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ABSTRACT 

In this paper we introduce a canonical minimised adder graph (CMAG) representation that can easily be gen- 
erated with a computer. Vie show that this representation can be used to  efficiently develop code generation for 
MAG graphs. Several code optimizations methods are developed in the computation of the non-output funda- 
mental sum (NOFS) computation, which allows the computation of all graphs up to  cost-5 be accomplished in 
a reasonable timeframe. 

Keywords: minimised adder graph (MAG), n-dimensional Reduced Adder Graph (RAG-n), Multiple Constant 
Multiplier (MCM) 

1. INTRODUCTION 

There are only a few applications (e.g., adaptive filters) where a general programmable filter architecture is 
needed. In many applications, the filters are linear time-invariant (LTI) systen~s and the coefficients do not 
change over time. In this case, the hardware effort can essentially be reduced by exploiting the constant coefficient 
multiplier coding and adder (trees) used to  implement the FIR filter multiplier block.4 

2. GRAPH REPRESENTATION 

Most single coefficient graphs can be described by three basic graph types: additive, multiplicative, and leapfrog 
graphs, as shown in Fig. 1. Data flow is from left t o  right. Edges have a power-of-two weight, while the vertices 
represent adders. The costs of the graphs are measured by the number of adders in use. For additive graphs, the 
cost is computed as the sum of the subgraph costs plus one; the multiplicative graphs have a total cost of the 
sum of the two subgraphs. The leapfrog graph requires a t  least one cost-1 graph (the first subgraph on the left), 
and for leapfrog-L we have at least a cost of L - 1, i.e., there exists one leapfrog-2 graph of cost-3. All graphs 
up to  cost-3 use only these three types. 

In cost-4 we have only three graphs (i.e., 2: G,  30) according to the nuinbering by Dempster and Macleodl 
(see the Appendix) that  do not exactly match this pattern. Cost-4 graphs 2 and 6 may be described as "parallel" 
leapfrog graphs, i.e., graphs that have more than 2 branches starting at the same vertex, while graph 30 can be 
called a 9 o'clock graph. A 9 o'clock graph has a t  least 3 adders plus a cost-1 subgraph first, i.e., the cheapest 9 
o'clock graph is a cost-4 graph. Table 1 shows a detailed classification of all graphs according to these classes. 

The non-output fundamental sum (NOFS) now is the sum of all (except the output) odd fundamentals. 
Fundamentals are the vertex adder output values divided by a power-of-2 factor such that the odd part remains. 
Notice that additive graphs are commutative, i.e., NOFS(Ck + C,) = NOFS(C, + Ck) while this is not true 
for multiplicative graphs, i.e., NOFS(Ck x C,) # NOFS(C, x Ck).  Note also that  the subgraph classification 
is in general not unique. For instance, let us assume that  a cost-4 graph is built as a product of four cost-1's. 
This graph can be considered as a C2 x C2, C1 x C3 or C3 x C1 graph. In Table 1 we used the classification that 
starts with the largest known subgraph, in this example C3 x C1. 
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Figure 1. h'Iost frequent used graph classes. (a) Additive. (b) h4ultiplicative. ( c )  leapfrog-2, (d) leapfrog-3, and (e) 
leapfrog-$. 

Table 1. Type of graphs found in cost-1 to 5 MA4G. (Add = additive graph; Mu1 = multiplicative graph; If = leapfrog 

graph). 

3. CANONICAL GRAPH REPRESENTATION 

As we have seen in the previous section, the number of graphs grows more fast than factorial with the cost of 
the graphs. I11 the past, for each subgraph a different subroutine needed to be used to compute, for instance, 
the NOFS. A canonical representation is needed to allow a computer program to use a 'Lworklist" of all graphs 
to be considered. Such a canoilical representation can be built using the following rules: 

1) Enumerate and sort in linear order all C + 1 vertices Vk, k E [O, C] of a cost C graph. 

2) Allow for all vertices Vk; k E [I! C] two input edges (ekl,  ek2) and without loss of generality set (ekl < ekz), 
e.g., ( 2 , l )  --+ (1: 2). Vo has fan-in zero. 

3) All input edges start from the left, i.e., ekl, ek2 < k and each vertex has at least a fan-out of 1. 

Proc. of SPlE Vol. 6979 69790P-2 



4) Remove all graphs from the list that are simple permutations of the vertices Vk, k E 11, C - 11; use the 
graph that starts with the largest known subgraph. 

