Kunihiko "Sam" Taira, Assistant Professor of Mechanical Engineering, has been recognized as one of 47 recipients of the Young Investigator Award from the US Office of Naval Research (ONR). The Young Investigator Program identifies and supports academic scientists and engineers who show exceptional promise for doing creative research. The objectives of this program are to attract outstanding faculty members of Institutions of Higher Education to the Department of the Navy’s research program, to support their research, and to encourage their teaching and research careers.

Dr. Taira has been recognized for his work with the active flow control and global instability analysis. His research group focuses on fundamental research on improving aerodynamic performance of air vehicles by deepening the understanding of complex unsteady aerodynamics and examining how to modify the fluid flows by using active control techniques. This award is accompanied by a three-year $510,000 research grant to support the awardee’s research program.

In this brochure we highlight TEN of our most productive research endeavors. Our faculty are truly at the forefront in addressing the Grand Challenges of Engineering!
Kunihiko "Sam" Taira, Assistant Professor of Mechanical Engineering, has been recognized as one of 47 recipients of the Young Investigator Award from the US Office of Naval Research (ONR). The Young Investigator Program identifies and supports academic scientists and engineers who show exceptional promise for doing creative research. The objectives of this program are to attract outstanding faculty members of Institutions of Higher Education to the Department of the Navy's research program, to support their research, and to encourage their teaching and research careers.

Dr. Taira has been recognized for his work with the active flow control and global instability analysis. His research group focuses on fundamental research on improving aerodynamic performance of air vehicles by deepening the understanding of complex unsteady aerodynamics and examining how to modify the fluid flows by using active control techniques. This award is accompanied by a three-year $510,000 research grant to support the awardee's research program.

200,000 square feet of state-of-the-art facilities at the Innovation Park campus plus other high-tech laboratories

Over $125 million of research is being conducted under single and multyear contracts

For more information, please contact:
FAMU-FSU College of Engineering
Office of the Associate Dean for External Relations and Marketing
2525 Pottsdamer Street, Tallahassee, FL 32310-6046
850.410.6161 | www.eng.famu.fsu.edu

About the College

Founded in 1982, the FAMU-FSU College of Engineering was established as a joint college serving Florida Agricultural and Mechanical University (FAMU) and Florida State University (FSU). The College offers baccalaureate, master's, and doctoral degrees in a variety of engineering disciplines.

The mission of the College is to provide an innovative academic program of excellence at both the undergraduate and graduate levels and to support and graduate a greater number of minorities and women in professional engineering, teaching, and research careers and to convey the values and principles of engineering to the public. The College also educates students and supports the faculty in the advancement of research leading to the acquisition of knowledge in the broad field of engineering.

In this brochure we highlight TEN of our most productive research endeavors. Our faculty are truly at the forefront in addressing the Grand Challenges of Engineering!
Kunihiko “Sam” Taira, Assistant Professor of Mechanical Engineering, has been recognized as one of 47 recipients of the Young Investigator Award from the US Office of Naval Research (ONR). The Young Investigator Program identifies and supports academic scientists and engineers who show exceptional promise for doing creative research. The objectives of this program are to attract outstanding faculty members of Institutions of Higher Education to the Department of the Navy’s research program, to support their research, and to encourage their teaching and research careers.

Dr. Taira has been recognized for his work with the active flow control and global instability analysis. His research group focuses on fundamental research on improving aerodynamic performance of air vehicles by deepening the understanding of complex unsteady aerodynamics and examining how to modify the fluid flows by using active control techniques. This award is accompanied by a three-year $510,000 research grant to support the awardee’s research program.

The mission of the College is to provide an innovative academic program of excellence at both the undergraduate and graduate levels and to enroll and graduate a greater number of students and expand opportunities in engineering, teaching and research and to foster an atmosphere that will attract and retain the nation’s top students to its programs. The College also serves the state’s need for a diverse pool of highly qualified women and minorities in business and industry through its graduate programs to meet the state’s education and research needs.

For more information, please contact:
FAMU-FSU College of Engineering
Office of the Associate Dean for External Relations and Marketing
2200 Pottsdamer Street, Tallahassee, FL 32310-6000
850.410.6161 | www.eng.famu.fsu.edu

For more information, please contact:
FAMU-FSU College of Engineering
Office of the Associate Dean for External Relations and Marketing
2200 Pottsdamer Street, Tallahassee, FL 32310-6000
850.410.6161 | www.eng.famu.fsu.edu

The College’s leading research facilities and collaborating faculty come together to create an environment to study solutions to world challenges.

Florida Agricultural and Mechanical University–Florida State University College of Engineering

200,000 square feet of state-of-the-art facilities at the Innovation Park campus plus other high-tech laboratories

Over $125 million of research is being conducted under single and multiyear contracts

For more information, please contact:
FAMU-FSU College of Engineering
Office of the Associate Dean for External Relations and Marketing
2200 Pottsdamer Street, Tallahassee, FL 32310-6000
850.410.6161 | www.eng.famu.fsu.edu

Undergraduate research opportunities for students

The Power of Ten

In this brochure we highlight TEN of our most productive research endeavors. Our faculty are truly at the forefront in addressing the Grand Challenges of Engineering!

