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This paper is an extension of work on separation from a downstream moving wall
by Ruban et al. (J. Fluid. Mech., vol. 678, 2011, pp. 124–155) and is in particular
concerned with the boundary-layer separation in unsteady two-dimensional laminar
supersonic flow. In a frame attached to the wall, the separation is assumed to be
provoked by a shock wave impinging upon the boundary layer at a point that moves
downstream with a non-dimensional speed which is assumed to be of order Re−1/8

where Re is the Reynolds number. In the coordinate system of the shock however,
the wall moves upstream. The strength of the shock and its speed are allowed
to vary with time on a characteristic time scale that is large compared to Re−1/4.
The ‘triple-deck’ model is used to describe the interaction process. The governing
equations of the interaction problem can be derived from the Navier–Stokes equations
in the limit Re→∞. The numerical solutions are obtained using a combination
of finite differences along the streamwise direction and Chebyshev collocation along
the normal direction in conjunction with Newton linearization. In the present study
with the wall moving upstream, the evidence is inconclusive regarding the so-called
‘Moore–Rott–Sears’ criterion being satisfied. Instead it is observed that the pressure
rise from its initial value is very slow and that a recirculation region forms, the
upstream part of which is wedge-shaped, as also observed in turbulent marginal
separation for large values of angle of attack.
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1. Introduction
This study was undertaken as a further step in developing a theory of boundary-

layer separation over moving walls in supersonic flow. It was motivated by numerous
numerical and experimental investigations of boundary-layer separation based on
Prandtl’s boundary-layer theory. Prandtl (1904) was the first person to provide crucial
insight into the separation phenomenon. Prandtl observed that despite the fact that
‘common’ gases and liquids have very low viscosity, viscous effects did play a major
role in the separation phenomenon. He argued that high-Reynolds-number flow around
a rigid body may be treated as inviscid except in a very thin region adjacent to the
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body surface, the so-called boundary layer. This boundary layer separates when the
pressure starts to rise going downstream along the body surface, and hence induces
drastic changes to the flow field. It leads to a strong vortical motion and reversed flow
in the region downstream of the separation point, and as a result the body experiences
an increase in drag.

The analysis of Goldstein (1948) showed that the classical steady boundary-layer
equations break down at the point where the flow reverses, or separates. Landau &
Lifshitz (1944) had drawn a similar conclusion earlier, but Stewartson (1958) showed
that their assumption that the position is a regular function of the shear was not really
justified, though correct to leading order. The breakdown in the boundary layer is
associated with the failure of the entire strategy of assuming an attached outer flow
when in reality the global flow is separated, cf. Stewartson (1970).

A key element of the separation process, which was not fully appreciated in
Prandtl’s description, was an interaction between the boundary layer and the external
inviscid flow, now referred to as viscous–inviscid interaction. Asymptotic theory of
viscous–inviscid interaction, also known as the triple-deck theory, was formulated
simultaneously by Neiland (1969) and Stewartson & Williams (1969) for the self-
induced separation in supersonic flow and by Stewartson (1969) and Messiter (1970)
for incompressible fluid flow near the trailing edge of a flat plate. Sychev (1972) and
Smith (1977) showed that boundary-layer theory in its classical form, as formulated
by Prandtl (1904), cannot be used in a small vicinity of a separation point, where
viscous–inviscid interaction must be allowed for. A detailed description of applications
of the theory to different forms of the boundary-layer separation may be found in the
monograph by Sychev et al. (1998). The concept of viscous–inviscid interaction in
the classical scenario has made it possible to remove the singularity and obtain a full
description of small-scale separation, see Ruban (1981), Smith & Daniels (1981) and
Stewartson, Smith & Kaups (1982).

