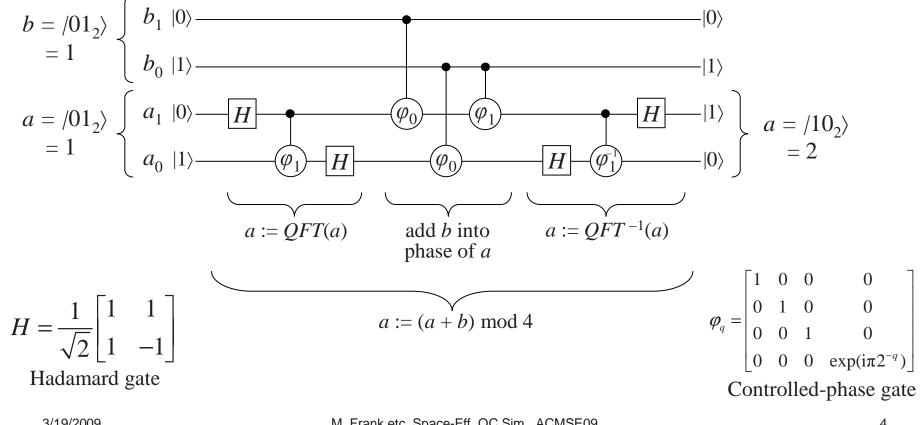
Space-Efficient Simulation of Quantum Computers

47th ACM Southeast Conference, Clemson, SC March 19-21, 2009 (Session F3, Systems)

Michael P. Frank¹, Uwe H. Meyer-Baese¹, Irinel Chiroescu², Liviu Oniciuc¹, Robert A. van Engelen³ ¹Dept. of Elec. & Comp. Eng., FAMU-FSU College of Engineering ²National High Magnetic Field Laboratory, Florida State University ³Department of Computer Science, Florida State University

Abstract of Paper (for reference)

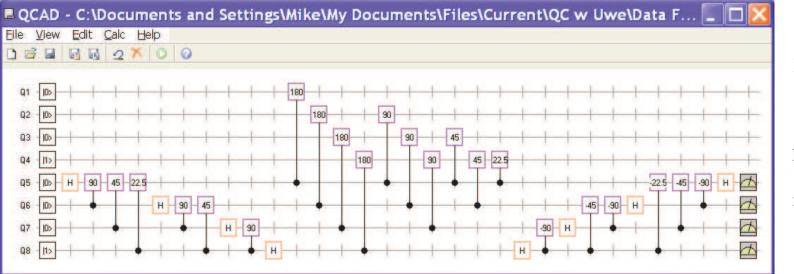
- □ Traditional algorithms for simulating quantum computers on classical ones require an exponentially large amount of memory,
 - and so typically cannot simulate general quantum circuits with more than about 30 or so qubits on a typical PC-scale platform with only a few gigabytes of main memory.
- □ However, more memory-efficient simulations are possible,
 - requiring only polynomial or even linear space in the size of the quantum circuit being simulated.
- □ In this paper, we describe one such technique,
 - which was recently implemented at FSU in the form of a C++ program called SEQCSim, which we releasing publicly.
- □ We also discuss the potential benefits of this simulation in quantum computing research and education,
 - and outline some possible directions for further progress.


What is a Quantum Computer?

- □ A new, more powerful fundamental paradigm for computing within the laws of physics.
 - Apparently exponentially faster on some problems.
- □ Key differences btw. Classical vs. Quantum Computation:
 - State representations:
 - **Classical:** A sequence of *n* bit values, $w \in \mathbf{B}^n$, where $\mathbf{B} = \{0,1\}$.
 - **Quantum:** A function $\Psi \in \mathbf{H}$, where $\mathbf{H} = \mathbf{B}^n \to \mathbf{C}$, mapping classical states to complex numbers ("amplitudes").
 - Logic operators ("gates"):
 - **Classical:** A function from several bits to one bit, $g: \mathbf{B}^k \to \mathbf{B}$
 - **Quantum:** A unitary (invertible, length-preserving) linear transformation $U: \mathbf{S} \to \mathbf{S}$, where $\mathbf{S} = \mathbf{B}^k \to \mathbf{C}$.
 - Measurement of computation results:
 - **Classical:** Measured value is exactly determined by machine state.
 - **Quantum:** Probability of measuring state as being *w* is $\propto |\Psi(w)|^2$.

