Usage of Water-Filled Trench in Improving Groundwater Quality

Gang Chen, Amy Chan Hilton, and Kamal Tawfiq

Department of Civil and Environmental Engineering FAMU-FSU College of Engineering

Shallow Vadose Zone

BTEX, PCE, TCE and Iron Contamination

Groundwater in Florida

BTEX Contamination

Percent BTEX In Gasoline (% weight)

BTEX Components of Gasoline (% weight)

Gasoline Composition

Water-Filled Trench

Objectives

 Explore the possibility of the usage of water-filled trench in treating contaminated groundwater

Identify dominating mechanisms

- Organic decomposition
- Volatile organic compound vaporization
- Metal oxidation and precipitation

Investigate the effect

- Effect of dissolved oxygen
- Effect of alkalinity

Promote field applications

- Quantify removal rate

Outline

Theoretical consideration

- Organic compound removal
- Volatile organic compound removal
- Metal removal
- Effect of alkalinity
- Simulated Groundwater
- Water-Filled Trench Experiments
- Water-Filled Trench with an Aerobic Filter
- Expected Results and Modeling

Organic Decomposition

- BTEX, pesticides, and polycyclic aromatic hydrocarbons (PAHs)
- Aerobic process
- Nutrient requirement
- pH and temperature

Volatile organic compound vaporization

- Volatile organic contaminants
- High vapor pressure and low water solubility
- Temperature-dependent
- BTEX
- PCE and TCE

Florida State

University

Metal Removal

- Heavy metals to be transformed and precipitate
- pH and redox conditions
- Alkalinity

Florida State University

Dissolved Oxygen

- Organic compound degradation
- Electron acceptor
- 1.0 mg/L DO required for 0.32 mg/L BTEX
- Mass transfer between air and groundwater
- Heavy metal oxidation and precipitation

<u>Alkalinity</u>

- HCO_3^- , CO_3^{2-} and OH^-
- Alkalinity loss during organic degradation, CO₂ stripping and metal oxidation and precipitation
- Most important for heavy metal oxidation and precipitation
- Addition of external alkaline agents such as lime

Simulated Groundwater

- Benzene, 25 mg/L
- Toluene, 25 mg/L
- Ethylbenzene, 25 mg/L
- *p*-xylene, 25 mg/L
- PCE, 20 μg/L
- TCE, 200 μg/L
- Glucose, 50 mg/L
- Ferrous iron, 10 mg/L

Benzene, toluene, *p*-xylene, PCE, and TCE to be monitored by a GC with a flame ionization detector and helium as the carrier gas

Glucose and iron to be quantified by HPLC and spectrophotometer

Water-Filled Trench Setup

Water-Filled Trench with a Filter

Other Parameters to Be Monitored

- Redox Potential
- pH
- Conductivity
- Temperature

Control Experiments

$$C_{p} = C^{*}P[\frac{(1 - P_{w}/p)(1 - \theta P)}{(1 - P_{w})(1 - \theta)}]$$

 C_p : oxygen concentration at nonstandard pressure C*: oxygen concentration at standard pressure P: nonstandard pressure P_w : partial pressure of water vapor

Benzene=? Toluene=? Xylene=? Glucose=? PCE=? TCE=? Fe²⁺=?

DO Value (mg/l)

pH=? Redox=? Microbial activity?

Organic Removal – Biological Process?

Fe²⁺ Removal – Biological or Chemical Oxidation and Precipitation?

Expected Results — Water-Filled Trench with Aerobic Filter

DO Value (mg/l)

Biodegradation Simulation

Organic contaminant degradation:

$$S = K_m W[\frac{S_0}{K_m} exp(\frac{S_0 - \mu_{max}t}{K_m})]$$

$$\frac{\mathrm{dS}}{\mathrm{dt}} = -\frac{\mu_{\mathrm{max}}S}{K_{\mathrm{m}} + S}$$

 $W(x) + \ln[W(x)] = \ln(x)$

S: organic compound concentration μ_{max} : maximum bacterial growth rate K_m : half saturation constant S_0 : initial organic compound concentration W: Lambert function x: argument of W

Volatile organic contaminants mass transfer:

$$\mathbf{M} = \mathbf{K}_{\mathrm{L}} \mathbf{a} (\mathbf{C}_{\mathrm{L}}^* - \mathbf{C}_{\mathrm{0}})$$

M: mass of volatile organic contaminants transferred per unit time and volume

- K_L: mass transfer coefficient
- a: effective mass transfer area

C_L^{*}: liquid phase concentration in equilibrium with gas phase concentration

C₀: bulk phase liquid concentration

Oxidation/Precipitation Simulation

- For microbial mediated metal transformation, Monod function to be used
- For chemically mediated metal transformation, a stoichiometry relationship to be established and precipitation process to be simulated by Visual MINTEQ 2.51 $[Fe^{2+}]_{TOT} = 10.00 \,\mu M$

investigated in this study: 0.25, 2.0, 3.5, 10.0, 15.0, and 30.0 mg/l

 $q = a(1-b^{c})$

	a	b	\mathbb{R}^2
0.25	0.0085 ± 0.0002	0.9796 ± 0.0013	0.9970
2.00	0.0533 ± 0.0058	0.9850 ± 0.0056	0.9606
3.50	0.1099 ± 0.0058	0.9818 ± 0.0025	0.9609
10.0	0.5424 ± 0.0473	0.9931 ± 0.0010	0.9945
15.0	0.5779 ± 0.0317	0.9894 ± 0.0013	0.9788
30.0	1.2890 ± 0.1837	0.9898 ± 0.0029	0.9214

Questions?