Unsteady boundary-layer separation is a much more complicated phenomenon.
Theoretical analysis of it requires consideration of the unsteady boundary-layer
equations, such as in the case of impulsive motion of a blunt cylinder. Blasius (1908)
was the first to consider the boundary-layer flow past a circular cylinder and showed
that after some time the skin friction becomes zero at the rear stagnation point. Past
this time, the point of zero skin friction moves upstream from the rear stagnation point
and a reversed flow region exists behind it. After the work of Blasius, the case of
the circular cylinder became a benchmark problem for many researchers. Proudman
& Johnson (1962) and later Robins & Howarth (1972) and Van Dommelen & Shen
(1985), showed that while the steady classical boundary-layer flow is singular at the
point of flow reversal, Goldstein (1948), the unsteady boundary-layer solution at the
rear stagnation point remains regular for all time. It was recognized, in particular by
Rott (1956), Sears (1956) and Moore (1958), that unlike in steady flows, the point of
vanishing shear is not associated with detachment of the boundary layer from the wall.

The analysis of Goldstein was limited to steady separation from a fixed wall.
However, Moore (1958) argued that singular behaviour should also be expected in
unsteady separation. To gain more insight, Moore modelled unsteady separation as
steady separation from a moving wall. Such flows are unsteady when seen in a frame
attached to the wall. Based on his work and similar ideas of Rott (1956) and Sears
(1956), Sears & Telionis (1975) proposed that the presence of a singularity in the
classical boundary-layer equations, and not flow reversal, should be used to define
separation. They proposed that this separation would be characterized by a point inside
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FIGURE 1. The sketches on the left show streamlines and velocity profiles for a fixed wall,
and those on the right for an upstream moving wall. Streamline profiles: (a) Moore (1958),
(b) Sears & Telionis (1975), (c) Van Dommelen & Shen (1983a). (d) Velocity profiles as
proposed by Sears & Telionis (1975). Note that• denotes the separation point.

the boundary layer at which the conditions

u= 0,
∂u

∂y
= 0 (1.1)

apply when seen in a system moving along with separation. Here u is the velocity
component in the direction of the wall and y the distance from the wall. Sears &
Telionis named these conditions the MRS conditions, after Moore, Rott and Sears who
had formulated them earlier in a more limited context (Moore 1958). See also Ludwig
(1964) for a similar formulation.

The velocity profiles as sketched by Sears & Telionis (1975) are on the right
in figure 1(d). They correspond to the streamline sketches above them and can be
transformed to unsteady separation in a wall-fixed frame by simply subtracting the
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wall velocity. The intent of Sears & Telionis was to generalize the better understood
case of plane, steady flow along a fixed wall. They assumed that the boundary-layer
flow in both moving wall cases (downstream and upstream) would be bifurcated by the
wake at ‘some kind of stagnation point’ and that, when seen in a coordinate system
moving with separation, vanishing shear at a stationary point away from the wall
would characterize the phenomenon.

It is important to note that while most authors agree about the MRS conditions
cited above, the shape of the streamlines and the presence of a stagnation point at
separation is less clear. Moore (1958) apparently did not envision a stagnation point,
at least for the downstream moving wall, but proposed zero ‘profile’ velocity and a
vertical streamline ‘shoulder’. Moore was even more vague about the upstream moving
wall, calling it a case ‘for which speculation is difficult’. His flow sketch shown in
figure 1(a) is quite different from figure 1(b) by Sears & Telionis.

On the other hand, Rott (1964, p. 432), states: ‘Moore (1958) and, independently,
Sears and Rott (unpublished) came to the conclusion that a sort of stagnation point,
u = v = 0, within the boundary layer (viewed in the steady system, the walls
moving) takes the significance of the laminar separation point. With boundary-layer
approximations, the conditions for such a point are also very nearly u = ∂u/∂y = 0’.
Clearly, in this view, the stagnation point is primary and the MRS conditions
secondary.

It should also be noted that Van Dommelen & Shen (1983a) proposed a different
streamline picture, figure 1(c). They proposed that the separation would occur
downstream of the stagnation point, rather than at it. Thus, in their proposal, the
flow velocity at reversal of the component u in the direction of the wall is upwards
rather than downwards, immediately before separation. In that case, near this reversal
line, the initially upstream moving fluid passes into the downstream moving region.
So upstream moving fluid is turned back downstream at the reversal line. Part of the
thickening of the boundary layer going towards separation from the upstream side
is then due to additional streamlines coming from downstream that become part of
the velocity profile. Van Dommelen & Shen (1983a) show that a self-consistent and
reasonably complete mathematical description of their proposed flow exists in the
non-interactive case. This description can explain the flattening of the velocity profile
at flow reversal postulated in the MRS model.

