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Abstract

This paper proposes an algorithm to find the solution of an underdetermined linear
system of equation with the smallest maximum coefficient. The algorithm provides a
generalized triangularization of the matrix.



1. Introduction.
This note concerns itself with an algorithm to find the least maximum solution to an
underdetermined linear system of equations,

Ax=Db (1.1)

where A is an m by n matrix with m < n. The least—maximum solution x = e is the
solution with the smallest maximum norm,

Ae=Db € =|lel|oo (1.2a,b)

where
||X|[cc > € when Ax =D (1.3)

A problem of this type arises in the generation of discretization formulae for random
distributions of points in a mesh-free environment. Constraints of accuracy lead to a
system of linear equations for the discretization, while stability constraints put a limit on
the allowed magnitude of the unknowns. Since an analytical solution is not feasible in
the mesh-free environment, the procedure is to add unknowns until the least—-maximum
solution is within the prescribed bounds.

The least—maximum solution for a single equation, m = 1, is simple. By substitution
it can be verified that the following is a solution:

e; = sign(by,)sign(ami)em  (@ms # 0) (1.4a)
leil < em (ams = 0) (1.4d)
if b
= 1.
€m - (1.5a)

where a,, is the L1—norm of the single row of matrix A,
n
am = |[al[[1 =) |am,] (1.5b)
i=1

According to Holder’s inequality,
llam|[1]1%[[co > [bm| (1.6)

for any solution x, so that (1.4), (1.5) is the desired least—-maximum solution with €,, = €.
When there is more than one equation, the solution is considerably more complicated.
The correct maximum solution e must still satisfy each equation, including the m-th. Thus
the Holder inequality (1.6) shows that its maximum norm ¢ is at least equal to €,,. But,
(1.4) is not a solution to the full system;
The present procedure iteratively increases the value of ¢, to approach ¢ from below,
by forming new linear combinations of equations. Eventually, this results in the correct
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value of the maximum norm of the least maximum solution. In addition, at convergence
the m-solution gives the correct least—-maximum solution for the unknowns determined in
(1.4a), while similar least-maximum solutions to the other equations give the unknowns
not determined by (1.4a).

2. Increase of the lower bound.

Our purpose in this section is to attempt to increase the lower bound to the least—
maximum € by combination of any two existing equations. Two special cases will be
excluded for now:

(a) If the Li—norm a; of any equation vanishes while the right hand side b; is non-zero,
the system is unsolvable.

(b) If all the b; are zero, the system is homogeneous and the appropriate least—maximum
solution vanishes.

If neither of these two conditions applies, we can select the m—th equation as the one
that gives the most stringent bound on ¢; the equation with the largest value of

€m = M (@m, b 7 0) (2.1)

am

For effective vectorization of various numerical operations, the unknowns will be reordered
to move the non-zero coefficients a,,; of the last equation to the right.

To further increase this lower bound, we will attempt to form a linear combination of
equation m and an amount A of another equation 7. The bound of the combination is

|bm + Ab;

= J—1 n
Z |)\aij| —+ Z \amj —+ )\aij\
1=1 i=J

~

(2.2)

where J is the index of the first non-zero coefficient in equation m. Since (2.2) is piecewise
monotonous, the maximum occurs at a vertex where one of the coefficients an,; + Aa;;
vanishes.

In selecting equation i, we choose the equation that leads to the largest initial increase
of €, with A. Expanding (2.2) for small ),

n J—1
sign by, ) Ab;jay, — A Z @3 StgN (@) b | — [Al[bm| 32 |aij|
der, ~ =7 = (2.3)

2
Am

This expression can be reduced by noting that the first sum involves the deterministic part
(1.4) of the least-maximum solution e; of the m-equation alone. We will define a ‘reduced’
equation ¢* by taking the unknowns j > J equal to this deterministic part and moving
them to the right hand side:

b: = bz — Z Ai5€4 (2.4)
i=J
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J—1
a; = |ag] (2.5)
j=1

This is so far merely a matter of definition; there is no assurance that the reduced
equation is solvable even when the original system is. Yet, it will be seen that at conver-
gence, the reduced system is solvable, and its least—-maximum solution will be smaller than
the least—maximum solution of the m-equation.

In terms of the reduced quantities, the initial increase in €, is

Al . * *
dey, ~ cll—2| (sign(bym,)sign(A)amb; — a; |bm|) (2.6)
m
Since the sign of A can be arbitrary, to get the largest initial increase in €, we choose the
equation ¢ as the one with the largest value of

di = am|b7| — a;|bm| (2.7)

Since d; is positive, the linear combination will increase ¢, to approach the true least—
maximum more closely.

But, when all the d; are non-positive, we must turn to the reduced system, temporarily
ignoring the m-th equation. Because of (2.7), each equation of the reduced system is now
at least initially individually solvable. If the subsystem happens to be homogeneous, we
found the true least-maximum solution, since we can satisfy the equations by taking the
remaining unknowns j =1,...,J — 1 zero.

If the reduced system is not homogeneous, we can perform a similar iterative process
on it. At least initially, the least—maximum solution of any equation of the reduced system
is less than that of the m—th equation:

b*
€& = | 1' <ém (2.8)
a;

When we repeat the equation combination for the subsystem to increase the maximum
value of €, we can use the new subsystem to further increase €,, when (2.8) is no longer
true, including the case that unsolvability arises. In case (2.8) remains true at convergence,
we repeat the iterative process on the subsystem of the subsystem.

At convergence, when none of the least-maximum solutions can be further increased,

the system must assume the form

T T T T
( all a%-; e “ee a%-’m_l a%-’m ( X1 \ bl \
A2 -0 cee By A2m X2 b2
— (2.9)
T T
\ Ap—1m—1 amT—lm Xm_1} bm_l}
mm Xm bin



where the vectors x; may be of zero length and the vectors aZ; have all non-zero coefficients.

1
Backward substitution gives

Bi = bz — Z ag}Xj (2.100,)
j=i+1
aj;x; = B; (2.100)

In case the vector x; is of length zero, B; vanishes, and if not, we solve (2.10) in least—

maximum sense,
_ B
a1

(2.10c)

€

(x;), = sign ((aﬁ)k) sign(B;)e;

On behalf of (2.8) the ¢; are monotonously increasing, and since €,, must still be less than
or equal to the maximum norm of the least-maximum solution, our solution must be a
least-maximum one. Thus €, gives the maximum norm of the least-maximum solution.
3. Subroutine INFSOL

INFSOL performs an iterative procedure of the general nature described in the pre-
vious section. INFSOL first attempts to triangularize the matrix using full pivoting. This
allows linear dependence between equations to be recognized, and it increases the linear
independence of the equations.

In each iteration, INFSOL makes only a single attempt to increase €,,. INFSOL next
continues with the subsystems.