The first three rules allow us to build all graphs up to cost-3 in a unique way. Consider, however, a cost-4 
graph with a C2 + C1 = C1 + C2 graph 

See cost-4 graph no. 29 in Appendix A. These two graphs are congruent and will not generate any new NOFS 
results. Switching only vertex 2 ++ 3 results in another congruent graph. 

Therefore, starting with cost-4 and higher, we also need to eliminate congruent graphs, using Step 4. Since 
the incoming and outgoing vertex cannot be switched, we need to check ( C  - I)! permutations for each cost-C 
graph. 

Initially, after performing the first 3 steps for cost-4 (cost-5), 38 (295) graphs were generated, respectively. 
After Step 4 the list is reduced t o  the correct value 32 (193). Although in previous  publication^^,^ the number of 
graphs were computed in different ways (e.g., using nauty by h/IcKay), the total number of graphs are the same. 

Appendix A shows the figures of all graphs up to cost-5. The numbering of cost-1 through cost-4 graphs is 
in sync with the coding by Dempster and NIacleod.' Cost-5 graphs are sorted in a weighted fashion, i.e., the 
graph with the most leading zeros is listed first. The "worklist" of the CMAG coding online5 is sorted by the 
computation time. 

4. APPLICATION OF NOFS COMPUTATION 

One important part of the original RAG-n algorithm is the selection of the NOFs when no more cost-1 or cost-2 
coefficients can be added t o  synthesize the target coefficients. In this case, the algorithm with the smallest 
coefficient with the minimum NOFS must be added. This is motivated by the fact that additional small NOFs 
will generate more additional coefficients than a larger NOF at no cost. For example, assume that the coefficient 
45 needs to  be added and that an NOF value has to  be decided upon. The NOF LUT lists all possible NOF 
values as 3, 5, 9, or 15. It can now be argued that if 3 is selected, more coefficients are generated than if any 
other NOF is used, since 3: 6: 12, 24, 48, . . . can be generated without additional effort from NOF 3. Other 
NOF values, such as 15, can generate 15, 30, 45,. . . etc., so the choices towards producing other coefficients a t  
no cost are significantly restricted. 

4.1. NOFS Computation Optimizations 

The computation time for all cost-4 graphs is reasonable even for 19-bit data as shown in Fig. 2(a). However, 
the computation time for the cost-5 graphs may be a concern. For 19-bit (plus a guard bit) signed data each 
edge has about 40 different values k2k ,  k E [O, 201 and for a cost-5 graph, then, 401° = 10485760 x lo9 different 
graphs with different edge weights are possible. Assuming that a fast computer/hardware can do 1 ~ = 1 0 ~  checks 
per second, 2912 hours would still be required for each graph. Since we are only interested in the graphs with 
the minimum NOFS we can therefore implement (in the CMAG code generation) the following simplifications. 

1) The odd fundamental of the graph does not change if we move a power-of-2 factor across a vertex. In case 
the fan-out is one, we select the outer edge as factor 1 since this saves the most run time, see Fig. 3(a).  
CSD graphs are optimal in this regard, and we save a factor 40 of graphs for each edge to which we can 
apply this simplification. 

2) If we have a cost-1 subgraph that is followed by a vertex with two or more outputs, the optimization from 
1 does not work. However, we can choose to  have one of our input edges be a factor &l, see Fig. 3(b) For 
a 19-bit table, the savings is, instead of all 2 x 361 = 722 cost-1 subgraphs, only 74 iterations needing to 
be computed, resulting in a factor of 9.7 run time improvement. 
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Figure 2. Computation time for all (a) 32 cost-4 (b) 193 cost-5 graphs. 

3) When evaluating subsequent graphs we can stop the computation if an odd fundamental occurs that is 
larger than the maximum NOFS over all coefficients. While a direct factor for improvement cannot be 
computed, it was observed that this is especially helpful for the graphs that could not be sped up with 
method 1+2 described above, e.g., in the leapfrog graphs. 