A Simple Quantum Circuit: Draper Adder

FAMU-FSU College of Engineering


Uses the quantum Fourier transform (QFT) and its inverse QFT⁻¹ to add two 2-bit input integers in a temporary phase-based representation. Here it is computing 1 + 1 = 2.

3/19/2009

M. Frank etc, Space-Eff. QC Sim., ACMSE09

A Larger Draper Adder (2×4 bits)

QCAD design tool & simulator, by Hiroshi Watanabe, University of Tokyo, available from http://apollon.cc.utokyo.ac.jp/~wata nabe/qcad/index.ht ml

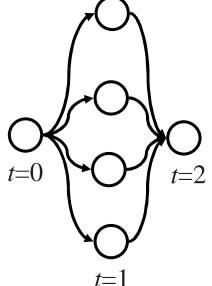
- □ Some advantages of the Draper adder:
 - Minimal quantum space usage: Requires no ancilla bits for carries.
 - A good simple, but nontrivial example of a quantum algorithm.
- □ A disadvantage of the Draper adder:
 - Slow; requires $\Theta(n^2)$ gates for an *n*-bit add!
 - □ Unlikely to be used in practice, except when qubits are very expensive.

Some Potential Applications of Quantum Computers

- □ If quantum computers of substantial size are built, known quantum algorithms can be applied to obtain:
 - Polynomial-time cryptanalysis of popular public-key cryptosystems (*e.g.*, RSA). (Shor's factoring algorithm.)
 - Polynomial-time simulations of quantum-mechanical physical systems. (Algorithms by Lloyd and others.)
 - Square-root speedups of simple unstructured searches of computed oracle functions. (Grover's search algorithm.)
 - And not a whole lot else, so far!
- A much wider variety of interesting & useful quantum algorithms is needed,
 - But new quantum algorithms are very difficult to develop.
 - □ Need flexible, capabable simulation tools for design validation.

A Problem with Nearly All Existing Quantum Computer Simulators

- □ They require <u>exponential space</u> as the number of bits in the simulated computer increases.
 - Why: They update a *state vector* explicitly representing the full wavefunction $\Psi: \mathbf{B}^n \to \mathbf{C}$.
 - □ Vector represented as a list of 2^n complex numbers
 - 1 for each possible configuration of the machine's *n* bits
 - If the available memory holds 1G (2³⁰) numbers,
 We can only simulate <30-bit quantum computers!
 - The large space usage also imposes a significant slowdown to access these large data sets
 - □ Relatively slow access to main memory (or even disk).



A Way to Solve This Problem

- □ We can reformulate quantum mechanics in an equivalent framework *without any state vectors*.
 - Feynman (1942): Any desired quantum amplitude can be computed using a "path integral" expression summing over possible *classical* trajectories.
 - Bohm (1952): Can time-evolve a *classical* state under the influence of only those amplitudes in its immediate neighborhood in configuration space.
- □ The only real requirement is to obtain the right probability of arriving at each final state!

- Consider any computation with a wide dataflow graph (uses more space than time)
 - E.g. the graph at right uses 4 variables at time *t*=1, but only takes 2 || steps.
- We can make the algorithm more space-efficient by computing intermediate variables dynamically when required, instead of storing them.

□ Bernstein & Vazirani, 1993: Can apply this generic tradeoff to simulating quantum computers.
 ∴ BQP ⊆ PSPACE.

SEQCSim: The <u>Space-Efficient</u> <u>Quantum Computer Sim</u>ulator

- □ Core idea was conceived circa 2002 at UF.
 - Add Bohm updates to Feynman recursion.
 - Avoids having to enumerate all possible final states.
- A working C++ software prototype was developed and demonstrated at FSU in 2008.
 - Future versions of the simulator will have a more expressive programming interface.
- A performance-optimized FPGA-based implementation is currently being developed.