An interesting model proposed by Ludwig (1964) can make the fundamental
difference between the proposals more clear. Consider the curve through the points
where the streamlines are vertical. On that curve, the velocity component u in the
direction of the wall crosses zero. As far as the flow above this curve is concerned,
the curve can be replaced by a solid surface, an imaginary wall, through which there
is a non-zero transpiration velocity. In that picture, the proposals of Moore (1958)
and Sears & Telionis (1975) apply suction through the imaginary wall, while Van
Dommelen & Shen (1983a) apply blowing. (It should be noted that Ludwig himself
speaks of blowing, rather than suction. However, he only measured the total velocity,
and there is no mention in the paper that the direction of the transverse velocity was
actually determined. Blowing is however a more natural way to cause separation than
suction.)

Both Moore and Sears & Telionis suggested that a singularity similar to the
Goldstein one should occur at the point where the MRS condition holds. This
singularity would be an exaggeration of the actual very rapid growth in boundary-layer
thickness that is due to taking the limit of infinite Reynolds number.



Unsteady boundary-layer separation: upstream moving wall 5

For a downstream, rather than upstream, moving wall, these ideas have received
considerable support. Several subsequent boundary-layer computations, as summarized
in Sears & Telionis (1975), soon confirmed the MRS conditions and associated
singularity.

Various more complete computations for the downstream moving wall show an
MRS point near a stagnation point. Recently Ruban et al. (2011) demonstrated
the existence of an MRS point and structure of the separated flow region for
the downstream moving wall for external supersonic flow. The incompressible
computations of Inoue (1981a,b) showed that the MRS conditions were satisfied at
a point close to the start of the recirculating region. However, the vertical velocity was
not zero at or near that point, so there was no stagnation point.

Strong theoretical support for the MRS conditions for the downstream moving wall
was given by Sychev (1979), with some modifications by Van Dommelen & Shen
(1982a, 1983b) and additional flow details by Elliott, Smith & Cowley (1983). This
solution includes viscous–inviscid interaction. See also Ruban et al. (2011) and the
references therein. The singularity structure is quite different from the Goldstein one
envisaged by Moore and Sears & Telionis, however.

To understand unsteady separation, the major alternative to studying steady
separation from a moving wall has been to study the formation of separation in
an initially unseparated boundary layer. Separation is here again understood to be
in the sense of breakaway of the boundary layer from the surface. It is not the
flow reversal already described by Blasius, which is not directly associated with
any unusual thickening of the boundary layer. The advantage of starting with an
initially unseparated boundary layer, typically the Blasius boundary layer around an
impulsively started circular cylinder, is that the pressure in the boundary layer during
the evolution leading up to separation is unambiguously known. Therefore the solution
is believed to be physically meaningful until right at the time of the first breakaway,
for sufficiently high Reynolds number.

Telionis & Tsahalis (1974) first computed the boundary layer around the circular
cylinder for longer times with the intent of finding a breakaway singularity. They
found that a singularity occurs after the cylinder has moved over a 0.65 radius
distance, at a position 140◦ from the front stagnation point. However, later authors
have not been able to reproduce these data. In particular, Cebeci (1979), using a more
sophisticated box scheme, carefully recomputed the range described by Telionis &
Tsahalis (1974) and found the solution to be non-singular. He suggested that, unlike
the theory of Sears & Telionis (1975) predicted, the solution would be smooth for all
time and thicken like the Proudman & Johnson (1962) flow does at the rear stagnation
point. However, using an unusual Lagrangian method, Van Dommelen & Shen (1980)
continued the solution for still longer times and found that a separation singularity
does occur. It forms after the cylinder has moved over a 1.5 radius distance, at a
position 111◦ from the front stagnation point. This singularity has been confirmed by
later authors using more conventional numerical methods, for example Ingham (1984),
Henkes & Veldman (1987), Riley & Vasantha (1989), Puppo (1990) and Christov
& Tzankov (1993). See also an earlier computation by Van Dommelen & Shen, as
briefly summarized in Shen (1978), which obtained equivalent results using a simpler
non-impulsive initial condition. The application of Lagrangian variables in studying
unsteady boundary-layer flows, including in three dimensions, has been discussed in
detail by Cowley, Van Dommelen & Lam (1990).

