engineering.
Faculty Snapshot: Pedro Moss

By FAMU-FSU College of Engineering News

Pedro Moss is one of the newest assistant professors at the FAMU-FSU College of Engineering starting his new role as professor and researcher with the 2012 fall semester. Returning to his alma mater, Moss is definitely one of engineering’s grads-made-good.

Moss received his Ph.D. in 2008, from the Department of Electrical and Computer Engineering and worked with a company for 4 years making lithium ion phosphate battery systems. Moss says, “One of the reasons I came back to the university is to develop energy systems here at the university. Energy storage systems are the way of the future. I worked with a number of faculty members on my dissertation, a few of whom are still here, and I’m very excited to continue work in this area of research.”

Moss intends to get his engineering students interested in participating in this area of research. He adds, “Research is critical to discovering solutions to help alleviate energy shortages and access not only in this country but in countries around the world.”

Moss feels that there is a lot of work to be done, particularly in research. And there is also a lot of work to be done mentoring and pushing students along. He feels that more than ever students need mentoring. “They need someone to help guide them with the challenges facing us now and in the future," says Moss. “My main goal is to be a mentor but also produce good research. I think good research will attract good students. So you want to produce good research and be a good mentor at the same time.”

Moss’s biggest inspiration in his life has been his Mom. “My Mom has always believed in the power of working hard,” says Moss. “She didn’t go to high school or college but she always taught me that I needed to work hard to achieve my goals. I have followed her philosophy in all that I do which has led me to be successful in my life and work. I admire my Mom quite a bit for that.”

Since Moss has been back in Tallahassee he’s been busy getting ready for classes. However, on Saturdays he usually finds himself on the St. Mark’s Trail walking or jogging. He can also be found playing basketball or walking around Lake Ella. “Exercise is also my time to think,” says Moss. “It’s my way to go deep in thought, working through problems while working out. I’m looking forward to getting involved in other activities, especially going to football games on the weekend.”

“I’m excited to be here,” says Moss. “I’ve been accepted warmly and welcomed by everyone and I’m looking forward to working with faculty, staff and students as well as the College administration.”
Student Spotlight: Tarra M. Beach, CE PhD at Florida A&M

Tarra M. Beach is a fourth-year graduate student at Florida Agricultural and Mechanical University (FAMU, Tallahassee, FL). She is pursuing her PhD in civil engineering with an emphasis in environmental engineering.

"Attending the FAMU-FSU College of Engineering allows me to pursue my research interest in phytoremediation, a process that utilizes plants to remove or prevent the infiltration of pollutants into the soil and water in order to prevent the contamination of our potable water supply," she says.

With her PhD, Beach wants to make a positive impact on society and the environment. "As an environmental engineer, I hope to contribute to the sustainability of the environment," she says. "And I want to work in STEM education for underrepresented children, to help them discover the infinite value and potential they possess."

Beach earned her bachelors in chemistry at Tennessee State University (TSU, Nashville, TN) in 2000. Working full-time she stayed on for her masters in chemistry with an emphasis in biochemistry and graduated in 2004. A year later she accepted a scholarship at TSU’s College of Engineering, Technology and Computer Science and in 2007 she finished her masters in engineering with an emphasis in environmental engineering.

Like many diverse students, Beach has had to overcome barriers throughout her academic journey. One of the most significant was the loss of her mother as an undergrad. "When I returned home to help during my mother’s illness, she constantly stressed the importance of my returning to school," she recalls. "Unfortunately she did not see me graduate."

Beach finds doing effective research her greatest challenge and her greatest joy. "I enjoy solving intricate engineering problems and adding to the body of knowledge in my research area," she says.

Beach believes that engineering demands the contribution of an array of creative ideas to discover the best design solution. "Our differences permit us to understand other approaches to concepts," she says.
Student Spotlight: Nahom Tewolde, Senior in electrical and computer engineering

—By FAMU-FSU College of Engineering News

As a transfer student, Tewolde would be the first to tell you his path to where he is today was nothing short of a perfect storm of events. Not a typical transfer student, Tewolde took time off before pursuing an engineering degree after earning his A.A. degree from Valencia Community College in Orlando to start a career in the insurance industry in customer service.