SEQCSim Input Files for 2×2-Bit Draper Adder

qconf	ig.txt	for	nat ve	ers	sion	1
bits:	4	Dec	lare 1	eg	giste	rs
named	bitarı	ray:	a[2]	@	0	
named	bitarı	cay:	b[2]	@	2	

watang tot format monston 1

qinput.txt format version 1

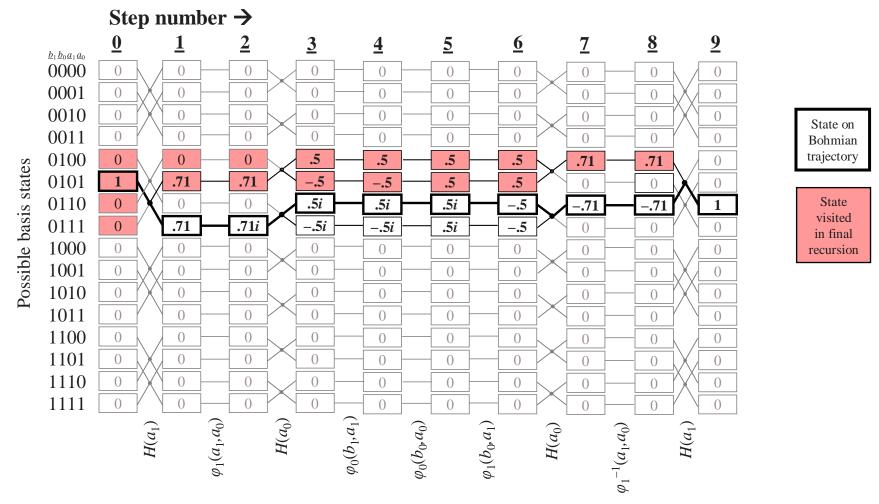
a = 1b = 1 Input values to add

qoperators.txt format version 1					
operators: 4					
operator #: 0	Quantum circuit (sequence of gate applications)				
name: H	Quantum circuit (sequence of gate applications)				
size: 1 bits	qopseq.txt format version 1				
matrix:	operations: 9				
(0.7071067812 + i*0)(0.7071067812 + i*0)	operation #0: apply unary operator H to bit a[1]				
(0.7071067812 + i*0)(-0.7071067812 + i*0)	operation #1: apply binary operator cPiOver2 to bits a[1], a[0]				
operator #: 1	operation #2: apply unary operator H to bit a[0]				
name: cZ Gate	operation #3: apply binary operator cZ to bits b[1], a[1]				
size: 2 bits definitions	operation #4: apply binary operator cZ to bits b[0], a[0]				
matrix:	operation #5: apply binary operator cPiOver2 to bits b[0], a[1]				
(1 + i*0) (0 + i*0) (0 + i*0) (0 + i*0)	operation #6: apply unary operator H to bit a[0]				
(0 + i*0) (1 + i*0) (0 + i*0) (0 + i*0)	operation #7: apply binary operator inv_cPiOver2 to bits a[1], a[0]				
(0 + i*0) (0 + i*0) (1 + i*0) (0 + i*0)	operation #8: apply unary operator H to bit a[1]				
(0 + i*0) (0 + i*0) (0 + i*0) (-1 + i*0)					
(two additional operators elided for brevity)					

SEQCSim Core Algorithm

// Bohm-inspired iterative state updating.

procedure SEQCSim::run():


curState := *inputState*; // Current basis state // Current amplitude curAmp := 1;for PC =: 0 to #gates, // Current gate index (w.r.t. gate[*PC*] operator and its operands,) for each neighbor *nbri* of *curState*, if *nbri* = *curState*, *amp*[*nbri*] :=*curAmp*; else *amp*[*nbri*] := calcAmp(*nbri*); *amp*[] := opMatrix * *amp*[]; // Matrix prod. // Calculate probabilities as normalized squares of amplitudes. prob[] := normSqr(amp[]); // Pick a successor of the current state. *i* := pickFromDist(*prob*[]); curState := nbri; curAmp := amp[nbri].

// Feynman-inspired recursive// amplitude-calculation procedure.

