
Independent Component
Analyses, Wavelets, Unsupervised
Nano-Biomimetic Sensors, and
Neural Networks V

Harold H. Szu
Jack Agee
Editors

10-1 3 April 2007
Orlando, Florida, USA

Volume 6576
The International Society
for Optical Engineering

SESSION 6 NANOENGINEERING AWARDS

65760K Nanorobot assembly of carbon nanotubes for mid-IR sensor (Invited Paper) (6576-341
N. Xi, J. Zhang, Michigan State Univ. (USA); H. Szu, Office of Naval Research (USA); G. Li,
Univ. of Pittsburgh (USA)

NANOSCIENCE AND NANOTECHNOLOGY

65760L Future directions of nanometrology and nanomanufacturing (Invited Paper) [6576-461
K. W. Lyons, National Institute of Standards and Technology (USA)

SESSION 7 WELLNESS ENGINEERING AWARD

657600 Wellness engineering for better quality of life of aging baby boomer (Invited Paper)
[6576-351
H. Szu, Office of Naval Research (USA)

SESSION 8 REAL WORLD DATA ANALYSIS

65760P A plea for adaptive data analysis (Invited Paper) 16576-431
N. E. Huang, National Central Univ. (Taiwan)

65760Q Exploring pavement crack evaluation with bidimensional empirical mode decomposition
[6576-131
A. Ayenu-Prah, N. Attoh-Okine, Univ. of Delaware (USA)

65760R Noninvasive methodology for wellness baseline profiling (Invited Paper) [6576-331
D. W.-Y. Chung, Y.-S. Tsai, S.-G. Miaou, W. H. Chang, Y.-J. Chang, S.-C. Chen, Y. Y. Hong,
C. S. Chyang, Chung Yuan Christian Univ. (Taiwan); Q.-S. Chang, H.-Y. Hsu, J. Hsu,
W.-C. Yao, M.-S. Hsu, Ming-Shen Hospitals at Long Tan (Taiwan); M.-C. Chen, S.-C. Lee,
National Taiwan Univ. Hospital, NTU (Taiwan); C. Hsu, L. Miao, K. Byrd, M. F. Choikha,
X.-B. Gu, P. C. Wang, Howard Univ. (USA); H. Szu, Howard Univ. (USA) and Office of Naval
Research (USA)

657603 Contactless monitoring of electric fields to improve security and safety (Invited Paper)
[6576-3 1]
H. Sidman, R. W. VanDine, DKL International (USA); T. Wong, NanoSensors, Inc. (USA)

SESSION 9 AUTONOMOUS UAV AND SENSORS

65760T Smart Altera firmware for DSP with FPGAs (Invited Paper) [6576-101
U. Meyer-Baese, Florida State Univ. (USA); A. Vera, Univ. of New Mexico (USA);
A. eyer-Baese, Florida State Univ. (USA); M. Pattichis, Univ, of New Mexico (USA); R. Perry,
Florida State Univ. (USA)

6576011 FPGA wavelet processor design using language for Instruction-set architectures (LISA)
[6576-1 11
U. Meyer-Base, Florida State Univ. (USA); A. Vera, The Univ. of New Mexico (USA); S. Rao,
K. Lenk, Florida State Univ. (USA); M. Pattichis, The Univ. of New Mexico (USA)

umb
Highlight

FPGA Wavelet Processor Design using Language for
Instruction-set Architectures (LISA)

Uwe Meyer-Basea, Alonzo verab, Suhasini Raoa, Karl Lenka, and Marios pattichisb
' .

aFAMU-FSU, ECE Dept. , 2525 Pottsdamer Street, Tallahassee, FL USA-32310;
b~epartment of Electrical and Computer Engineering The University of New Mexico

Albuquerque, N M 87131

ABSTRACT

The design of an microprocessor is a long, tedious, and error-prone task consisting of typically three design phases:
architecture exploration, software design (assembler, linker, loader, profiler), architecture implementation (RTL
generation for FPGA or cell-based ASIC) and verification. The Language for instruction-set architectures (LISA)
allows to model a microprocessor not only from instruction-set but also from architecture description including
pipelining behavior that allows a design and development tool consistency over all levels of the design.