Using the same scheme as in Cebeci (1979), Cebeci (1982) extended his computed
range and achieved good agreement with Van Dommelen & Shen (1980) until shortly
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before the separation. However, subsequently, using a different numerical scheme,
Cebeci (1986) obtained very different results from Van Dommelen & Shen (1980) and
other authors, including his own earlier work, and even at quite early times. These
results have not been independently confirmed.

Results very similar to those of Van Dommelen & Shen (1980) were obtained
independently by Cowley (1983) using a high-order numerical series expansion. Also
independently, Wang (1979), using a conventional numerical technique, obtained
results that suggested a breakdown of the boundary layer at a time and location
roughly similar to those of Van Dommelen & Shen (1980). However, there are
significant qualitative differences between his results and those of other authors.
The structure of the breakdown is unclear, but would need to be different. The
interpretation of the breakdown structure as given by Wang would require a singular
slope of the wall shear profile, but neither his own results nor those of others have
confirmed this.

The mathematical structure of the singularity was discovered by Van Dommelen
and Shen. They performed both a Lagrangian analysis of the flow, Van Dommelen
(1981) and Van Dommelen & Shen (1982b), and an Eulerian one, Van Dommelen
(1981). The two procedures gave identical results for the structure. A somewhat
different but equivalent Eulerian analysis was given by Elliott et al. (1983). While
the singularity satisfies the MRS conditions, it is not a Goldstein-type singularity in
a reasonable sense. In particular, the separation process is found to be approximately
inviscid where the Goldstein one is viscous. Elliott et al. (1983) also investigated the
removal of the singularity through interactive effects and found that the boundary-
layer solution breaks down earlier than suggested by Van Dommelen (1981). The
first interactive stage of the unsteady boundary-layer separation occurs at a boundary-
layer thickness of O(Re−5/11), physically not that much thicker than the conventional
O(Re−1/2) thickness.

The boundary-layer profile upstream of separation is a non-interactive version of the
one studied by Sychev (1979) and Van Dommelen (1981). Correspondingly, normally
the wall will be moving downstream compared to the forming separation. Theoretically
that is not strictly necessary, but unfortunately, even if the wall is moving downstream
compared to the separation, its structure will simply not be of the form shown in
figure 1. Attempts to create a downstream moving separation by studying say a
rotating cylinder have not been successful so far.

Other attempts to verify the upstream moving wall case have also been difficult.
Experimental support for the flattening of the tangential velocity profile as shown in
figure 1(d) was given by Ludwig (1964), continuing work of Vidal (1959). However,
his results appear to be inconsistent with the streamlines as shown in figure 1(b).
This streamline picture should mean that the total velocity, including the transverse
component, decreases to zero at the MRS point. The total velocity is in fact what
Ludwig actually measured. The minimum in the measured total velocity profiles did
not decrease towards zero. Instead it was approximately constant until separation and
then grew in magnitude.

Some support for the streamline sketches in figure 1(b) at a very low Reynolds
number was given by Koromilas & Telionis (1980). However, as they stated in their
conclusions, ‘the case of a downstream-moving separation was attempted and some
results were included here but they are rather inconclusive. (. . . ) It was not possible to
measure and observe the speed of propagation of separation and therefore it was not
possible to make a quantitative comparison with the definition of Sears (1956) and the
theory of Sears & Telionis (1975), Williams (1977) and Shen (1978)’.
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Tsahalis (1977) was the first to study laminar-boundary-layer separation for a steady
outer inviscid flow over an upstream moving wall numerically. He concluded that for
a steady flow over an upstream moving wall, the separation coincides with the MRS
model with a Goldstein-type singularity. He presents a velocity profile close to what is
taken to be separation that shows a slope near flow reversal that is significantly lower
than that at the wall, indicating an approximate MRS profile. The vertical velocity v
at the flow reversal point u = 0 is not given. Lower in the boundary layer the vertical
velocity is positive, not negative as his sketch figure 2, similar to the streamlines
in figure 1(b), suggests. However, one problem with the computation of Tsahalis is
that while the solution is affected by the flow downstream of separation, through the
reversed flow near the wall, there is no physically justified downstream flow.