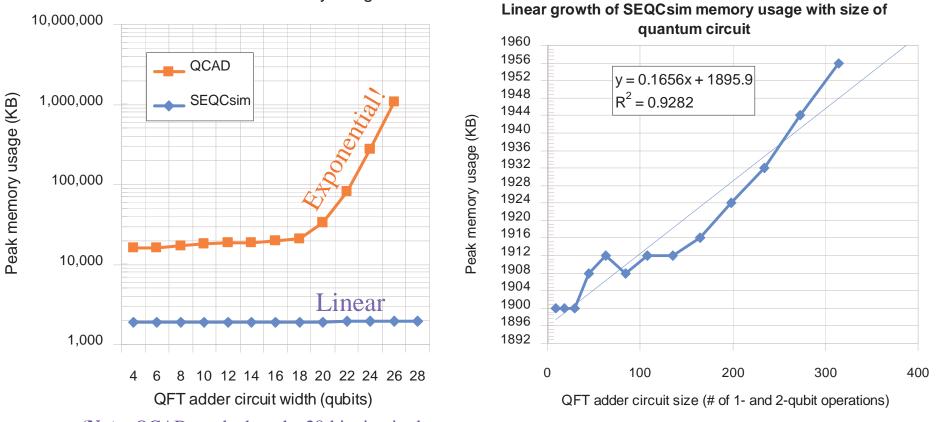
function SEQCSim::calcAmp(Neighbor nbr): curState := nbr; if PC=0 return (curState = inputState) ? 1 : 0; (w.r.t. gate[PC-1] operator and its operands,) for each predecessor predi of curState, PC := PC - 1; amp[predi] = calcAmp(predi); PC := PC + 1; amp[] := opMatrix * amp[]; return amp[curState];

Complete C++ console app has 24 source files, total size 115 KB

Illustration of SEQCSim Operation on 2×2-Bit Draper Adder

Complexity Analysis

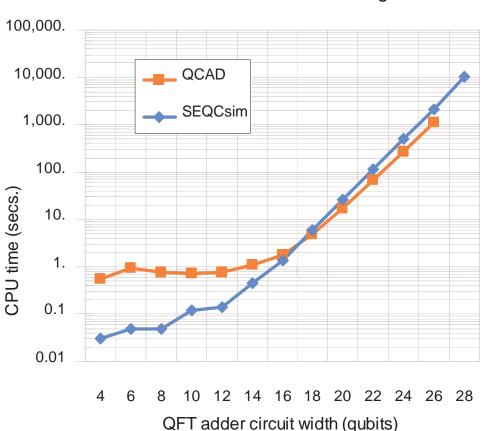
- □ Defining the following parameters:
 - a = const. = max. arity of quantum gate operators
 - s = width (# of qubits) in simulated circuit
 - t = time (# of operations) in simulated circuit
 - k(< t) = # of *nontrivial* operations in sim'd circ.
- □ For a straightforwardly-optimized implementation of SEQCSim, we can have
 - Space complexity: O(s + t)Time complexity: $O(s + t \cdot 2^{ak})$


SEQCSim Output on 2×2-Bit Draper Adder

```
Welcome to SEQCSIM, the Space-Efficient Quantum Computer SIMulator.
    (C++ console version)
By Michael P. Frank, Uwe Meyer-Baese, Irinel Chiorescu, and Liviu Oniciuc.
Copyright (C) 2008 Florida State University Board of Trustees.
    All rights reserved.
                                      b=1 a=1
SEOCSim::run(): Initial state is 3 \rightarrow 0101 < -0 (4 bits) ==> (1 + i*0).
SEQCSim::Bohm_step_forwards(): (tPC=0)
   The new current state is 3 - 0111 < 0 (4 bits) ==> (0.707107 + i*0).
SEQCSim::Bohm step forwards(): (tPC=1)
   The new current state is 3 - 0111 < 0 (4 bits) ==> (0 + i*0.707107).
... (5 intermediate steps elided for brevity) ...
SEQCSim::Bohm_step_forwards(): (tPC=7)
   The new current state is 3 \rightarrow 0110 < -0 (4 bits) ==> (-0.707107 + i*0).
SEQCSim::Bohm step forwards(): (tPC=8)
   The new current state is 3 \rightarrow 0110 < 0 (4 bits) ==> (1 + i*0).
SEQCSim::done(): The PC value 9 is >= the number of operations 9.
                                        a = 1 + 1 = 2 = 10_{2}
    We are done!
```


Empirical Measurements of Space Complexity

QCAD vs. SEQCsim memory usage



(Note: QCAD crashed on the 28-bit circuit, due to insufficient memory available on the test PC.)

