
3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 1

FAMUFAMUFAMUFAMUFAMUFAMUFAMUFAMU--------FSUFSUFSUFSUFSUFSUFSUFSU

College of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of EngineeringCollege of Engineering

SpaceSpace--Efficient Simulation Efficient Simulation
of Quantum Computersof Quantum Computers

47th ACM Southeast Conference, Clemson, SC
March 19-21, 2009 (Session F3, Systems)

Michael P. Frank1, Uwe H. Meyer-Baese1,
Irinel Chiroescu2, Liviu Oniciuc 1, Robert A. van Engelen3

1Dept. of Elec. & Comp. Eng., FAMU-FSU College of Engineering
2National High Magnetic Field Laboratory, Florida State University

3Department of Computer Science, Florida State University

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 2

FAMU-FSU College of Engineering

Abstract of Paper (for reference)Abstract of Paper (for reference)
� Traditional algorithms for simulating quantum computers on

classical ones require an exponentially large amount of memory,
� and so typically cannot simulate general quantum circuits with more than

about 30 or so qubits on a typical PC-scale platform with only a few
gigabytes of main memory.

� However, more memory-efficient simulations are possible,
� requiring only polynomial or even linear space in the size of the quantum

circuit being simulated.

� In this paper, we describe one such technique,
� which was recently implemented at FSU in the form of a C++ program

called SEQCSim, which we releasing publicly.

� We also discuss the potential benefits of this simulation in
quantum computing research and education,

� and outline some possible directions for further progress.

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 3

FAMU-FSU College of Engineering

What is a Quantum Computer?What is a Quantum Computer?
� A new, more powerful fundamental paradigm for computing

within the laws of physics.
� Apparently exponentially faster on some problems.

� Key differences btw. Classical vs. Quantum Computation:
� State representations:

� Classical: A sequence of n bit values, w ∈ Bn, where B = {0,1}.
� Quantum: A function Ψ ∈ H, where H = Bn → C, mapping classical

states to complex numbers (“amplitudes”).
� Logic operators (“gates”):

� Classical: A function from several bits to one bit, g:Bk → B
� Quantum: A unitary (invertible, length-preserving) linear

transformation U:S→ S, where S = Bk → C.
� Measurement of computation results:

� Classical: Measured value is exactly determined by machine state.
� Quantum: Probability of measuring state as being w is ∝|Ψ(w)|2.

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 4

FAMU-FSU College of Engineering

A Simple Quantum Circuit: Draper AdderA Simple Quantum Circuit: Draper Adder

Uses the quantum Fourier transform (QFT) and its inverse QFT−1 to add two 2-bit input
integers in a temporary phase-based representation. Here it is computing 1 + 1 = 2.

H

a0

a1

b0

b1

φ1 H

φ0

φ0

φ1

H φ1
−1

H|0〉

|0〉

|1〉

|1〉

a = |012〉
= 1

b = |012〉
= 1

|0〉

|1〉

|1〉

|0〉

a := QFT(a) a := QFT −1(a)add b into
phase of a

a := (a + b) mod 4

a = |102〉
= 2

1 11

1 12
H

= −

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 exp(iπ2)

q

q

ϕ

−

 =

Hadamard gate Controlled-phase gate

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 5

FAMU-FSU College of Engineering

A Larger Draper Adder (2A Larger Draper Adder (2 ××4 bits)4 bits)

� Some advantages of the Draper adder:
� Minimal quantum space usage: Requires no ancilla bits for carries.
� A good simple, but nontrivial example of a quantum algorithm.

� A disadvantage of the Draper adder:
� Slow; requires Θ(n2) gates for an n-bit add!

� Unlikely to be used in practice, except when qubits are very expensive.

QCAD design tool
& simulator, by

Hiroshi Watanabe,
University of

Tokyo, available
from

http://apollon.cc.u-
tokyo.ac.jp/~wata
nabe/qcad/index.ht

ml

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 6

FAMU-FSU College of Engineering

Some Potential Applications Some Potential Applications
of Quantum Computersof Quantum Computers

� If quantum computers of substantial size are built,
known quantum algorithms can be applied to obtain:
� Polynomial-time cryptanalysis of popular public-key

cryptosystems (e.g., RSA). (Shor’s factoring algorithm.)
� Polynomial-time simulations of quantum-mechanical

physical systems. (Algorithms by Lloyd and others.)
� Square-root speedups of simple unstructured searches of

computed oracle functions. (Grover’s search algorithm.)
� And not a whole lot else, so far!

