Fast, Efficient, Recovering, and Irreversible

V. Sathe, J.-Y. Chueh, J. Kim, C. Ziesler*, S. Kim**, Marios Papaefthymiou

Advanced Computer Architecture Laboratory
EECS Department
University of Michigan

Currently at *MultiGig, Inc and **Seoul National University

On the Path to Logic Reversibility

Charge recovery CMOS Reversible logic

Conventional CMOS Irreversible logic

 Δ evolution

Charge recovery CMOS Irreversible logic

- "physical" reversibility (energy recycling)
- high speed
- practical implementation

Conventional CMOS Operation

- Constant supply voltage Vdd
- One-way street to ground
- High voltage drops across conducting devices
- Energy dissipation grows with CV²

Charge Recovery

- Time-varying "power-clock" Vpc
- Charge recovered from load C
- Charge transfer through R takes time T
- Power dissipated on R
- Energy dissipation grows with (RC/T) CV²
- Reducing R decreases dissipation
- Increasing T decreases dissipation

The Design Space

Complex web of intertwined issues

- 1. Which capacitance to recover from?
 - Clock network? Gates? Bit lines? I/O? Other?
 - Balancing? Other issues?
- 2. How to store/reuse recovered energy?
 - Capacitors? Inductors?
 - How many power-clock phases?
- 3. What circuits do the recovery?
 - Power-clock generator design

Sample Design Points from'90s

- Asymptotically zero-energy split-level charge recovery logic S.G. Younis and T. F. Knight, Jr. SPLE'94
- Clock-powered CMOS: A hybrid adiabatic logic style for energy-efficient computing
 N. Tzartzanis and W. C. Athas – ARVLSI'99

And many, many others....
Few real working chips, however.

Example: Reversible Pipelines

- Gate outputs are restored using a reverse pipeline whose elements perform the inverse function of the forward pipeline
- Reversibility overheads aside, multiple phases result in high design complexity

The Michigan Designs

- Multiplier chip (2001)
 Semi-custom dynamic circuitry with fine-grain recovery from gate outputs
- Discrete wavelet transform chip (2003) Standard-cell ASIC design with recovery of clock power
- GHz-class chip (2005)
 Semi-custom dynamic circuitry with fine-grain recovery from gate outputs and near-threshold supply voltage scaling
- Guiding principles
 - Simplicity
 - Minimal control and hardware overhead
- Key attributes
 - Sinusoidal power-clock for power and synchronization
 - Integrated power-clock generator
 - High operating speeds (1GHz in silicon)
 - Higher energy efficiency than conventional counterparts

Multiplier Chip

- Suhwan Kim and Conrad Ziesler (while at UM) received First Prize in VLSI Design Contest, DAC 2001.
- Minimalist approach
 - Simple tools: magic and spice
 - Low-cost standard CMOS process:
 HP 0.5μm, 40-pin DIP package, through MOSIS.
- Operational chip demonstrates practicality of energy-recovering circuit design
 - Non-trivial size (8-bit operands, on-chip clock, self-test)
 - High throughput
 - Low energy dissipation

Low-Energy High-Speed Operation

- Working 1st silicon
- Simple yet effective experimental setup.
- Correct operation verified @ 130 MHz.
- Energy efficient operation validated by measurements.

Correct Function

Energy Comparison

Test Chip Overview

- Two multipliers with self-test per chip (minimum size die)
- Integrated power-clock generator
- Resonant LC oscillator

Multiplier and Self-Test

- 9,048 devices in multiplier array, 2,806 devices in self-test circuitry
- Implemented entirely in energy-recovering dynamic logic family.

Energy-Recovering Dynamic Logic

NMOS NAND gate

- Sense amplifier
- Precharge diodes
- Current switches
- Evaluation tree
- Current tail
- Power clock

- Single-phase sinusoidal power-clock
- Minimum-size evaluation tree
- Dual-rail noise-tolerant design
- Balanced clock load

Cascade Operation

- NMOS and PMOS gates are cascaded like domino logic.
- Animation shows tokens propagating through buffer chain.

Single-Phase Power-Clock Generator

25 tr. 19 tr. 10 tr.

- Zero-voltage switching
- LC-resonant clock generation
- External/bondwire inductor L
- Resistive/capacitive load
- Compact: 170 x 115 μm

Power-Clock Waveform

- Single-phase sinusoidal waveform @140MHz
- ~60pF load, ~10nH external inductor
- One DC supply (Vdd, Vss), two DC biases (NMOS, PMOS)

Resonant Clock ASIC

- Compatible with ASIC flow
- Synthesized by Conrad Ziesler and Joohee Kim using in-house standard-cell library and commercial tools
- Energy recovering clock tree and SRAM word/bit lines
- Low-cost bulk CMOS process: TSMC 0.25μm, 108-pin PGA package, through MOSIS
- High frequency (300MHz)
- Low voltage (1.0-1.5V)

Chip Microphotograph

System Overview

The Energy Recovering Flip-Flop

- Clock signal: Single-phase resonant sinusoid
- Probe activates state element only if next state differs from present state.
- Low voltage operation at high speeds
- Delay similar to conventional flip-flops
- Fully compatible with standard-cell ASIC flow