“Several things happened,” said Tewolde. “I came to see I was in a dead-end job. My younger brother had just graduated with a degree in computer engineering and Obama was elected president. To see an African-American get to the highest position of the land was inspiring and it seemed that everything my teachers ever told me was true; that if you put your best foot forward you can get anywhere. So I quit my job, applied to Florida State and was accepted.”

Tewolde admits that it was a struggle to get back into the routine of classes and studying in his first semester. But he focused on what he needed to do and was able to make and maintain good grades. “I’d like to say I did it by myself, but I know I didn’t,” confides Tewolde. “I was invited to join a study group and I don’t think I would be where I am if it wasn’t for this group of students who accepted me. At the end of the semester when I’d start feeling burned out they would drag me up. It’s not that I’m failing any classes and I have a good GPA but there are days when you don’t want to get up and you get that call, “Where are you buddy?” So you say to yourself, “Get it together!”

Tewolde can’t speak highly enough about one of his major professors in electrical engineering. Dr. Leonard Tung, a professor in the department of electrical and computer engineering, was a great help to Tewolde on his return to school.

“I’ve come to find out after having him for a couple of classes that Dr. Tung truly cares about us,” says Tewolde. “He takes the time to get to know his students and how they think so he can help them when they mess up. He is honest in his grading, explaining where we go wrong, because he expects us to work hard. He works just as hard, pushing us because he wants us to succeed.”

While Tewolde was at Valencia Community College he was a little bit of a partier and he admits he didn’t work as hard as he should have to get good grades. Tewolde says, “I know the difference between where I was then and where I find myself now. I think being a little more mature definitely helps and I can understand where I was when I was younger now after some experience in the work force,” remarks Tewolde. “At first I was a little upset that I had stopped my education to pursue a career but I think that time was well spent allowing me to take care of the things I needed to and I know what I’m here for now.”

A lot of people have been very inspirational in Tewolde’s life with the things that they have said to him over the years and the example they have given him. Tewolde’s father always used to tell him growing up that no one is born a doctor or an engineer. That if you want something you have to work for it.
“My dad was always good at trying to keep me honest,” Tewolde confides. “I wish I could’ve worked harder when I was in high school and when I was at Valencia Community College but it’s like my cousin says, “It’s not how you start, it’s how you finish.””

It’s not that Tewolde didn’t find the work rewarding in the customer service field. “In the beginning when it was new and I was learning, I really enjoyed my job,” remarks Tewolde. “I would empathize with the clients and try to help them usually above and beyond the customer service matrix guidelines. But I eventually came to find that a lot of the people who called customer service about their insurance plans didn’t really want to know, for example, why the insurance company was saying ‘No’ to their claims. I realized that a lot of people just hadn’t read their contracts. At the end it became very frustrating work.”

“I feel like I will be able to contribute a lot with an engineering degree,” says Tewolde. If I don’t find anything in the field that makes me happy, I plan on teaching. If it’s at a high school that’s fine. I want to help America get back to its higher academic scoring standings in math and science. And if I can help in any way to make that happen, I’ll feel like I’ve done something.”

“I feel there’s a different path for me. I don’t know what it is yet but sometimes you just have to step out in faith. And that’s something I’ve come to depend on, along with hard work. I do know I don’t want to stop with an undergraduate degree.”

Tewolde’s hard work and tenacity has its rewards. One of which is that he was recently selected to receive the Black Engineer of the Year Awards (BEYA) 2013 Student Leadership – Undergraduate Level Award.
FSU-PC Team Osceola Soars to 2nd Place Win in NASA University Launch Initiative

FSU-PC Design Team’s Rocket: Fear the Spear

NASA University Student Launch Initiative, or USLI, is a competition that challenges university-level students to design, build and launch a reusable rocket with a scientific or engineering payload to one mile above ground level, or AGL. The project engages students in scientific research and real-world engineering processes with NASA engineers.

The FSU-Panama City Campus engineering students organized themselves into Team Osceola on September 1, 2011, the first day of their two-semester senior design sequence, funded by NASA and FSU-PC Student Government.