To explore the capability of the LISA processor design platform a.k.a. CoWare Processor Designer we present
in this paper three microprocessor designs that implement a 818 wavelet transform processor that is typically
used in today's FBI fingerprint compression scheme. We have designed a 3 stage pipelined 16 bit RISC processor
(NanoBlaze). Although RISC pPs are usually considered "fast" processors due to design concept like constant
instruction word size, deep pipelines and many general purpose registers, it turns out that DSP operations
consume essential processing time in a RISC processor. In a second step we have used design principles from
programmable digital signal processor (PDSP) to improve the throughput of the DWT processor. A multiply-
accumulate operation along with indirect addressing operation were the key to achieve higher throughput. A
further improvement is possible with today's FPGA technology. Today's FPGAs offer a large number of embed-
ded array multipliers and it is now feasible to design a "true" vector processor (TVP). A multiplication of two
vectors can be done in just one clock cycle with our TVP, a complete scalar product in two clock cycles. Code
profiling and Xilinx FPGA ISE synthesis results are provided that demonstrate the essential improvement that
a TVP has compared with traditional RISC or PDSP designs.

Keywords: Microprocessor, FPGA, Wavelets, LISA

1. INTRODUCTION
A microprocessor like a finite state machine (FSM) implements algorithms in a iterative way usually slower than
a direct hardware implementation of the algorithms. However, this results in a much more efficient (in terms of
area not power or speed) way of using FPGA resources than a direct hardware implementation of an algorithm.
Microprocessors (pPs) have become one of the most important I P blocks for FPGA vendors in recent years.
Altera for instance reported that they sold 10,000 systems of the NIOS microprocessor development systems in
the first 3 years alone. Xilinx reported a even larger number of "downloads" of their PicoBlaze and MicroBlaze
microprocessors.'-3

A new generation of design tools now enables software developers to take their algorithmic expressions straight
into custom VLSI hardware without using the traditional HDL design flow. These tools and associated design
methodologies are classified collectively as electronic system level (ESL) design, broadly referring to system
design and verification methodologies that begin at a higher level of abstraction than the current mainstream
hardware description language (HDL). The Language for instruction Set Architecture (LISA)4t5 for instance
allows us to specify an instruction or cycle accurate pP using a few LISA operations, then make architecture
exploration using tool generator and profiler (see Fig. 1) and finally determine speed/size/power parameter via
automatically synthesized VHDL or Verilog code. ESL tools have been around for a while, and many perceive
that these tools are predominantly focused on ASIC design flows. But with ASIC mask charges of $1.5 million in
90 nm and $4 million in 65 nm technology (according to J. Donovan Vice president at Gartner Dataquest)6 the

Independent Component Analyses, Wavelets, Unsupervised Nano-Biomimetic Sensors, and Neural Networks V, edited by
Harold H. Szu, Jack Agee, Proc. of SPlE Vol. 6576,65760U, (2007). 0277-786)<1071$18 . doi: 10.11 17112.719020

Proc. of SPlE Vol. 6576 65760U-1

Figure 1. LISA Development tools. (left) Disassembler. (center) Memory monitor and Pipeline profiles. (right) Source
fles and register window (02007 Springerg).

number of designs using FPGAs is rapidly increasing. In reality, an increasing number of ESL tool providers (e.g.
Celoxica, Codetronix, CoWare, Binachip, Impulse Accelerated, Mimosys, etc.) are focusing on programmable

Today the majority of microprocessors are employed in embedded systems. This number is not surprising be-
cause a typical home today may have a laptop/PCs with a high performance microprocessor but probably dozens
of embedded systems including electronic entertainment, household, and telecom devices, each of them equipped
with one or more embedded processors. A modern car typically has more than 50 microprocessors. Embedded
processors are most often developed by relatively small teams within short time-to-market requirements and the
processor design automation is clearly a very important issue. Once a model of a new processor is available,
existing hardware synthesis tools enable the path to custom VLSI implementation. However embedded processor
designs typically begin at a much higher abstraction level, even far beyond an instruction set architecture (ISA)
and involves several architecture exploration cycles before the optimum hardware/software partitioning is found.
It turns out, that this requires a number of tools for software development and profiling. These are normally
written manually - a major source of cost and inefficiency in embedded processor design so far. The CoWare Pro-
cessor Designer formerly known as LISAtek processor design platform (LPDP) originally developed at RWTH
Aachen4t5 and now a product of CoWare Inc. addresses these issues in a highly innovative and satisfactory
manner, see Fig. 1. The LISA language supports profiling-based stepwise refinement of processor models down

Proc. of SPlE Vol. 6576 65760U-2

to cycle-accurate and even VHDL or Verilog RTL synthesis models for fast custom VLSI implementation. In
an elegant way, it avoids model inconsiste,ncies otherwise inevitable in traditional design flows. Microprocessor
from simple FUSC to highly complex VLIW processor have been described and successfully implemented using
LPDP for FPGAs and cell-based ASICs.