Using these three improvements makes it possible to compute all 193 cost-5 graphs in a reasonable time. We 
used a $120K Sun-Fire880 server with 8 processors and 32 GB main memory in the first author's ASIC design 
lab to run the programs. Compared with a typical PC, a single processor program runs about twice as fast on the 
Sun compared with a 2 GHz PC. The code (20103 lines of C-code) for all cost-1 to cost-5 graphs was produced 
in less than a second. The compilation without optimization took 13 seconds, while with maximum optimization 
(-x 04 for Sun Studio 11 C++ Compiler Sun 5.8 cc) the 20K lines of C-code required 679 seconds to compile. 
The 04 code runs about a factor of 10 times faster with maximum optimization than without. Figure 2(b) shows 
the computation time for the cost-5 graphs only. Total CPU time was 885 hours for all processors together, or 
110 hours (4.5 days) for our 8 processor machine. The most demanding graph was the leapfrog-4 graph, see Fig. 
l (e ) ,  

which took up 19% of the computation time alone! The last 8 graphs took up to 71% of the run time; in other 
words, 95% of the graphs from the total of 193 graphs required only 28% of the total CPU time. However, 
removing the expensive graphs from the "work list" was not a good idea, since the leapfrog-4 could improve the 
NOFS of 49106 graphs for 19-bit coefficients alone. 

Figure 3. NOFS simplifications (a) for fan-out one. (b) Cost-1 subgraph followed by a fan-out larger than one. 
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After our speed-up trick 3 from above, it is recommended that we try to lower the NOFS before we run the 
expensive graphs; we have used the run-time for lower bitwidth, i.e., 14- and 16-bits to  sort the graphs in such a 
way that the more expensive graphs are computed last. We could take advantage of the lower NOFS computed 
in the previous graphs. However, when we wished to  split up the jobs among the 8 processors, we computed the 
NOFS parallel and had to merge the results for the processors. 

5. SUMMARY 

We have introduced the canonical ininiinised adder graph (ChIAG) representation that allows an automatic 
colnputation of MAGS with a computer. C-code descriptioil (about 20K lines of C-code) of all 235 cost-1 to 
cost-5 graphs are generated within a second. The CMAG was then applied to NOFS computations, and within a 
reasonable time (4.5 days) all graphs in 19-bit precision were computed. We have described several optimization 
methods that enable a faster computation of the NOFS tables. 
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6. APPENDIX A: COST 1-5 MAG FIGURES 
All cost-1 to 3 MAG graphs: 

Add: C1+CO Mul: Cl'C1 

Inn- 

~0.0) (0.1) (0.2) 

Mul: C;C2 
(0.0) (0.1) (1.2) 

Mul: C2'C1 

I 

;I/& i 
(0.0) (0.1) (2.2) 

Add: Cl+C1 

Vertex no. Venex no. Venex no. 

0 1 2 3  
Venex no. 
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All 32 Cost-4 MAG Graphs: 

Add: C3+CO para2(1 .-I ,0.0.0) c4g2 112(2.0.0.0.0) Mul: C3'CI Add: C3+CO 
--I--- 

para2(1.0.0.-1.0) c4g6 113(1,0.0.0.0.0,0) Mul: C3'Cl Add: C3+CO lf2(1.0.0,0.1) 

0 0 
Z Z 

(O.OXO.lX2.211.31 

Mul: CZ'C2 M ul: C3'C 1 Add: C3+CO lf2(1.0.1.0,0) lf2(2.0,0.0.0) 
---I-- 

Mul: C3'Cl Add: C3+CO Mul: Cl'C3 Mul: Cl'C3 Mui: C3'CI 

2 
I1 
0 

Z 
0 
Z 

0 
Z Z 

(O.OXl.lX1.2X0.3) 

Add: C3+CO Mul: CI'C3 Mul: CTC2 Mul: CTC1 Add: C3+CO 

1f2(1,1.0.0.0) Mul: C3'CI Add: C2+C1 Add: C2+C1 clock(1.0. ... 0) c4g30 

- - 

lk2(1,0,0,1,0) Mul:Cl'C3 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 
-, , Vertex no. Vertex no. Vertex no. 