Empirical Measurements of CPU Time Utilization

- SEQCSim is ~10× faster than QCAD on small circuits.
 - This is probably largely just because QCAD has a GUI and SEQCSim doesn't.
- SEQCSim is currently ~2× slower than QCAD on large circuits.
 - But, there is much room for performance improvement.
 - □ Take better advantage of available memory.
 - Reimplement in specialpurpose hardware

QCAD vs. SEQCsim CPU time usage

Next Steps

□ Software implementation:

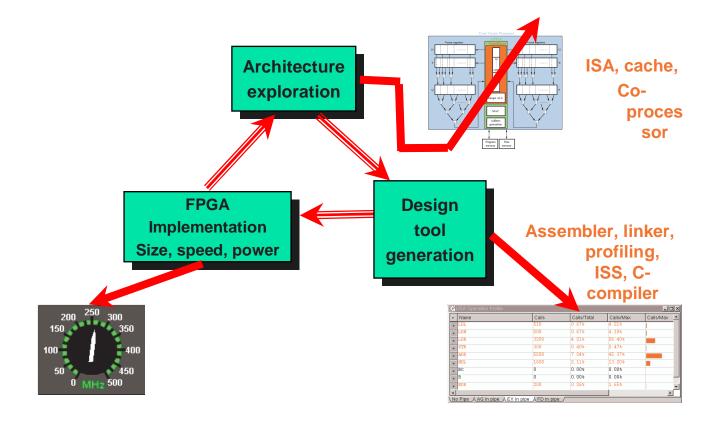
- Implement a special cache for state amplitudes, to boost performance
- Develop a new simulator API around a "Qubit" class that mimics the (ideal) real statistical behavior of quantum bits
 - □ Invokes SEQCSim engine "behind the scenes"
 - □ Allows coding quantum algorithms directly in C++
- □ FPGA-based hardware implementation:
 - Design custom register structures for faster bit-manipulation, and custom memory units for hardware caching of state amplitudes
 - Develop efficient adders/multipliers on FPGA platform for floatingpoint numbers in a simplified custom format
 - Use these as the basis for a custom parallel arithmetic datapath for quickly computing inner products of complex vectors
 - Design an optimized special-purpose iterative FSM for the graph traversal, to replace the recursive calcAmp() procedure

FPGA Tools (1 of 5): Altera SOPC Builder

🗎 Altera SOPC Builder	□	t	Clock	Settings				
	Device	Family:	yclone II	Name	Source		MHz	Add
⊕ Bridges and Adapters		i anny.p	cik_	1 Ext	ernal	50.0		. <u>Auu</u>
			-	I.		1		Remove
⊕ High Speed								
⊕-PCI	Use	Conne	Module Name	Description	Clock	Base	End	IRQ
			🗖 cpu_0	Nios II Processor				
Avalon-ST JTAG I			instruction_master	Avalon Memory Mapped Master	clk_1			
🔍 Avalon-ST Serial I		$ \sim$	data_master	Avalon Memory Mapped Master		IRQ	D IRQ 31←	\neg
····· JTAG UART		$ \searrow $	jtag_debug_module	Avalon Memory Mapped Slave		■ 0x01002800	0x01002fff	
ISPI (3 Wire Serial)			onchip_memory2_0	On-Chip Memory (RAM or ROM)				
IUART (RS-232 Se		$ \rightarrow $	s1	Avalon Memory Mapped Slave	cik_1	■ 0x01001000	0x01001fff	
⊕ Legacy Components			Switches	PIO (Parallel I/O)				
-Memories and Memory Contro		$ \rightarrow$	s1	Avalon Memory Mapped Slave	cik_1		0x0100302f	
⊕ ··DMA			🗆 LEDs	PIO (Parallel I/O)				
⊞⊸Flash		$ \rightarrow$	s1	Avalon Memory Mapped Slave	cik_1		0x0100303f	
⊡On-Chip			🖂 jtag_uart_0	JTAG UART				
Avalon-ST Dual C		$ \rightarrow$	avalon_jtag_slave	Avalon Memory Mapped Slave	clk_1	₽ 0x01003040	0x01003047 -	jā
Avalon-ST Multi-C			🗆 sdram_0	SDRAM Controller				T
🔍 Avalon-ST Round 🗾		\hookrightarrow	s1	Avalon Memory Mapped Slave	cik_1		0x00ffffff	
			sys_clk_timer	Interval Timer				
		\hookrightarrow	s1	Avalon Memory Mapped Slave	cik_1		0x0100301f	——————————————————————————————————————
					. –			
	1		[1				
New Edit Add			Remove Edit	🔺 Move Up 🛛 🤝	Move Down	Address Map	Filter	