CoWare provides 14 different examplelstarting-point models. This include 7 tutorial models that are used
as part of CoWare training material. Some have multiple versions that have over 10 different designs as seen in
the QSIP-X model. 4 starting point models are provided and used as skeletons for starting a new architecture.
3 different IP models for classic architectures are also included. All models are instruction accurate and most
of the models are Harvard type RISC models that are also cycle accurate. Pipeline stages vary from 3 to 5.
Provided are all types of modern processor from simple FUSC (QSIP), over PDSP like LT-DSP-32p3 to VLIW
LT-VLIW-32p4 to special processors like a 16 to 4096-point FFT processor LT-FFT-48p3.

2. LISA 18-BIT ISA RISC PROCESSOR

Xilinx offers a 32-bit MicroBlaze and a 8-bit PicoBlaze RISC processor but no processor with 16 or 24:bits
typical for DSP algorithms is offered. In fact BDTI's "Pocket Guide to Processors for DSP"1° shows that all
commercial sucessful fixed-point PDSPs use 16 or 24 bits. Let us create in the following such a 16-bit FUSC
machine with the LPDP. Since a 16-bit processor fits in the middle between Micro- and PicoBlaze we will call
our FUSC processor NanoBlazet .

For a FPGA design we can start with the 3-pipeline RISC tutorial design of the LISA 2.0 QSIP-12 model and
extend the ISA to make it more useful for the FPGA design. The BlockRAM in Xilinx FPGAs are 18 bits wide
and the instruction words should therefore also be a multiple of 18 bits. There is no benefit when instruction
words less than 18 bits are used in the BlockRAM. A more careful choice of the instruction word width needs
to be done for a cell-based ASIC design. The byte wide access in the QSIP model should be changed to a flat
18-bit for both, instructions and data. Changes should then be included in the instruction counter, memory
configuration *. cmd file, step-cycle, and the data memory instruction LDL,LDH and LDR. The following listing
shows the supported instruction of the designed NanoBlaze.

Arithemtic/Logic unit (ALU) instructions:

- ADD Three operands add operation with 2 source operands and a third destination operand.

- MUL Three operands multiply operation with 2 source operands and a third destination operand.
Only the lower 16-bit of the product are preserved.

Data move instructions:

- LDL Load the lower 8-bit of the data word with a constant value

- LDH Load the upper &bit of the data word with a constant value

- LDR Load register from memory. The memory location can be specified explicitly as constant or
indirect via a general purpose register.

- STR Store register content to memory. The memory location can be specified explicit or indirect
via a general purpose register.

Program control instructions:

- BC The condition branch checks a (loop) register for zero and not zero

- B Is an unconditional branch

- BDS The delay branch is a condition BC except that the next instruction after the BDS instruction
is also executed.

- - - - -

+ ~ i c r o - and PicoBlaze are (non-registered) trademarks from Xilinx according to Xilinx legal information at
http : //w . x i l inx . com/legal . htm but no claim is made for NanoBlaze at time of writing this paper.

Proc. of SPlE Vol. 6576 65760U-3

Table 1. (a) NanoBlaze and (b) DSP18 synthesis result for the Xilinx device XC3S1000-4ft256 according to Xilinx ISE
mapping and timing analysis.

(a)
1 Parameter I

(b)
I Parameter I NanoBlaze with 1 NanoBlaze with 1 DSP18 with I DSP18 with 1

Slices
4-input LUT

Multiplier
BlockRAMs
Total gates

Clock period

CLB-based RAM
1896
3443

1
0

32,986
13.293 ns
75.2 MHz

BlockRAM
1893
3602

1
2

162,471
13.538 ns
73.9 MHz

Slices

The basic instruction set of the DWT RISC processor consists of 9 instructions that were designed using 28
LISA operations. The instruction coding of the instruction in the "execution" pipeline stage can be found in the
l i t e r a t ~ r e . ~

4-input LUT
Multiplier

BlockRAMs
Total gates

Clock period
F m m

The NanoBlaze processor can now be synthesized and implemented in an FPGA. The synthesis results are
shown in Table 1 for both CLB- and BlockRAM-based memory.