Almost nine months later on competition day, April 22, 2012, Fear the Spear, Team Osceola’s rocket, reached 5237 feet at apogee, the second closest rocket of the 41 participating schools and universities. Several test rockets were flown in Samson, AL, supported by the Southeastern Alabama Rocket Society. Fear the Spear recorded altitude, temperature, solar irradiance, and captured video on the way down. The electronics are integrated on a custom circuit board specifically designed for the rocket. The silver-colored band is a flexible solar panel used to gather irradiance measurements; the video hole is located on the letter “T”.

Each year, an Advanced Rocketry Workshop, or ARW, provides advice and guides teams through the competitive proposal process. In addition to learning about the requirements of the project, attendees participate in informative workshops on student rocketry and payload development with NASA scientists and engineers. The participants also tour research and development facilities. Attendees build a high power rocket and attempt a National Association of Rocketry, or NAR, Level 1 certification. The 2012-2013 ARW will be held July 18-21 in Huntsville, AL.

Left to right: Brittney McCambry, Chris Crews, Steve Wallace, Bryce Rauch, Kevin Futch, Dr. Geoffrey Brooks, Mark Bickelman.
Researchers in the Department of Mechanical Engineering Win Air Force Campus Challenge Competition

–By James Dickson, Mechanical Engineering, Master of Science 2012

Imagine a futuristic world where small, robotic critters run, climb, and fly through a city collecting data and performing search and rescue missions. For researchers in the Department of Mechanical Engineering this isn’t just a sci-fi vision, it’s the future. For the past two years, these researchers have been competing in a problem solving competition for the development of miniature, self-deploying systems in cluttered and confined environments.

The competition, sponsored by the Department of the Air Force and the Air Force Research Lab, sought to solicit innovative, potentially paradigm-shifting ideas that have the potential to successfully address specific real-world problems of interest to the Air Force research community. Teams from Brigham Young University, Georgia Tech, Ohio University, University of Colorado-Boulder, University of Florida, University of West Florida, University of Alabama-Huntsville, and the Florida State University were selected to submit research proposals outlining novel engineering solutions to self-deploying systems. The Florida State University research team encompassing members from the Department of Mechanical Engineering proposed a novel robotic system that incorporates multiple modes of locomotion in a package smaller than a football.

This class of robots, termed Adaptive Robotic Multi-Modal Systems or ARM2S, represents a new focus in robotics research. Few robotic platforms have sought to combine multiple forms of locomotion into a single package capable of operating similar to biological counterparts. These multiple forms of locomotion will enable the robot to be adaptable and enter areas other robots would have difficulty penetrating. Dr. Jonathan Clark, the lead faculty researcher on the project, envisions a robotic platform that will be “employed in field applications such as search and rescue, surveillance and (removing land mines).”

All but two teams were eliminated from the competition after review of initial research proposals. The Florida State University and Brigham Young University were selected to compete against one another in outlining a vision for this system and developing initial prototypes. Seizing on this opportunity, researchers from Florida State developed a number of prototype technologies, including the first multi-modal climber/glider robotic platform.

Dr. William Oates, a faculty researcher on the project, envisions flight control systems for an ARM2S that rely only on a shape changing wing, rather than actuated control surfaces like elevators and flaps. His team of researchers has been experimenting with materials capable of changing their physical properties under the influence of electric fields.

Based on their novel idea and developed prototypes, the Air Force chose the Florida State University research team as winners of the Campus Challenge competition in March 2012. Members of the research team traveled to Eglin Air Force Base for the competition awards ceremony where they presented their research. The Department of Mechanical Engineering was presented with the Okaloosa Sword for their winning vision of the future.
Civil Engineering Student Spends Summer on the Road in Poland

–By FAMU-FSU College of Engineering News

Imhotep Jason Duncanson, a civil and environmental engineering student, spent six weeks this past summer in each of these four Polish cities as part of the U.S.-Poland International Research Experience for Students (IRES). Students from University of Nebraska-Lincoln and Florida A&M University visited Poland to gain knowledge of European standards of building for construction and infrastructure, the main purpose of this program.

“Dr. Wekezer recommends students from his spring senior design class each year to attend this international summer program,” remarked Duncanson. “And I was one of three Florida A&M University engineering students that got to go this year.”

Duncanson, who graduated in the spring with his B.S. in civil engineering, continued, “It was exciting to be in a foreign country with two other engineering students and experience what Poland had to offer.”