FPGA Tools (2 of 5): NIOS II Soft-Core Configuration

💷 Nios II Processor - cp	ou_0			×
Settings				
Core Nios II Cache	es and Memory Interfaces $>$	Advanced Features $>$ 1	MMU and MPU Settings > JTA	G Debug Module > Custom Instructions >
Core Nios II				
Select a Nios II core:				
	ONios II/e	ONios II/s	● Nios II/f	
Nios II Selector Guide Family: Cyclone II f _{system} : 50.0 MHz cpuid: 0	RISC 32-bit	RISC 32-bit Instruction Cache Branch Prediction Hardware Multiply Hardware Divide	RISC 32-bit Instruction Cache Branch Prediction Hardware Multiply Hardware Divide Barrel Shifter Data Cache Dynamic Branch Prediction	
Performance at 50.0 MHz	: Up to 5 DMIPS	Up to 25 DMIPS	Up to 51 DMIPS	
Logic Usage	600-700 LEs	1200-1400 LEs	1400-1800 LEs	
Memory Usage	Two M4Ks (or equiv.)	Two M4Ks + cache	Three M4Ks + cache	
Hardware Multiply: Embe		Hardware Divide		
	ory: sdram_0	✓ Offset: 0x0	0×0080	0000
Exception Vector: Memo	^{iry:} sdram_0	✓ Offset: 0x20	0×00800	020
include MMU				
	en using an operating system th			
Fast TLB Miss Exception '	vector: wemory.	<u></u>	Offset: 0x0	
🔲 Include MPU				
				Cancel < Back Next > Finish -
				▼ []


FPGA Tools (3 of 5):

Custom Hardware Generation with C2H

Nios II C/C++ - dma_c2h_tutorial.c File Edit Refactor Navigate Search		_ 🗆 ×
] 📬 • 🔛 📥 🚠 🎯 • 🚳 •		🔛 🔣 Nios II C/C++
Nios II C/C++ Proj 🛛 🗖 🗖	ⓓ dma_c2h_tutorial.c 🛛 🗧	Cutline 🛛 🗖 🗖
<pre></pre>	<pre>#include <stdio.h> #include <stdio.h> #include <string.h> #include <sys alt_cache.h=""> #include "sys/alt_alarm.h" #define TRANSFER_LENGTH 1048576 #define ITERATIONS 100 #define Switches (volatile char *) 0x01003020 #define LEDs (char *) 0x01003030 int do_dms(int * _restrict_ dest_ptr, int * _restrict_ source_ptr, int length { int i; for(i = 0; i < (length >> 2); i++) } </sys></string.h></stdio.h></stdio.h></pre>	Stdio.h Stdio.h String.h Sys/alt_cache.h Sys/alt_alarm.h TRANSFER_LENGTH TTEDATIONS Make Targets OMA_tutor DMA_tutor_syslib
application.stf	Problems Console Properties C2H X	Refresh 🏠 ← → 🗖 🗖
E - Countration (nios_system)	Flotens Conside Properties Control Problems Conside Properties Control Use software implementation for all accelerators Use the existing accelerators Analyze all accelerators Build software and generate SOPC Builder system Build software and generate SOPC Builder system Build software accelerator in place of software implementation. Flush data cache before each call. Use hardware accelerator in place of software implementation Use hardware accelerator in place of software implementation Use software implementation W use software implementation	
] □◆		