CLB-based RAM
3145

If we now use the RISC processor to implement a length-8 DWT processor as shown in Fig. 2, we need two
length-8 filter g [n] and h[n] and for 'each output sample pair 16 multiply and 14 add operations are necessary.
For 100 sample with a output downsampling by 2 the arithmetic requirements for the DWT filter band would
therefore 8 x 100 = 800 multiplications and 7 x 100 700 additions. F'rom the instruction profile shown in the
second column of Fig. 6(a) we see that the number of multiplication is in fact 800, however the number of add
instructions was more than 4 times higher as expected. This is due to the fact that the register updates for the
memory access are also computed with the general purpose ALU.

BlockRAM
2679

6053
2
0

81,509
25.542 ns

39.15 MHz

In addition to the large number of add operations to update the memory register pointer the 1600 LDR load
operations were performed. This can be substantially improved by using for PDSPlO> 12> l3 typical MAC operation
with indirect memory access and auto-increment, discussed next.

5183
2
2

177,203
19.565 ns

51.11 MHz

3. LISA PROGRAMMABLE DIGITAL SIGNAL PROCESSOR (PDSP)

From the DWT processor discussed in the last section we have seen that large arithmetic count is required for
updating memory pointer and the memory access itself. A single multiply accumulate instruction in NanoBlaze
requires the following operations:

; use pointer RC21 and R[31 to load operands
LDR RC81 , R [21
LDR R[91 , R C31
; increment register pointer using ~[1]=1
; multiply and add result in R[4] and avoid data hazards
ADD R [2 1 , R C 2 1 , R [1]
MUL RC71 , RC81 , R [91
ADD RC31 , R C31 , R [I]
ADD R [41 , R [41 , R [71

DSP algorithm (e.g. convolution, correlation, FIR, IIR filter or fast DFTS '~? '~) typically operate on linear
data arrays (i.e., vectors) and post-auto-increments or decrements in the memory pointer are therefore frequently
used. In addition a fused add and multiply usually called MAC allows the previous 6 instructions to be combined
into one single instruction, i.e.,

Proc. of SPlE Vol. 6576 65760U-4

x[nl

Analysis Synthesis

(8) (b)

Figure 2. (a) Two-channel filter bank using Daubechies filter of length-4. (b) Programmable Digital Signal Processor
(DSP18) instruction set additions (02007 springerg).

; load and multiply the values from pointer R [21 and R [31,
; and add the product t o r e g i s t e r R [41
MAC R[41 ,RC31 ,R[21

The additional ISA instructions added to the NanoBlaze are shown in Fig. 2(b). The addition of such a MAC
operation to the instruction set requires two major modifications. First we need to provide a LISA operation
that allows two indirect memory accesses. In hardware this results in a more complex address generation unit
and a dual output port data memory that supports 2 reads in one clock cycle. Secondly, we need to add the
LISA operation for the MAC instructions.

The LISA operation to implement the MAC instruction can be implemented as follows:

OPERATION MAC I N pipe.EX (/* This LISA operation implements the ins t ruct ion MAC. */
DECLARE /* I t accumulates the product of two r e g i s t e r and stores*/

(REFERENCE address; /* the resu l t i n a destination reg i s te r . */
REFERENCE reg;)

CODING (ObOiiOl)
SYNTAX ("MAC")
BEHAVIOR

short tmpi, tmp2, s i , s2; /* Temporary */
short tmp-reg, r e s ;
tmp-reg = reg;
s i = (data-mem [EX. I N . a r l & (char)Oxf f f f) ;
s2 = (data-mem[EX. I N . a r i l & (char)Oxff f f) ;
r e s = tmp-reg + sl * s2;

#pragma analyze(of f)
pr in t f ("%04X * %04X + %04X = %04X\nI1, s l , s2, tmp-reg, r e s) ;

#pragma analyze (on)
reg = res ;))

The MAC LISA operation start with the DECLARE section that references to elements that are defined in other
LISA operations. The CODING section that describes the OP code follows. The assembler syntax would be MAC and
finally in the BEHAVIOR section the implementation of the instruction is shown. For 16 bits product the operands
have been reduced to 8 bits multiplier and multiplicand. A more efficient way would be to use the "all fractional"

Proc. of SPlE Vol. 6576 6576011-5

Figure 3. DSP18 testbench for MAC operation (02007 Springerg).