� A much wider variety of interesting & useful
quantum algorithms is needed,
� But new quantum algorithms are very difficult to develop.

� Need flexible, capabable simulation tools for design validation.

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 7

FAMU-FSU College of Engineering

A Problem with Nearly All Existing A Problem with Nearly All Existing
Quantum Computer SimulatorsQuantum Computer Simulators

� They require exponential space as the number
of bits in the simulated computer increases.
� Why: They update a state vector explicitly

representing the full wavefunctionΨ: Bn → C.
� Vector represented as a list of 2n complex numbers

� 1 for each possible configuration of the machine’s n bits

� If the available memory holds 1G (230) numbers,
� We can only simulate <30-bit quantum computers!

� The large space usage also imposes a significant
slowdown to access these large data sets
� Relatively slow access to main memory (or even disk).

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 8

FAMU-FSU College of Engineering

A Way to Solve This ProblemA Way to Solve This Problem

� We can reformulate quantum mechanics in an
equivalent framework without any state vectors.
� Feynman (1942): Any desired quantum amplitude can

be computed using a “path integral” expression
summing over possible classical trajectories.

� Bohm (1952): Can time-evolve a classical state
under the influence of only those amplitudes in its
immediate neighborhood in configuration space.

� The only real requirement is to obtain the right
probability of arriving at each final state!

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 9

FAMU-FSU College of Engineering

A Complexity Theorist’s View of A Complexity Theorist’s View of
Feynman’s Path IntegralFeynman’s Path Integral

� Consider any computation with a wide dataflow
graph (uses more space than time)
� E.g. the graph at right uses 4 variables

at time t=1, but only takes 2 || steps.

� We can make the algorithm
more space-efficient by
computing intermediate
variables dynamically when
required, instead of storing them.

� Bernstein & Vazirani, 1993: Can apply this generic
tradeoff to simulating quantum computers.

t=0

t=1

t=2

∴ BQP ⊆ PSPACE.

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 10

FAMU-FSU College of Engineering

SEQCSim: The SEQCSim: The SSpacepace--EEfficient fficient
QQuantum uantum CComputer omputer SimSimulatorulator

� Core idea was conceived circa 2002 at UF.
� Add Bohm updates to Feynman recursion.

� Avoids having to enumerate all possible final states.

� A working C++ software prototype was
developed and demonstrated at FSU in 2008.
� Future versions of the simulator will have a more

expressive programming interface.

� A performance-optimized FPGA-based
implementation is currently being developed.

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 11

FAMU-FSU College of Engineering

SEQCSim Input Files SEQCSim Input Files
for 2for 2××22--Bit Draper AdderBit Draper Adder

qconfig.txt format version 1

bits: 4

named bitarray: a[2] @ 0

named bitarray: b[2] @ 2

qinput.txt format version 1

a = 1

b = 1

qoperators.txt format version 1

operators: 4

operator #: 0

name: H

size: 1 bits

matrix:

(0.7071067812 + i*0)(0.7071067812 + i*0)

(0.7071067812 + i*0)(-0.7071067812 + i*0)

operator #: 1

name: cZ

size: 2 bits

matrix:

(1 + i*0) (0 + i*0) (0 + i*0) (0 + i*0)

(0 + i*0) (1 + i*0) (0 + i*0) (0 + i*0)

(0 + i*0) (0 + i*0) (1 + i*0) (0 + i*0)

(0 + i*0) (0 + i*0) (0 + i*0) (-1 + i*0)

... (two additional operators elided for brevity)

Input values to add

Quantum circuit (sequence of gate applications)

Gate
definitions

qopseq.txt format version 1

operations: 9

operation #0: apply unary operator H to bit a[1]

operation #1: apply binary operator cPiOver2 to bits a[1], a[0]

operation #2: apply unary operator H to bit a[0]

operation #3: apply binary operator cZ to bits b[1], a[1]

operation #4: apply binary operator cZ to bits b[0], a[0]

operation #5: apply binary operator cPiOver2 to bits b[0], a[1]

operation #6: apply unary operator H to bit a[0]

operation #7: apply binary operator inv_cPiOver2 to bits a[1], a[0]

operation #8: apply unary operator H to bit a[1]

Declare registers

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 12

FAMU-FSU College of Engineering

SEQCSim Core AlgorithmSEQCSim Core Algorithm
// Bohm-inspired iterative state updating.

procedure SEQCSim::run():

curState := inputState; // Current basis state

curAmp := 1; // Current amplitude

for PC =: 0 to #gates, // Current gate index

(w.r.t. gate[PC] operator and its operands,)

for each neighbor nbri of curState,

if nbri = curState, amp[nbri] :=curAmp;

else amp[nbri] := calcAmp(nbri);

amp[] := opMatrix * amp[]; // Matrix prod.