RESEARCH FACULTY

KUNIHICO TAIARA, ONR 2016 YOUNG INVESTIGATOR AWARD

Faculty members at the Florida Agricultural and Mechanical University–Florida State University (FAMU-FSU) College of Engineering have become nationally and internationally renowned for their research efforts in many engineering areas such as:

- Energy production and sustainability
- Sustainable transport and infrastructure systems
- Advanced power and security systems
- Communication infrastructure
- Development and operation of aerospace, missile and underwater vehicles
- Robotics and control systems
- Nanomaterials and materials science research

Faculty have stepped up to the challenges of conducting basic and applied research and have used their intellectual property to develop technologies for today, tomorrow and beyond.
Kunihiko “Sam” Taira, Assistant Professor of Mechanical Engineering, has been recognized as one of 47 recipients of the Young Investigator Award from the US Office of Naval Research (ONR). The Young Investigator Program identifies and supports academic scientists and engineers who show exceptional promise for doing creative research. The objectives of this program are to attract outstanding faculty members of Institutions of Higher Education to the Department of the Navy’s research program, to support their research, and to encourage their teaching and research careers.

Dr. Taira has been recognized for his work with the active flow control and global instability analysis. His research group focuses on fundamental research on improving aerodynamic performance of air vehicles by deepening the understanding of complex unsteady aerodynamics and examining how to modify the fluid flows by using active control techniques. This award is accompanied by a three-year $510,000 research grant to support the awardee’s research program.

In this brochure we highlight TEN of our most productive research endeavors. Our faculty are truly at the forefront in addressing the Grand Challenges of Engineering!
AERO-PROPULSION, MECHATRONICS AND ENERGY CENTER

The Florida Center for Advanced Power Systems (CAPS) is a multidisciplinary collaboration organized to build a national center for research, education, and training in the areas of power electronics, drives, power systems, transportation, and energy efficiency. CAPS is a Joint Venture of the Florida State University, Georgia Institute of Technology, and North Carolina State University. The Florida Center for Advanced Power Systems (CAPS) has devoted significant resources and attention to the design, development, and testing of power electronic systems that have been employed in transportation and renewable energy applications. The Center's state-of-the-art computational and experimental facilities have been developed to enhance the mobility of electric powered vehicles. Some of this research has been developed to enhance the mobility of electric powered vehicles. Some of this research has been conducted using state-of-the-art robotics equipment. The Florida Center for Advanced Power Systems (CAPS) is to use state-of-the-art technology to cooperate agents, design of biologically inspired multi-terrain identification, object recognition, task allocation for intelligent systems, control, and robotics. The Florida Center for Advanced Power Systems (CAPS) aims to achieve national prominence in the area of automated systems and robotics for applications in industry and government. The Florida Center for Advanced Power Systems (CAPS) resources and faculty capabilities are deemed unique in the United States and are being extensively used by industry, academia, and government. The Florida Center for Advanced Power Systems (CAPS) has developed a number of educational programs and curricula that focus on emerging advanced composites, nanomaterials, multifunctional materials and devices (hpMI) focuses on emerging advanced composites, nanomaterials, multifunctional materials and devices.
and autonomous motion control capabilities. The Energy Group is known for its focus on the transition to a sustainable energy future through transformative research and development. The Mechatronics Group is recognized for its expertise in mechatronic systems and control, robotics, and renewable energy applications. The Center for Advanced Power Systems (CAPS) possesses state-of-the-art laboratories and facilities that simulate the operational aspects of electric power generation, transmission, and distribution. The Physical Systems Modeling and Analysis (PSMA) and Advanced Power Electronics (APE) competencies are in the areas of power systems modeling, control, and analysis. The vision of the center for Intelligent Systems, Control, and Robotics (CISCOR) is to achieve national prominence in the area of automated systems by developing practical solutions to problems in systems, control, and robotics for applications in industry and government. The Florida Center for Advanced Aero Propulsion (FCAAP) is focused on emerging advanced composites, nanomanufacturing and advanced manufacturing. HPMI has comprehensive research resources including field testing, material characterization; 2) multifunctional nanocomposites and high-performance materials; 3) high-performance composites, advanced manufacturing, and resin flow simulation and optimization; 4) scale-up and demonstration; and 5) short take-off and vertical landing facility – focus is to improve current testing and evaluation platforms. The research at the Florida Center for Advanced Aero Propulsion (FCAAP) is focused on the development of innovative solutions for consumers and other stakeholders. The FCAAP will realize its vision through breakthroughs in fundamental research, development of experimental prototypes and demonstrations.