1.15 format typically used in PDSP and using only the 16 MSBs of the product, but the testbench/simulation
results would then be less intuitive. We have used an additional printf inside the operation to monitor the
progress. While this does not change the hardware, we can monitor the output of our MAC instruction directly
in the debugger window, see lower window in Fig. 1.

We can then go ahead and synthesize the new processor that we like to call DSP18 due to the PDSP like
added features in the instruction set and perform a testbench simulation in ModelSim simulator.

To verify the functionality of the generated VHDL code we use the ModelSim simulator. LPDP generated
all required HDL code (for VHDL or Verilog) and all required simulation script (i.e., ModelTech * .do-files). As
test values we use x = [I, 2,3]; g = [lo, 20,401; and the MAC operation should progress as follows:

1. MAC = 1*10=10
2. MAC = 2*20=40 => 40+10=50
3. MAC = 3*40=120 => 120+50=170

The correct function can be seen from the ModelSim simulation from reg-r-4 shown in Fig 3 which shows the
content of register r [4].

If we now write the program for the same 100-point length-8 DWT as in the last section, we will see the large
impact the MAC operation has on the overall instruction count. Now the MAC operation with 800 is the dominant
operation and much less explicit add or memory operation are required. The total instruction count improves
from 5870 for the NanoBlaze to 1968 for the DSP18. The operation profile for the DWT example is shown in the
third column of Figure 6(a). Since the DSP18 is larger and the addressing modes are more sophisticated than
in the NanoBlaze, the overall registered performance decrease to 39 MHz when using CLB-based RAM and 51
MHz when using BlockRAM. Table 1 shows the implementation results for the two different external memory
configuration.

4. LISA TRUE VECTOR PROCESSOR

General purpose CPUs could be improved in previous years by exploring instruction level parallelism (ILP),
adding on-chip cache and floating-point units, speculative branch execution and improved speed etc. One par-
ticular problem that occurs now is that the logic to track dependencies between all in-flight instructions grows
quadratically in the number of instructions.16 As a result these improvements have considerably solved down

Proc. of SPlE Vol. 6576 65760U-6

since 2002 and the use of multiple CPUs on the same die is now favored instead of increasing clock speed. This re-
quires to write code for parallel processors, which maybe less efficient than using a vector processor to start with.
Vector processors were successfully commercialized long before ILP machines and use an alternative approach
to controlling multiple function units with deep pipelines. Vector processors like Cray, NEC, or Fujitsu VPlOO
provide high level instructions that work on vectors, i.e., a linear array of numbers. Usually vector processor are
characterized by using

a vector array with dedicated load/store unit

functional unit that are highly pipelined

Hazard control is minimized.

support of vector instruction, that replace a complete loop by a single instruction

The second D S P ~ t o n e ' ~ ? ' ~ benchmark: d[k] = a[k] x b[k]; 0 2 k _< N for instance would be implemented in
VMIPS by

MULV . D Vl,V2,V3,

i.e., multiply elements of V2 and V 3 and put each result in V i . Fig. 4 shows an experimenta1,vector processor
that is a vector extension of the popular MIPS machine called VMIPS. VMIPS was introduced in 2001 with 8
vector registers each with 64 elements, 1 load/store, 5 arithmetic units, 1 lane and runs with 500 MHz. Details
on VMIPS can be found in the literature.16

However as can be seen from Fig. 4(a), the typically implemented vector processor architecture, only looks
for a programmer as a vector machine. Inside the vector processor we may typically find 8 vector registers where
each vector has 32 to 1024 (Fujitsu VP100) elements but usually only one floating-point arithmetic unit for each
operation. The vector multiply or add like in DSPstone benchmark 2 still requires N clock cycles (not counting
the initialization). Multiple "lanes" that allow more than one floating-point operation per clock cycle are limited.
In previous 30 years of vector processor history only two machines (NEC SX/5 from 1998 and Fujitsu VPP5000
introduced in year 1999) have over 10 lanes, but the quotient of register elements to lanes is still only 3% for
the 512 elements per vector in the NEC SX/5 with 16 1anes.l6 The reason that typically VP do not have more
than one lane comes from the fact that the floating-point units in 64 bit need large die area.