0 1 2 3 4  0 1 2 3 4  
Vertex no. Vertex no. 
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First Come the Cost-5 Multiplier Graphs 

Mul. C4'Cl Mul: C4'Cl Mul: C4'Cl Mul: C4'Cl Mul: C3*C2 
I---- 

Mul: C4'Cl Mul: C4'Cl Mul: C4'Cl Mul: C4'Cl Mul: C4-C1 
I---- 

Mul: C3'C2 Mul: C4'Cl Mul: C4'Cl Mul: C4'Cl Mul: C4'Cl 

Mul: C4'Cl 

I 
Mul: CYC2 Mul: C4'CI Mul: C4'Cl Mul: C4'Cl 

Z 

10.0i10.1112.2~103l1~.4l 

Mul: C4'Cl Mul: C T C 3  Mul: CTC3 Mul: C2'C3 

Mul: C3'C2 Mul: C4'Cl Mul: C4'CI Mul: C4'Cl Mul: C4'Cl 

0 
Z 

Mul: CI'C4 

0 
Z 

Mul: C4'CI 

Mul: C T C 2  Mul: C4'CI Mul: CI'C4 
I 

Mul: Cl'C4 

0 
Z 

10.01I1.11I1.1l12.3111.1~ 

Mul: Cl'C4 Mul: Cl'C4 Mul: Cl'C4 Mul: C4'Cl 

0 
Z 

10.0111.11I1 2111.3111.41 

0 1 2 3 4  
Vertex no. 

0 1 2 3 4  
Vertex no 

0 1 2 3 4  
Vertex no. 

0 1 2 3 4  
Vertex no 

0 1 2 3 4  
Vertex no 
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Cost-5 Multiplier Graphs icor1t.j 

Mul: Cl'C4 Mul: Cl'C4 Mul: C4'Cl Mul: CI'C4 

Mul: Cl'C4 Mul: CI'C4 Mul: C4'Cl Mul: Cl'C4 

Mul: C3'CZ Mul: C4'Cl Mul: C4'Cl Mul: Cl'C4 

o - r. m 
7 E - - 

I 1  I 1  11 I 1  
0 
Z 

0 
Z 

0 
z 

0 
Z 

Mul: CI'C4 Mul: C4'CI Mul: C?C3 Mul: CI'C4 

1 1- 

Mul: CZ'C3 Mul: C4'Cl Mul: Cl'C4 Mul: CZ'C3 

IlIl 

1 -  

Mul: C4'Cl 

Mul: Cl'C4 

m : 
I1 
0 
Z 

Mul: Cl'C4 

m z 
I1 
0 
Z 

Mul: Cl'C4 

0 
z 

10.0111.1~12.211~.3~12.d1 

Mul: CZ'C3 

Mul: C3'CZ 
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Second-to-Come ADDER Graphs 

Add: C4+CO Add. C4+CO Add: C3+C1 Add: C4+CO Add, C4+CO 

Add: C4+CO Add: C2+C2 Add: C2+C2 Add: C4+CO Add: C3+CI 

Add: C4+CO Add: C4+CO Add: C4+CO Add: C4+CO Add: C4+CO 
IIII 

Add: C3+C1 Add: C4+CO Add: C4+CO Add: C4+CO Add: C4+CO 
I - -  

Add: C3+C1 Add: C4+CO Add: C4+CO Add: C4+CO Add: C4+CO 

Add: C2+C2 Add: C3+C1 Add: C4+CO Add: C4+CO Add: C4+CO 
I 

Add: C4+CO Add: C4+CO Add: C3+C1 Add: C4+CO Add: C4+CO 

0 
Z Z Z Z Z 

Add: C4iCO Add: C4+CO Add: C3+C1 Add: C4+CO Add: C4+CO 

0 1 2 3 4  0 1 2 3 4  0 1 2 3 4  0 1 2 3 4  0 1 2 3 4  
vertex no. Vertex no. Vertex no. Vertex no. Vertex no. 

Add: C4+CO Add: C4+CO 

I- 
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0 1 2 3 4  0 1 2 3 4  0 1 2 3 4  
Vertex no. Vertex no. vertex no. 
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Next Come the OTHER Known Graphs 

Last-to-Come Are the Cost-5 NAMELESS G r a ~ h s  

TBA TBA 

TBA 

2 
I1 
0 
Z 

Z 

TBA 

Z 

10,01(0,01~~,211~,3112,41 

TBA 

TBA 

TBA 

0 

10.0~10.1110.2113.311I.~1 

TBA 
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Cost-5 NAMELESS Graphs (cont.) 

TEA TEA 
II 

TEA TEA 

TEA TEA 

TEA 

TEA 

0 
Z 

10.0~10.11~.P110.31111~l 

TEA 

TEA TEA 

TEA TEA 

TEA TEA 

TEA 

m 
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