Duncanson stated in his mandatory report that Poland was the chosen country for the grant due to recently commissioned infrastructure projects for Poland’s aging highway system. The IRES-Poland program sends a group of eight students to visit four major Polish cities each offering unique features and therefore specific engineering challenges due to terrain, historical significance of existing infrastructure’s impact on the design of proposed improvements and support from Poland’s leading universities’ engineering programs.

According to Duncanson there are unique ways that Poland’s civil infrastructures and construction sites differ from American construction methods. One of the differences is that United States civil and environmental engineers must incorporate EPA standards in their projects to protect the environment. Poland doesn’t have these kinds of environmental protections in place yet. So they construct their sites much more quickly than the United States does because they don’t have as much red tape to deal with from government agencies.

However, they construct and install more sound barriers on their expressways than the States. Poland uses a plastic material in the construction of noise mitigating barriers that keeps traffic sound levels low for the surrounding neighborhoods.

“Our goals were to visit different universities in Poland,” said Duncanson. “Talk to their students and learn about their civil engineering academic disciplines and how it is the same or different from our education system in the United States. And to learn about some of the new infrastructure projects Poland is working on now to improve their roads, bridges and historical sites.”
During their six-week technical tour of Poland the student teams visited Warsaw University of Technology, Cracow University of Technology, and Szczecin University of Technology. In Bydgoszcz students attended the international Ralph Modjeski Conference 2012 focused on new research in Bridge technology for Poland and the United States. Bydgoszcz is known for its river canals as it sits between two rivers, the Vistula and Odra Rivers that run throughout the old town section of the city. As a result of these canals the city contains beautiful pedestrian bridges and is often referred to as the Poland Venice.

Students spent a week in Warsaw interning with PERI one of the top scaffolding companies in Europe getting trained in PERI’s scaffold construction software and how to properly build two types of scaffolding.

Duncanson remarked, “The experiences gained during that time with PERI makes me appreciate the importance of scaffolding design and the safety it provides on the construction site.”

During their visit to Krakow the students attended a presentation, “How Roundabouts in Europe Compare to Roundabouts in America” given by Dr. Marian Tracz from Cracow University of Technology. The professor talked about the International Roundabout Conference he attended in Carmel, Indiana and was impressed with Duncanson’s knowledge about Carmel’s roundabout construction.

Duncanson attended Purdue University’s eleven-week Summer Undergraduate Research Fellowship (SURF) program which provided him an opportunity to become familiar with the roundabouts under discussion.

Duncanson said, “Dr. Tracz referred to me often for my comments during his presentation on roundabouts because I had first-hand experience of Carmel’s roundabouts having toured them last summer.” Getting the opportunity to participate like that was one of the highlights of his trip. “And that was fun,” Duncanson admitted with a grin.

The second of two cable bridge construction sites students visited in Bydgoszcz, Poland. The city is situated between the rivers Odra and Vistula, on the edge of the Bydgoszcz Forests. The two rivers feed canals running throughout the old town of the city. These canals and waterways showcase the most beautiful pedestrian bridges leading some to call sections of the city ‘Bydgoszcz Venice’.
Dr. Alamo named Fellow of the American Physical Society

–By FAMU-FSU College of Engineering News

Congratulations to Rufina Alamo, professor in chemical and biomedical engineering at the FAMU-FSU College of Engineering, on being elected a Fellow of the American Physical Society.

Alan Chodos, Associate Executive Officer of the American Physics Society, made the official announcement to Alamo: “I have the honor of informing you that the Council of the American Physical Society at its November 2012 meeting acted favorably on your nomination for Fellowship in the Society upon the recommendation of the Division of Polymer Physics. As you may know, election to Fellowship in the American Physical Society is limited to no more than one half of one percent of the membership. Election to APS Fellowship is recognition by your peers of your outstanding contributions to physics.”

Alamo’s Fellowship Certificate citation will read as follows:

“For her use of well-characterized materials and performance of carefully designed experiments to address structure-property relationships in polyolefins.”

Alamo works with polyolefins that are simple large plastic molecules able to adopt a large variety of shapes. Un-branched, short-branched, long-branched, star-like, pom-pom like, comb-like and other types of polyolefins are feasible via relatively easy and inexpensive synthetic paths.