Another weakness of current vector processors is the limited use for DSP operations. In DSP we not only
need a vector multiply, but instead more often an inner product computation is needed, i.e.,

While the multiplication can be done in a vector element-by-element parallel fashion the summation requires
the addition of all products in an adder tree. This usually is not supported with vector instructions. A third
operation that is not supported in most vector processors is the (cyclic) shift of the vector register elements. For
instance, if an FIR application requires the vector elements x[O] . . . x[N - 11 then in the next step the elements
x[l] . . . x [N] are needed. A PDSP uses cyclic addressing to address this issue. In a vector processor it is usually
necessary to reload the complete vector.

In an custom VLSI Application Specific Integrated Processor (ASIP) design we can therefore improve the
processing by

Adding the vector shift instructions VSXY and VSXY to our instruction set that loads two words from data
memory, shift the two vector registers of the data or coefficients, and place the two new values in the first
location.

Proc. of SPlE Vol. 6576 65760U-7

memory --u
Vector

load/store

8 . , , , , , , , ,

,,,,,,,,,,

registers .

.,.,.,,,,,

FP divide =L-l =I Integer ALU I

Figure 4. (a) The VMIPS vector processor. (b) The true vector processor (TVP) instruction set additions (02007
springerg).

Since modern FPGA can have more than 512 embedded multipliers, we can implement as many multipliers
as the number of vector elements contained in a vector. A VMUL instruction will perform 2 x 8 multiplications
and place the products in the two product vector registers P and Q.

Implementing (inner product) vector sum instructions VAP and VAQ that adds up all elements in a (product)
register vectors.

We like to call such a machine a true vector processor (TVP) since vector operations like vector multiply are
no longer translated in a sequence of single multiplies - all operations are done in parallel. For a two channel
length-8 wavelet processor we would therefore require 16 embedded multipliers. A Spartan-3 device XC3S1000-
4ft256 that is used in the $119 low cost Nexys Digilent University boards for instance, has 24 embedded 18x 18-bit
multipliers available, more than enough for our TVP.

The inner product sum maybe a concern in terms of speed since here N - 1 "horizontal" additions are needed
to be performed for a vector register with N elements. But we can perform the additions on a binary adder tree
as the following LISA code examples shows for the VAP instructions

OPERATION VAP IN pipe.EX 1 /* Vector scalar add of a l l P register */
DECLARE 1 REFERENCE dst;)
CODING 1 OblOOlOl 1
SYNTAX 1 "VAP")
BEHAVIOR

Proc. of SPlE Vol. 6576 6576011-8

+l,A memory memory

Figure 5. NanoBlaze, DSP18, and true vector processor (TVP) architecture (02007 Springerg).

{short t i , t 2 , t 3 , t 4 , t 5 , t 6 , t7;
= p[ol + p[i] ; t 2 = P C ~ I + PC31; t 3 = PC41 + P[51;

t4 = p[6] + p[7]; t 5 = ti + t 2 ; t 6 = t 3 + t 4 ; t 7 = t5 + t6;

d s t = t 7 ;

which reduces the worst case delay from 7 additions to 3.

If we now implement the DWT length-8 processor with the TVP ISA we find that the inner loop is much
shorter, i.e., only 9 instructions are needed. To implement the downsampling by 2 of the DWT two initial shifts
of vector X and Y are required.

-loop:
VSXY R[2] ,R[3] ; Vector s h i f t X,Y and load R[2] and ~ [3] i n f i r s t element
VSXY R[2] ,R[3] ; second s h i f t s ince downsampling by 2 i s performed i n DWT
VMUL ; Perform a l l 2x8 mul t ip l ica t ions and s t o r e r e s u l t s i n P/Q vectors
VAP RC41 ; Add vector P elements and s t o r e sum i n r e g i s t e r ~ [4]
VAQ ' R [51 ; Add vector Q elements and s t o r e sum i n r e g i s t e r R[5]
STR R [41 , R [61 ; Store R[4] using R[6] a s poin ter with post-autoincrement

Proc. of SPlE Vol. 6576 65760U-9

Parameter 1 slices 5"; O ; 1
LISA operations

4-input LUT 8850 9226 Prog. memory 27 x 18 27 x 18 27 x 18
Multiplier 18 Data memory 28 x 16 28 x 16 28 x 16

Table 2. (a) TVP synthesis result for the Xilinx.device XC3S1000-4ft256 according to Xilinx ISE mapping and timing
analysis. (b) BlockRAM synthesis results of three different DWT length-8 processor designs using LISA for Xilinx device:
XC3S 1000-4ft256

(4
I Parameter I UP with

STR R[51 , R[6] ; Sto re R[5] using R[6] a s poin ter with post-autoincrement
BDS @-loop, R[7] ; Check i f R[71 > 0 and jump t o begin of loop
SUB R[7] ,R[7] ,R[l] ; t h i s i n s t r u c t i o n is i n the branch delay s l o t

ib)

1 BRAMs
Equiv. Gates

MHz

The overall instruction count when compared with DSP18 is further decreased as can be seen from the profile
shown in the 4th column of Figure 6(a). The total instruction count for TVP is only 479 for the 100-point two 818
channel DWT. From Table 2(a) we notice large resource requirements and lower maximum operation frequency.