FPGA Tools (4 of 5): LISA Processor Design Cycle

FPGA Tools (5 of 5): LISA Development Tools

	asm"		- - ×					
[000000				Memories Memories			× Source Fil	es
000000 🔁	D1]: NOP				lemory Range: 0x0000000	0. 0×000000ff	Files	
0000000 (D000000	; R[2] has pointer to cos D2]: LDL R[2], #(h0 & Oxff)	efficients operands		Si Si	ize: 00000100, Native Bits	ze: 16	Sea 🗠 🧰 Sea	rch Director
(000000	D3]: LDH R[2], #(h0 >> 8)			Er Address 0	ndianess, Native: little, Dis 1 2 3 4	play: little		embly Files
2 [000000	; R[3] is pointer to x da D4]: LDL R[3], #(x0 & Oxff)	ata array		0000000000 00001 00				der Files
• <u> </u>	05]: LDH R[3], #(_x0 >> 8)			000000008 00040 00				++ Files
1000000				000000016 00000 00	0000	00000		
172				000000024 00000 00		00000	·	
000000	; R[4]=R[4]+ &R[3]++ MAC R[4], R[3], R[2]	* &R[2]++			Mem	Ory		
000000	09]: MAC R[4], R[3], R[2]						Files (S	ymbols_/
[000000	Da]: MAC R[4], P(2) P(0)							
	; Test progra	1.1			moni	10r 00000	Name	Valu
000000]		assemble			0000	00000	EPC	12
000000	Dd]: NOP		- LI				APC	13
[000000]	De]: NOP		_ 1			1 000001 000001 000001	+ FPC	14
		-		•		•	I PRC	0
X Disassembly				data mem (proq mer	m_/	<u> </u>	BPC BPC vali	1 0
				data mem Aproq mer		<u>></u>	BPC_vali	
🗶 Disassembly	s Address Instruction	Disassembly	×	data mem A proq mer			BPC_vali	1 0
X Disassembly Disassembly	s Address Instruction [00000001] 00000	Disassembly NOP	×	data mem A proq mer		Calls/Total 8.86%	BPC_valie R[0] R[1] R[2]	1 0
X Disassembly Disassembly	[00000001] 00000 [00000002] 01200	,	×	data mem (proq men CLISA Operation Profile + Name		Calls/Total 8.86% 17.72%	BPC_valie R[0] R[1] R[2] R[3]	1 0 0 0 3 9
X Disassembly Disassembly	[00000001] 00000 [0000002] 01200 [00000003] 02200	NOP LDL R[2],#0 LDH R[2],#0	×	data mem & prog mer CRLISA Operation Profile + Name + NOP + decode + B_type	e Calis 7 14	Calls/Total 8.86% 17.72% 0.00%	BPC_valie R[0] R[1] R[2] R[3] R[4]	a 0 0 3 9 170
X Disassembly Disassembly	[00000001] 00000 [0000002] 01200 [00000003] 02200 [00000004] 01306	NOP LDL R[2],#0 LDH R[2],#0 LDL R[3],#6	×	data mem & prog mer CRLISA Operation Profile + Name + NOP + decode + B_type	e Calis 7 14	Calls/Total 8.86% 17.72% 0.00% 0.00%	BPC_valie R[0] R[1] R[2] R[3]	a 0 0 3 9 170
X Disassembly Disassembly	[00000001] 00000 [0000002] 01200 [00000003] 02200 [00000004] 01306 [00000005] 02300	NOP LDL R[2],#0 LDH R[2],#0 LDL R[3],#6 LDH R[3],#0	×	data mem & prog mer CPLISA Operation Profile + Name + NOP + decode + B_type + D_type + M_type		Calls/Total 8.86% 17.72% 0.00% 0.00% 3.80%	BPC_valie R[0] R[1] R[2] R[3] R[4]	a 0 0 3 9 170
X Disassembly Disassembly	[0000001] 00000 [0000002] 01200 [00000003] 02200 [00000003] 01306 [00000005] 02300 [00000005] 00000	NOP LDL R[2],#0 LDH R[2],#0 LDL R[3],#6	×	data mem Aproq mer CPLISA Operation Profile + Name + NOP + decode + B_type + D_type + M_type + I_type	e Calis 7 14	Calls/Total 8.86% 17.72% 0.00% 0.00%	BPC_valie R[0] R[1] R[2] R[3] R[4] R[5]	4 0 0 3 9 170 0 0