Used almost everywhere, the short and long-branched polyolefins cover about 80% of the total worldwide production of plastics. The two major types, polyethylene (PE) and polypropylene (PP) are often considered first for use in any application because of their excellent cost/performance value such as low density, easy recyclability, and processability.

Polyolefins are easy to fabricate into useful products (film wraps, green houses, carpeting, automobile parts, hospital gowns and hoses…) and have increasing design capability. Many, many products are made from them with targeted product applications matched to polyolefin branching and structure. For example, with few or no branches, the long molecules fold many times and pack in symmetric strong arrays with uses often geared to special applications, such as bullet-proof protective wear and orthopedic implants. Conversely, highly branched polyolefins cannot easily pack in symmetric arrays because the branches are in the way. The result is a softer, more elastic material such as film wraps, plastic bags, clothing and more. Alamo studies how these molecules fold to understand the performance of polyolefin materials.

Alamo’s name and Fellowship citation will join others also elected to Fellowship this year in the March 2013 publication issue of APS News. It will appear as well on the Fellowship Page of the America Physics Society home page.

Alamo will be presented with her fellowship certificate at the annual meeting of the Division of Polymer Physics, her APS fellowship-nominating unit.

Bruce Locke, professor in chemical and biomedical engineering and previous chair of the department, upon learning of Alamo’s nomination announced to the College at-large, “Please join me in congratulating Dr. Alamo for her Fellowship in the American Physical Society. Great work!”
Civil’s Sungmoon Jung Receives NSF Career Award

–By FAMU-FSU College of Engineering News

Sungmoon Jung, an assistant professor in civil and environmental engineering, has become the newest member of the FAMU-FSU College of Engineering’s growing NSF Career awardees. His well-deserved NSF Career Award is based on “Offshore Wind Turbines Subjected to Hurricanes: Simulation of Wind-Wave-Structure Interaction and Aerodynamic Load Reduction”.

Sungmoon Jung joined the FAMU-FSU College of Engineering fall 2008 as an assistant professor in civil and environmental engineering bringing with him his interest in wind as a renewable energy resource.

According to Jung there is a growing demand for renewable energy providing researchers many exciting opportunities of study. Jung says, "Offshore wind farms have enormous energy potential, yet one of the major concerns is vulnerability of wind turbines in hurricanes.”

On his research lab website, Wind Engineering and Renewable Energy, Jung states, “Our group aims to conduct cutting-edge research in renewable energy, focusing on wind energy. Another key research area of the group is wind engineering. Extreme loading caused by hurricanes requires stronger structures. Wind loading also causes vibration problems that need to be solved.”

“The results of this project,” Jung continues, “can reduce risk to wind turbine structures in hurricanes and can contribute to wider adoption of the offshore wind energy. I am very excited and honored to tackle this important problem here at the FAMU-FSU College of Engineering.”

Through his website Jung invites students to check out the many interesting research opportunities available in his lab depending on funding availability. And “self-sponsored students with external fellowships are also welcomed to join our laboratory. They would have much greater freedom to explore any topics of their choice,” advises Jung. Contact Dr. Jung for more details, sjung@eng.fsu.edu.
ME Professor Receives the Gary Anderson Early Achievement Award

–By FAMU-FSU College of Engineering News

Dr. William Oates, an assistant professor in mechanical engineering, has been selected to receive the 2012 ASME Gary Anderson Early Achievement Award by the Adaptive Structures and Materials Systems Technical Committee of the ASME Aerospace Division. This award recognizes Oates for his notable contribution to the field of Adaptive Structures and Material Systems and is awarded to young researchers in their ascendancy, whose work has already had an impact in their field within Adaptive Structures and Material Systems.

The ASME Gary Anderson Early Achievement Award recipients are selected based on nomination letters and the award this year is a $1000 honorarium and standard certificate. Oates award was announced officially at the March 2012 SPIE Smart Structures/NDE conference in San Diego and was presented to Oates at a formal banquet at the ASME SMASIS conference in the fall in Stone Mountain, GA.