5. LISA PROCESSOR DESIGN COMPARISON

Let us finally compare all three designs in terms of size, speed and overall throughput in MSPS for a DWT
length-8 example. The key synthesis properties are summarized in Table 2(b). Because the Xilinx logic FPGAs
have embedded multipliers, BlockRAMs, and CLBs with one 3-input and two 4-input tables, the design area
used is the equivalent number of gates from the Xilinx "Mapping Report File." To have reliable timing data we
use the "Post Place&Route Static Timing Report" rather than the map time estimations.

The device used is a Spartan-3 XC3S1000-4ft256 that is used in the $119 low cost Nexys Digilent University
boards (see h t t p : //www . d i g i l e n t i n c . corn/), with 7680 slices, 15360 4-input LUTs, 24 embedded multiplier,
and 24 BlockRams with 18 Kbit each. When data or program memory are implemented with CLB-based RAM
(called distributed RAM by Xilinx) then about 800 4-input LUTs are required for a 28 x 16 and about 120
4-input LUTs for a Z7 x 18 memory.

The overall performance of the three processors is measured by the throughput (MSPS) when implementing
a length-8 DWT as shown in Fig. 2(a). We need two length-8 filter g [n] and h[n] and for each output sample
pair 16 multiply and 14 add operations are computed. For 100 samples with an output downsampling by 2
the arithmetic requirements for the DWT filter band would therefore be 8 x 100 = 800 multiplications and
7 x 100 = 700 additions, or 800 MAC calls. From the NanoBlaze instruction profile however we see that many
addition cycles for LDR and ADD are required, due to the fact that the register updates for the memory access
are also computed with the general purpose ALU. The DSP18 processor reduces the LDR and ADD essential, and
although the maximum clock frequency is decreased the overall throughput is improved by a factor of 2. If we
use a true vector processor, then a inner product can be computed in two clock cycles and the overall throughput
is improved by a factor 8 compared with NanoBlaze and a factor 4 when compared with a single core MAC
DSP 18 design.

Finally, the performance data of the 3 LISA based processors and a direct RNS polyphase implementation
on an Altera FPGA (4217 LEs, 155 MSPS") are compared in Fig. 6(b). We see the large improvement from
NanoBlaze to TVP, that closes the performance gap between a direct mapping of the algorithm into FPGA
hardware and the microprocessor solution. The polyphase hardware architecture however can just implement
only one configuration, while the TVP software architecture can implement many different algorithms, e.g.,
adaptive filters, 2D filter etc.

2
162,471

73.9

4 Proc. of SPlE Vol. 6576 6576011-10

2
177,203
51.11

2
274463

48.1

Parameter NanoBlaze DSP18 TVP
LDL 261 260 7
LDH 309 308 7
LDR 1600 0 0

VSXY - - 107
VSGH - - 8
VMUL - - 50
VAP - - 50
VAQ - - 50
MAC - 800 0
STR 100 100 100
ADD 2750 400 0
SUB - 50 50
MUL 800 0 0
BC 0 0 0
BC 0 0 0

BDS
Total
Clock 73.9 51.1 48.1
MSPS 1.26 2.60

I I I I I
NanoBlaze DSP18 TVP Polyphase

Pmcessor

Figure 6. (a) Comparison of three different DWT length-8 processor designs using LISA for Xilinx device: XC3S1000-
4ft256 (b)Comparison of LISA-based processor and direct RNS polyphase implementation.

6. SUMMARY AND FUTURE STUDY
We have presented two channel 818 DWT LISA processor designs for a reduced instruction set computer (lUSC),
a programmable digital signal processor (PDSP) and true vector processor (TVP). The following conclusion can
be made:

Consistency between RTL and architecture of the models is guaranteed by designing the processor in LISA.