Resonant Clock Generator

 Resonate entire clock capacitance with small inductor

Pump resonant system with NMOS switch at appropriate times

• NMOS switch only conducts incremental losses whenever "on"

Clock Generator Operation

Recovering vs. Conventional Hardware

- Synthesized dual-mode ASIC
 - conventional
 - charge recovery
- Dual-mode flip-flop cell
- Conventional clock tree with conventional flip-flop
- Resonant clock tree with energy-recovering flip-flop

 Direct comparison of dissipation at target throughput using identical hardware structures

ASIC Statistics

Discrete wavelet transform (DWT)

• 3,897 gates, 413 ffs

15,571 transistors

400μm x 900μm

■ 13.6 pF , 21 nH

■ 300 MHz , 1.5V

0.25μm logic process

Simulation Results

	Per-Cycle Energy Dissipation		
300MHz, 1.5V	Charge Recovery	Conventional	
Idle	6.74pJ	29.72pJ	
Active	68.47pJ	78.28pJ	

Total system dissipation

- Conventional mode includes clock tree
- Energy recovery mode includes on-chip clock generator

Lab Setup

Correct Function

- 115MHz
- 5nH high-Q external inductor

Power Measurements I: Packaged Die

115MHz, 1.5V	Charge Recovery	Conventional
Idle	2.6mW	4.3mW
Active	8.9mW	11.7mW

- Total system measurements by monitoring DC supplies
 - Conventional mode includes clock tree
 - Energy recovery mode includes on-chip clock generator
- Not included: I/O supply, test circuitry, ring oscillator
- Energy recovery data is *conservative* (obtained when simultaneously driving two DWT cores, one always in idle)

Self-Resonance at 225MHz

signature output (energy recovery)

buffered power clock

- No external inductor!
- Clock resonates using parasitic inductance of package
- Lossy parasitics limit power savings

Power Measurements II: Bare Die

200MHz , 1.3V	ASIC Power	
Idle	4.6mW	(57% measured power savings)
Active	15.0mW	(25% measured power savings)

- Energy recovering clock-tree and flip-flops
- Total system measurements by monitoring DC supplies
 - Conventional mode includes clock tree
 - Energy recovery mode includes on-chip clock generator
- Unpackaged die, 4.2nH off-chip inductor
- Not included: I/O supply, test circuitry, ring oscillator
- Measured design was largely unoptimized.

Beyond Low Power: Low EMI

- Smooth waveforms yield simpler spectrum with suppressed highfrequency harmonics
- Potentially key advantage for next-generation mixed digital / RF designs

GHz-Class Charge Recovery: Boost

Logic
 Conventional logic evaluation stage with ultra-low DC supply

- Evaluation devices operating in super-threshold linear mode
- Charge recovery level conversion ("Boost") stage overdrives next gate
- "Boost" spread over time, trading off latency for efficiency

Boost Logic Structure

- Data independent capacitance presented to clock tree
- Pre-resolved sense-amplifier
- Boost stage is timing element; no throughput penalty
- Less sensitive to power supply variation (devices operating in linear mode)
- pMOS evaluation tree not required

8-bit Carry-Save Multiplier

- LFSR and Signature Analyzer both implemented in Boost
- H-Bridge clock generator topology
- 13-element on-chip inductor model used in simulations

Clock Skew Tolerance

• ±15% tolerance to simultaneous clock skew

Boost vs Conventional Multiplier

Conclusion

- Working silicon that realizes the potential of charge recovery
 - power savings over conventional CMOS
 - operating speeds all the way to 1GHz
 - low control and hardware overhead
 - integrated power-clock generators
- Multiplier chip in 0.5μm CMOS
 - Fine-grain recovery at the level of individual gate outputs
 - True singe-phase energy recovering dynamic logic
 - -2—4x energy savings over static CMOS in 50—200MHz
- DWT chip in 0.25µm CMOS
 - ASIC-compatible design flow
 - Correct operation up to 300MHz
 - Dual-mode chip for direct hardware comparison:
 - 60—75% of conventional power dissipation at 115MHz (packaged die)
 - 43—75% of conventional power dissipation at 200MHz (bare die)
- Dynamic adder in 0.13µm CMOS
 - Fine-grain recovery at gate outputs, trading off latency for efficiency
 - Correct operation up to 1GHz
 - 3—4x energy savings over conventional design at GHz-class speeds

Links and Acknowledgments

Web Sites

http://www.eecs.umich.edu/acal/energyrecovery

http://www.eecs.umich.edu/acal/adiabatic/

Energy recovery group

Suhwan Kim (emeritus) Conrad Ziesler (emeritus)

Joohee Kim Juang-Ying Chueh

Visvesh Sathe Sujay Phadke

Jae-Sun Seo

Funded in part by ARO and DARPA

DAAG-55-97-1-0250, DAAD-19-99-1-0340, DAAD-19-03-1-0122, N66001-02-C-8059