// Calculate probabilities as normalized

// squares of amplitudes.

prob[] := normSqr(amp[]);

// Pick a successor of the current state.

i := pickFromDist(prob[]);

curState := nbri; curAmp := amp[nbri].

// Feynman-inspired recursive

// amplitude-calculation procedure.

function SEQCSim::calcAmp(Neighbornbr):

curState := nbr;

if PC=0 return (curState = inputState) ? 1 : 0;

(w.r.t. gate[PC−1] operator and its operands,)

for each predecessor predi of curState,

PC := PC − 1;

amp[predi] = calcAmp(predi);

PC := PC + 1;

amp[] := opMatrix * amp[];

return amp[curState];

Complete C++ console app has
24 source files, total size 115 KB

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 13

FAMU-FSU College of Engineering

Illustration of SEQCSim Illustration of SEQCSim
Operation on 2Operation on 2××22--Bit Draper AdderBit Draper Adder

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

b1 b0 a1 a0

0

0

0

0

.5

.5i

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.71

0

0

0

0

0

0

.71

0

0

0

0

0

0

0

0

.71

0

0

0

0

0

0

.71i

0

0

0

0

0

0

0

0

−.5

−.5i

H
(a

1)

φ
1(

a 1
,a

0)

H
(a

0)

0

0

0

0

.5

.5i

0

0

0

0

0

0

0

0

−.5

−.5i

0

0

0

0

.5

.5i

0

0

0

0

0

0

0

0

.5

.5i

0

0

0

0

.5

−.5

0

0

0

0

0

0

0

0

.5

−.5

0

0

0

0

.71

−.71

0

0

0

0

0

0

0

0

0

0

0 1 2 3 4 5 6 7
0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

8

φ
0(

b 1
,a

1)

φ
0(

b 0
,a

0)

φ
1(

b 0
,a

1)

H
(a

0)

φ
1−

1 (
a 1

,a
0)

0

0

0

0

.71

−.71

0

0

0

0

0

0

0

0

0

0

9

H
(a

1)

State on
Bohmian
trajectory

State
visited
in final

recursion

Step number ����

P
os

si
b

le
 b

a
si

s
st

a
te

s

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 14

FAMU-FSU College of Engineering

Complexity AnalysisComplexity Analysis

� Defining the following parameters:
� a = const. = max. arity of quantum gate operators
� s = width (# of qubits) in simulated circuit
� t = time (# of operations) in simulated circuit
� k (< t) = # of nontrivial operations in sim’d circ.

� For a straightforwardly-optimized
implementation of SEQCSim, we can have
� Space complexity: O(s + t)
� Time complexity: O(s + t·2ak)

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 15

FAMU-FSU College of Engineering

SEQCSim OutputSEQCSim Output
on 2on 2××22--Bit Draper AdderBit Draper Adder

Welcome to SEQCSIM, the Space-Efficient Quantum Computer SIMulator.

(C++ console version)

By Michael P. Frank, Uwe Meyer-Baese, Irinel Chiorescu, and Liviu Oniciuc.

Copyright (C) 2008 Florida State University Board of Trustees.

All rights reserved.

SEQCSim::run(): Initial state is 3->0101<-0 (4 bits) ==> (1 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=0)

The new current state is 3->0111<-0 (4 bits) ==> (0.707107 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=1)

The new current state is 3->0111<-0 (4 bits) ==> (0 + i*0.707107).

... (5 intermediate steps elided for brevity) ...
SEQCSim::Bohm_step_forwards(): (tPC=7)

The new current state is 3->0110<-0 (4 bits) ==> (-0.707107 + i*0).

SEQCSim::Bohm_step_forwards(): (tPC=8)

The new current state is 3->0110<-0 (4 bits) ==> (1 + i*0).

SEQCSim::done(): The PC value 9 is >= the number of operations 9.