Inoue (1981a,b) did include a physical downstream flow in a parabolized
Navier–Stokes computation, but was unable to produce results like those of Tsahalis
despite an attempt to apply similar boundary conditions. Inoue (1981a,b) found in his
computations that the separation bubble starts without the simultaneous vanishing of
both longitudinal velocity and skin friction as predicted by the MRS conditions. The
results of Tsahalis (1977) need independent confirmation.

Araki (2006) studied the problem of boundary-layer separation on a moving wall
in supersonic flow based on viscous–inviscid interaction and considered both the
downstream and upstream moving wall cases. For the upstream moving wall case, in
a weak-shock approximation, he observed that there is a sharp pressure-drop region
in the vicinity of the point where the shock interacts with the boundary layer. The
pressure increases rapidly after the pressure drop near the shock impinging point. The
width of the pressure drop region increases as the wall velocity |Uw| increases. In the
strongly nonlinear case, his results indicate that the difference between the upstream
and downstream moving wall cases may induce a drastic change in the flow structure.

Most of the other studies on the upstream moving wall case that have been
mentioned were concerned with incompressible fluid flow. In this paper, we consider
the compressible fluid flow case on an upstream moving wall. The paper is organized
as follows: § 2 gives a brief summary of the problem formulation based on the
classical triple-deck theory which remains valid if the wall speed is O(Re−1/8). The
computational results for the upstream wall moving case are presented in § 3 and
finally in § 4 we provide the concluding remarks.

2. Formulation of the problem
Let us consider a flat plate placed in an uniform two-dimensional supersonic flow

of a perfect gas, with the plate parallel to the free-stream velocity. Let a shock wave
be generated by a wedge placed above the plate and let this wedge, hence the shock,
move parallel to the plate, as shown in figure 2. For consistency with the notation of
Ruban et al. (2011), the wedge velocity will be assumed positive if the wedge moves
upstream as shown.

Let the distance between the leading edge of the plate and the current position S
where the shock impinges on the boundary layer, be L. Let the velocity, density,
viscosity and pressure in the unperturbed free stream be U∞, ρ∞, µ∞ and p∞,
respectively.

The Mach number in the free stream is given by the formula

M∞ = U∞
a∞

, a∞ =
√
γ

p∞
ρ∞
, (2.1)
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FIGURE 2. The flow layout.

where a∞ is the speed of sound and γ is the ratio of specific heats. We shall assume
that the oncoming flow is supersonic, i.e. M∞ is an order-one quantity greater than
unity. In the present analysis, the Reynolds number

Re= ρ∞U∞L

µ∞
(2.2)

is assumed to be large.
The shock velocity is assumed to be of order Re−1/8, and Ush denotes the

correspondingly scaled shock velocity.
The flow will be described in a coordinate frame moving with the shock (see

figure 2). In that coordinate system, the plate surface moves in the opposite direction
to Ush with a scaled speed Uw = Ush. Note that Uw is negative for the cases to be
studied here. As long as the variation in shock velocity and strength is asymptotically
small while it moves over a Re−3/8 triple-deck length scale, the flow can be assumed
quasi-steady. The equations governing the flow are the interactive boundary-layer
equations, scaled as in Ruban et al. (2011):

∂U

∂X
+ ∂V

∂Y
= 0, (2.3a)

U
∂U

∂X
+ V

∂U

∂Y
=−dP

dX
+ ∂

2U

∂Y2
. (2.3b)

These equations have to be solved with the following boundary conditions:

U = Uw, V = 0 at Y = 0. (2.3c)

Equations (2.3a) and (2.3b) require an initial condition

U = Y + Uw at X→−∞, (2.3d)

which follows from matching with the solution in the unperturbed boundary layer
upstream of the interaction. The matching with the main part of the boundary layer
leads to the following condition:

U→ Y + A(X)+ · · · as Y→∞, (2.3e)
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where A(X) represents the displacement produced by the viscous sublayer. The
interaction law deduced from the flow analysis in the inviscid region is given by

P= PsH (X)− dA

dX
, (2.3f )

where

H (X)=
{

0, X < 0
1, X > 0.