X Disassembly Disassembly	[0000001] 00000 [0000002] 01200 [00000003] 02200 [00000003] 01306 [0000005] 02300 [0000005] 02300	NOP LDL R[2],#0 LDL R[2],#0 LDL R[3],#6 LDH R[3],#0 NOP	×	data mem & prog mer CPLISA Operation Profile + Name + NOP + decode + B_type + D_type + M_type	Calls 7 14 Profiler	Calls/Total 8.86% 17.72% 0.00% 0.00% 3.80% 5.06%	BPC_valie R[0] R[1] R[2] R[3] R[4]	4 0 0 3 9 170 0 0
X Disassembly Disassembly	[0000001] 00000 [0000002] 01200 [0000003] 02200 [00000004] 01306 [00000005] 02300 [0000006] 00000 [0000006] 00000	NOP LDL R[2],#0 LDH R[2],#0 LDL R[3],#6 LDH R[3],#0 NOP	×	Vata mem A proq met CPLISA Operation * Name * NOP * decode * B_type * D_type * M_type * Ltype * Ltype	rofiler	Calls/Total 8.86% 17.72% 0.00% 3.80% 5.06% 0.00%	BPC_valie R[0] R[1] R[2] R[3] R[4] R[5]	4 0 0 3 9 170 0 0
X Disassembly Disassembly	[00000001] 00000 [0000002] 01200 [00000003] 02200 [00000004] 01306 [00000005] 02300 [00000006] 00000 [00000007] 00000 [00000007] 00000	NOP LDL R[2],#0 LDH R[2],#0 LDL R[3],#6 LDH R[3],#0 NOP NOP MAC R[4],R[3],R[2]	×	Value Aprog med CPLISA Operation Profile + Name + NOP + decode + D_type + M_type + I_type + R_type + R_type + H_type	g 0 ing 0	Calls/Total 8.86% 17.72% 0.00% 0.00% 3.80% 5.06% 0.00% 0.00%	ppc_valid R[0] R[1] R[2] R[3] R[4] R[5]	a 0 0 3 9 170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Disassembly Disassembly Symbo	[0000001] 00000 [0000002] 01200 [0000003] 02200 [0000003] 02200 [0000005] 02300 [0000006] 00000 [0000006] 15324 [0000000a] 15324 [0000000b] 15324	NOP LDL R[2],#0 LDH R[2],#0 LDH R[3],#6 LDH R[3],#0 NOP NOP MAC R[4],R[3],R[2] MAC R[4],R[3],R[2] NOP	×	Verticate Aprogram CPLISA Operation Profile + Name + NoP + decode + B_type + D_type + M_type + M_text	g 0 ing 0	Calls/Total 8.86% 17.72% 0.00% 0.00% 3.80% 5.06% 0.00% 0.00% 0.00%		a 0 0 0 3 9 170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X Disassembly Disassembly	[0000001] 00000 [0000002] 01200 [0000003] 02200 [0000003] 02200 [0000005] 02300 [0000005] 02300 [0000005] 00000 [0000007] 00000 [00000008] 1b324 [00000009] 1b324	NOP LDL R[2],#0 LDL R[3],#6 LDH R[3],#6 LDH R[3],#0 NOP NOP MAC R[4],R[3],R[2] MAC R[4],R[3],R[2]	×	data mem & proq med CPLISA Operation Profile * Name * NOP * decode * D_type * M_type * Mirect_addressin * indirect_addressin * indirect_addressin	g 0 ing 0	Calls/Total 8.86% 17.72% 0.00% 0.00% 3.80% 5.06% 0.00% 0.00% 0.00% 3.80% .80%	ppc_valid R[0] R[1] R[2] R[3] R[4] R[5]	a 0 0 3 9 170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Conclusion

- We have implemented in C++ and validated a working prototype of a quantum computer simulator that uses only linear space.
 - This tool can be useful to help students & researchers validate quantum algorithms.
 - □ Online resources at <u>http://www.eng.fsu.edu/~mpf/SEQCSim</u>
 - □ Contact <u>michael.patrick.frank@gmail.com</u> for source code
 - A future version will provide a more expressive quantum programming language based on C++.
- □ We are also designing an FPGA-based hardware implementation to boost simulator performance.
 - This approach is made much more feasible by the extreme memory-efficiency of our algorithm.