The error prone and difficult task of writing assembler, linker, simulator, debugger is accomplished by
LPDP in a few seconds.

HDL and synthesis script generation by LPDP allows an immediate verification in silicon and make size,
speed, and power data available in the design process.

The throughput for an 100-point DWT example shows a factor 8 improvement for a TVP by adding a few
LISA operations.

The required clock speed of the processor decreased from 73 MHz (lUSC) to 48 MHz (TVP) with a 8 times
increased throughput that reduce the required bus speeds and power consumption.

Low cost FPGAs like Xilinx Spartan 3 or Altera Cyclone I1 allow to build a TVP for $100 with todays
devices.

Future goals of further investigation maybe:

Use a more balanced pipeline to avoid the throughput decrease in TVP compared with NanoBlaze and
take better advantage of the fast synchronous memory in the FPGA.

Detail power estimation using XPower estimator and analyzer available for Xilinx ISE tools that allow a
energy by task computation rather than a simple power analysis.

Use a more realistic memory hierarchy model design and other PDSP arithmetic like block floating point
or custom floating-point.

Proc. of SPlE Vol. 6576 65760U-11

h

ACKNOWLEDGMENTS

U. Meyer-Baese acknowledge the support of the Humboldt Foundation. We thank M. Witte and H. Meyr from
ISS RWTH Aachen for the review of an early draft of the paper. Products and company name used in this article
may be trademarks of their respective owners. The authors would like to thank Xilinx Inc. and CoWare Inc. for
their support under the University programs. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors.

REFERENCES
1. Altera Corporation, "Netseminar NIOS processor." http://www.altera.com, 2004.
2. Altera Corporation, "Delivering RISC processors in an FPGA for $2.00." White Paper, 2002.
3. Xilinx Inc. Online, "Microblaze - the low-cost and flexible Processing Solution." www.xilinx.com, 2005.
4. A. H o h a n n , H. Meyr, and R. Leupers, Architecture Exploration for Embedded Processors with LISA,

Kluwer Academic Publishers, Boston, 1 ed., 2002.
5. P. Ienne and R. Leupers, Customizable Embedded Processors, Morgan Kaufrnann, Boston, 1 ed., 2006.
6. J . Donovan, "The Truth about 300 mm." EETimes http://www.eet.com, 2002.
7. C. Rowen, Engineering the Complex SOC, Prentice Hall, Upper Saddle River, NJ, 1 ed., 2004. Tensilica

Founder.
8. Xilinx Inc. Online, "Electronic system level design ecosystem."

http://www.xilinx.com/products/design~tools/logicdesign/vanced/esI/index. htm, 2007.
9. U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, Springer-Verlag, Berlin,

3 ed., 2007. 631 pages.
10. BDTI, "Pocket Guide to Processors for DSP." http://www.bdti.com/pocket/pocket.htm, 2007.
11. U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, Springer-Verlag, Berlin,

2 ed., 2004. 527 pages.
12. Analog Device, "ADSP-2103." 3-Volt DSP Microcomputer, Apr. 1993.
13. Texas Instruments, "TMS320C5x User's Guide." Digital Singal Processing Products, 1993.
14. U. Meyer-Baese, H. Natarajan, E. Castillo, and A. Garcia, "Faster than the FFT: The chirp-z RAG-n

Discrete Fast Fourier Transform," Frequenz 60, pp. 147-151, July 2006.
15. U. Meyer-Baese, J. Chen, C. Chang, and A. Dempster, "A Comparison of pipelined RAG-n and DA FPGA-

based multiplierless Filters," in Proceeding APCCS conference, in press, Dec. 2006.
16. J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufman Pub-

lishers, Inc., San Mateo, CA, 3 ed., 2003. Appendix F: Vector Processor.
17. V. Zivojnovic, J . Velarde, C. Schlager, and H. Meyr, "DSPstone: A DSP-oriented Benchmarking Method-

ology," in Proc. of ICSPAT, pp. 1-6, Oct. 1994.
18. ISS RWTH Aachen, "DSPstone." Institue for Integrated Systems for Signal Processing, Final Report, Aug.

1994.
19. J . Ramirez, U. Meyer-Baese, and A. Garcia, "Efficient Wavelet Architectures using Field-Programmable

Logic and Residue Number System Arithmetic," in Proc. SPIE Int. Soc. Opt. Eng., pp. 222-232, (Orlando),
Apr. 2004.

Proc. of SPIE Vol. 6576 65760U-12