Oates joined the FAMU-FSU College of Engineering faculty in 2006 after receiving his doctoral degree from the Georgia Institute of Technology. In 2009, he won national honor for his research on smart materials when he was selected by the Defense Advanced Research Projects Agency (DARPA) as one of 33 rising stars at 24 U.S. universities that participated in the agency’s Young Faculty Award program for that year. In 2011 he received a NSF CAREER Award to continue research on the photomechanics of adaptive polymer materials and structures with applications in robotics, medicine, and aerospace.

“This is a great honor that recognizes Billy’s work,” said Emmanuel Collins, professor and chair in mechanical engineering, to colleagues and College administration in response to the announcement about Oates latest achievement.

Billy Oates pictured here in his Active Structures and Microsystems Laboratory (ASML).
College of Engineering celebrates 30th anniversary with a toast to talent, teaching and economic development

—By Elizabeth Bettendorf, FSU News

When it first opened its doors in 1982, the Florida A&M University-Florida State University College of Engineering boasted only a few dozen bright students.

That founding class — made up of just 35 aspiring engineers — attended classes in borrowed space on both campuses in Tallahassee. Far from its early classroom-sharing days, the college will now celebrate its 30th anniversary in its sleekly modern state-of-the-art facilities in Innovation Park.

Special events are planned throughout the 2012-2013 academic year, including a cake-cutting party held on Nov. 15, and the college’s Web page now features an impressive timeline and cheery, celebratory video greetings of everyone from the former dean to the campus bus driver.

“We are grateful to all those who contributed over the past 30 years to get the college to where we are now and look forward to taking full advantage of our new slogan, ‘Two Universities, One College, Twice the Opportunities.’”

—Yaw D. Yeboah

Dean Yaw Yeboah speaks to faculty, staff, students and guests at FAMU-FSU College of Engineering’s 30th Anniversary kick-off breakfast.

“We are grateful to all those who contributed over the past 30 years to get the college to where we are now and look forward to taking full advantage of our new slogan, ‘Two Universities, One College, Twice the Opportunities,’” said Dean Yaw D. Yeboah. “As we move forward to produce top-quality, innovative and entrepreneurial graduates and nationally ranked programs, we also aim to become a force for economic development locally and in the state.”

Over three decades, the college has gained a reputation for its first-rate faculty and solid academics. It serves more than 2,500 graduate and undergraduate students, and its offerings have expanded to include a world-class academic program.

The college offers a cornucopia of bachelor’s, master’s and doctoral programs that span seven disciplines. All undergraduate programs are fully accredited by the Engineering Accreditation Commission of ABET, Inc.

In July, the jointly operated college welcomed Yeboah as its fifth dean. A leader with an awe-inspiring life story, Dean Yeboah holds a doctorate in chemical engineering from the Massachusetts Institute of Technology.

To learn more about the 30th Anniversary celebration and the history of the College of Engineering, visit http://www.eng.fsu.edu/about/30th/.
Engineering Scholarship Awards

Students of the FAMU-FSU College of Engineering greatly benefit from the scholarship support received from our collaborative partners. Scholarship funds allow students to continue their education with assistance in paying for tuition, room and board, books, travel expenses, etc. Scholarship support may be based on need, merit or minority designation. For more information about scholarships please contact Braketta Ritzenthaler, Assistant Dean for Industry and Research Services at (850) 410-6214 or braketta@eng.fsu.edu.

Each scholarship applicant submits a resume and a personal statement with their application for review. Here is a list of some of our scholarship recipients:

- **Hunter Biggs** (Chemical and Biomedical Eng.) and **Ryan McDugle** (Civil and Environmental Eng.): Pre-Engineering Award
- **Tyree Crosby** (Civil and Environmental Eng.): Byron G. and Mildred Sprangler Scholarship
- **David Jolicoeur** (Mechanical Eng.): Faculty Staff Endowed Scholarship
- **Ruben Nelson** (Electrical and Computer Eng.): Frank Kenechtel Endowed Scholarship
- **Ashley Daniels** (Industrial and Manufacturing Eng.): Boeing Scholarship
- **Daniela Peguero** (Civil and Environmental Eng.): Thomas Rodriguez Scholarship
- **Micah McCray-Dennis** (Industrial and Manufacturing Eng.): Corning Fellowship
- **Soraya Conserve** (Civil and Environmental Eng.): Atkins Minority Scholarship