

Scaling Trends in Adiabatic Logic

J. Fischer, Ph. Teichmann , A. Bargagli-Stoffi, E. Amirante and D. Schmitt-Landsiedel

Institute for Technical Electronics (LTE), TU München

- Adiabatic Logic Families: Fully or quasi-adiabatic?
- Choice of threshold voltage in multi-V_{th} technology
- Gate leakage
- Scaling of the supply voltage
- Conclusions

Quasi-Adiabatic Logic in Modern Technologies

- The prevailing opinion is, that only fully adiabatic families can save most energy.
- The dissipation of quasi-adiabatic families is limited by additional mechanisms, which mainly depend on the threshold voltage

Do quasi-adiabatic logic families really dissipate more than fully adiabatic ones in modern technologies with reduced threshold voltages and increasing leakage currents?

Considered Adiabatic Logic Families

- Efficient Charge Recovery Logic: Lowest number of transistors
- Positive Feedback Adiabatic Logic:

Function blocks assist adiabatic charging

Power Clock System

Ideal Power Clock signal has trapezoidal waveform.

Approximation of the trapezoidal waveform by a sinusoidal one

Sources of Energy Dissipation

- Adiabatic loss
- $E_{diss,adiab} = 4 \cdot f \cdot R \cdot C^2 \cdot V_{DD}^2$
- Leakage loss

 $E_{diss,leakage} = V_{DD} \cdot \overline{I_{off}} \cdot f^{-1}$

- Non-adiabatic dynamic loss
 - Voltage steps

 $E_{diss,Vth} = \frac{1}{2} \cdot C \cdot V_{th}^2$

Coupling effects

Energy dissipation of static CMOS

 $E_{CMOS} = \frac{1}{2} \cdot C \cdot V_{DD}^2$

Scaling Threshold Voltage – Theory

<u>High Frequencies:</u> Benefits from lower V_{th} , as

$$R_{on} \propto (V_{GS} - V_{th})^{-1}$$

Low Frequencies: Benefits from higher V_{th}, as

$$I_{sub} \propto \exp\left(-\frac{V_{th}}{nkT/q}\right)$$

If the non-adiabatic dynamic losses are negligible, the overall minimum is found with higher threshold voltage.

Scaling Threshold Voltage – Simulation

Simulation of a PFAL inverter chain in a 130nm CMOS technology (V_{DD}=1.2V) with

high $V_{th} \approx 500 mV$

regular $V_{th} \approx 400 mV$

low $V_{th}\approx 300 mV$

- At high frequencies low threshold voltage is preferable, at lower frequencies regular $V_{\rm th}$ and high $V_{\rm th}$
- Overall minimum is found with regular V_{th}
- \Rightarrow For regular and low V_{th} non-adiabatic dynamic losses are negligible.
- ⇒ Quasi-adiabatic logic families show the same energy dissipation than full adiabatic ones.

- Main scaling parameters: $t_{OX}(\downarrow)$, W (\downarrow), L (\downarrow), V_{DD} (\downarrow), V_{th} (\downarrow)
- Impacts: $C = \frac{\epsilon_{OX} \cdot W \cdot L}{t_{OX}} \qquad (\downarrow)$ $R \approx \left[\mu \cdot \frac{\epsilon_{OX}}{t_{OX}} \cdot \frac{W}{L} \cdot (V_{GS} V_{th}) \right]^{-1} (\uparrow)$

 \rightarrow altogether: RC (Transistor) (\downarrow)

• Energy dissipation of adiabatic logic:

$$E_{AL} \propto R \cdot C^2 \cdot V_{DD}^2$$

• Energy dissipation of static CMOS:

$$E_{CMOS} \propto C \cdot V_{DD}^2$$

Break even frequency: $\frac{1}{16} \cdot \frac{1}{RC}$ (1)

Scaling Trends in Adiabatic Logic

•

Gate Leakage

Gate leakage has become a recognizable effect with oxide thickness t_{ox} < 2nm,

i.e. for technology nodes of 90nm and beyond.

Energy Dissipation Factor

Figure of merit - Energy Dissipation Factor: $\eta =$

 $\eta = \frac{E_{gl,CMOS}}{E_{gl,AL}}$

Comparison of a single transistor

- Maximum supply voltage only one quarter of the period
- During rise and fall time also gate leakage currents are flowing.
 - ⇒ 2 < η < 4
- Matlab simulation for a 90nm CMOS technology (V_{DD}=0.8V):

11

Effective Energy Dissipation Factor

Effective Energy Dissipation Factor:

n_{CMOS}	n_{ECRL}	fn_{ECRL}	η_{eff} ECRL
1	2	2	1.43
2	4	2	1.43
5	10	2	1.43
n_{CMOS}	n_{PFAL}	fn_{PFAL}	η_{eff} PFAL
1	4	4	0.715
2	6	3	0.95
5	12	2.4	1.19
	n_{CMOS} 1 2 5 n_{CMOS} 1 2 5 5	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{llllllllllllllllllllllllllllllllllll$

$$fn = \frac{n_{AL}}{n_{CMOS}}$$

 $\eta_{eff} = \frac{\eta}{f_n}$

 $transistor count_{n,CMOS}$

- Adiabatic logic gates contain more transistors than static CMOS
 → Effective Energy Dissipation Factor
- Gate leakage of n-channel MOSFET >> p-channel MOSFET
 → Only the n-channel transistor count is considered
- ECRL has twice n-channel transistors than static CMOS
- PFAL has two additional n-channel MOSFET than ECRL. The contribution of these transistors become less important for complex gates.

Gate Leakage – Simulations

- ECRL
 - Inverter: as estimated about 1.43
 - NAND/LOGIC5: about 1.25 because of additional effects, like stacking effects, position of logic blocks etc.
- PFAL
 - Inverter: better than estimated
 - NAND/LOGIC5: values as estimated

Scaling Supply Voltage

- ECRL scales linearly down to approx. V_{th}
 - PFAL scales linearly down to approx. 2V_{th}

Scaling of the Supply Voltage in PFAL

Scaling Trends in Adiabatic Logic

- Function blocks need a voltage drop of approx. V_{th}
- Latch needs a voltage drop of approx. V_{th}
- \rightarrow For supply voltages V_{DD} < 2V_{th} the function blocks switch off before the latch begins to work
- \Rightarrow Increased energy dissipation

15

Trapezoidal vs. Sinusoidal Supply Voltage

- In real circuits the adiabatic logic is supplied with a sinusoidal voltage.
- No effect on the adiabatic energy dissipation (high frequencies)

- Non-adiabatic dynamic losses are negligible in modern technology
 - \Rightarrow Quasi-adiabatic logic families behave like full-adiabatic ones
- Adiabatic logic gates benefit from technology scaling as well as static CMOS.
- Energy dissipation due to gate leakage comparable to static CMOS
- The supply voltage of ECRL can be scaled down to the threshold voltage.
- The adiabatic losses are not affected by a sinusoidal power supply.

ECRL shows the best properties for ultra-low voltage applications. PFAL offers large energy savings at frequencies about 100MHz.