We are done! a = 1+1 = 2 = 102

b=1 a=1

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 16

FAMU-FSU College of Engineering

Empirical MeasurementsEmpirical Measurements
of Space Complexityof Space Complexity

QCAD vs. SEQCsim memory usage

1,000

10,000

100,000

1,000,000

10,000,000

4 6 8 10 12 14 16 18 20 22 24 26 28

QFT adder circuit width (qubits)

P
ea

k
m

em
or

y
us

ag
e

(K
B

)

QCAD

SEQCsim

Linear growth of SEQCsim memory usage with size of
quantum circuit

y = 0.1656x + 1895.9

R2 = 0.9282

1892
1896
1900
1904
1908
1912
1916
1920
1924
1928
1932
1936
1940
1944
1948
1952
1956
1960

0 100 200 300 400

QFT adder circuit size (# of 1- and 2-qubit operations)

P
ea

k
m

em
or

y
us

ag
e

(K
B

)

Ex
po

ne
nt

ia
l!

(Note: QCAD crashed on the 28-bit circuit, due to
insufficient memory available on the test PC.)

Linear

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 17

FAMU-FSU College of Engineering

Empirical MeasurementsEmpirical Measurements
of CPU Time Utilizationof CPU Time Utilization

� SEQCSim is ~10× faster
than QCAD on small
circuits.
� This is probably largely just

because QCAD has a GUI
and SEQCSim doesn’t.

� SEQCSim is currently ~2×
slower than QCAD on
large circuits.
� But, there is much room for

performance improvement.
� Take better advantage of

available memory.
� Reimplement in special-

purpose hardware

QCAD vs. SEQCsim CPU time usage

0.01

0.1

1.

10.

100.

1,000.

10,000.

100,000.

4 6 8 10 12 14 16 18 20 22 24 26 28

QFT adder circuit width (qubits)

C
P

U
 ti

m
e

(s
ec

s.
)

QCAD

SEQCsim

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 18

FAMU-FSU College of Engineering

Next StepsNext Steps
� Software implementation:

� Implement a special cache for state amplitudes, to boost performance
� Develop a new simulator API around a “Qubit” class that mimics the

(ideal) real statistical behavior of quantum bits
� Invokes SEQCSim engine “behind the scenes”
� Allows coding quantum algorithms directly in C++

� FPGA-based hardware implementation:
� Design custom register structures for faster bit-manipulation, and

custom memory units for hardware caching of state amplitudes
� Develop efficient adders/multipliers on FPGA platform for floating-

point numbers in a simplified custom format
� Use these as the basis for a custom parallel arithmetic datapath for

quickly computing inner products of complex vectors
� Design an optimized special-purpose iterative FSM for the graph

traversal, to replace the recursive calcAmp() procedure

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 19

FAMU-FSU College of Engineering

FPGA Tools (1 of 5):FPGA Tools (1 of 5):
AlteraAltera SOPC BuilderSOPC Builder

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 20

FAMU-FSU College of Engineering

FPGA Tools (2 of 5):FPGA Tools (2 of 5):
NIOS II SoftNIOS II Soft --Core ConfigurationCore Configuration

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 21

FAMU-FSU College of Engineering

FPGA Tools (3 of 5):FPGA Tools (3 of 5):
Custom Hardware Generation with C2HCustom Hardware Generation with C2H

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 22

FAMU-FSU College of Engineering

FPGA Tools (4 of 5):FPGA Tools (4 of 5):
LISA Processor Design CycleLISA Processor Design Cycle

FPGA
Implementation

Size, speed, power

FPGA
Implementation

Size, speed, power

Design
tool

generation

Design
tool

generation
Assembler, linker,

profiling,
ISS, C-

compiler

Architecture
exploration

Architecture
exploration

ISA, cache,
Co-
proces

sor

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 23

FAMU-FSU College of Engineering

FPGA Tools (5 of 5):FPGA Tools (5 of 5):
LISA Development ToolsLISA Development Tools

Disassembler

Memory
monitor

Profiler
regs

3/19/2009 M. Frank etc, Space-Eff. QC Sim., ACMSE09 24

FAMU-FSU College of Engineering

ConclusionConclusion
� We have implemented in C++ and validated a

working prototype of a quantum computer simulator
that uses only linear space.
� This tool can be useful to help students & researchers

validate quantum algorithms.
� Online resources at http://www.eng.fsu.edu/~mpf/SEQCSim
� Contact michael.patrick.frank@gmail.comfor source code

� A future version will provide a more expressive quantum
programming language based on C++.

� We are also designing an FPGA-based hardware
implementation to boost simulator performance.
� This approach is made much more feasible by the extreme

memory-efficiency of our algorithm.