(2.3g)

Taking into account that viscous–inviscid interaction allows upstream influence through
the boundary layer, an additional boundary condition specifying the state of the flow
downstream of the interaction region is required and is prescribed as

P= Ps at X→+∞. (2.3h)

Two additional boundary conditions can be considered as well:

∂U

∂Y
= 1 at X =−∞, (2.3i)

and

∂U

∂Y
= 1 at Y =∞. (2.3j)

To solve the above problem, we used a numerical method similar to the one used by
Korolev, Gajjar & Ruban (2002) with a uniform grid. The scheme and computational
parameters are similar to those used in Ruban et al. (2011). As before, we took a
value of Ymax = 50 to limit the computational domain in the Y-direction. Values of
Xmin = −100 and Xmax = 100 were used to truncate the domain in the streamwise
direction. A step size 1X = 0.01 and 64 points in the Y-direction were used. Typically,
8–10 Newton iterations were sufficient for the method to converge.

For computational purposes, a smoothing was applied to the impinging shock. In
particular, the interaction law (2.3f ) was written as

P= Ps

2

(
1+ X√

X2 + r2

)
− dA

dX
(2.4)

where the value of parameter r was chosen to be r = 0.5 in this study.
An assessment of the impact of using different size grids and Ymax on the numerical

solution was performed using grid sizes of 8001×64, 1601×70 and 1201×90 and with
different values of Ymax . The wall shear plots for these grids are shown in figures 3
and 4. These figures indicate that our results are independent of the grids used.

3. Numerical results
Before discussing the numerical results, we need to describe what the skin friction

graphs indicate. Unlike for separation from a fixed wall, reversal of the sign of the
skin friction does not indicate flow reversal; it merely indicates that the fluid in the
boundary layer just above the wall is moving upstream slower than the wall.

Results for a wall moving upstream with Uw = −0.2 and Ps = 3.5 are shown
in figures 5–9. The pressure forms a ‘plateau’ and the skin friction has only
one significant minimum. The streamline pattern in figure 7 shows a vortex with
a wedge-shape upstream region, similar to the structure observed in turbulent
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FIGURE 3. (Colour online) Skin friction distributions for various sizes of the uniform grid for
Ps = 2.0 and Uw =−0.5: —, 8001× 64; ◦, 1601× 70; ∗, 1201× 90.
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FIGURE 4. Skin friction distributions for various values of Ymax for Ps = 2.0 and Uw =−0.5:
—, Ymax = 50; •, Ymax = 15; ×, Ymax = 75.

marginal separation, Scheichl & Kluwick (2007). The skin friction turns negative
at approximately X = −8. The velocity profiles at various streamwise locations in
figure 8 do not show any evidence of the MRS condition ∂U/∂Y = 0 at U = 0,
cf. figure 10. Although there is a zero-vorticity line ∂U/∂Y = 0, figure 10 shows that
it does not intersect the zero-streamwise-velocity line U = 0. The evidence is therefore
inconclusive with respect to the MRS criterion being satisfied.

Note also that various theories assumed a given smooth adverse pressure gradient at
the location of separation, e.g. Moore (1958) and Van Dommelen & Shen (1983a).
Figures 5 and 7 show a strong growth in the adverse pressure gradient in the
region near X = −11 where the flow detaches from the wall. This is one potential
explanation why the present results do not show formation of the MRS point where
the experimental results of Ludwig (1964) for a shrouded cylinder in subsonic flow
did.
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FIGURE 5. Pressure distribution for Uw =−0.2, Ps = 3.5.
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FIGURE 6. Skin friction for Uw =−0.2, Ps = 3.5.

The influence of different wall velocities on the flow in the interaction region is
shown in figures 11 and 12 for pressure and skin friction. For the motionless wall,
the flow undergoes separation with the separation and reattachment points clearly seen
in the skin friction plot where the curve τw(X) intersects the abscissa (see Rizzetta,
Burggraf & Jenson 1978; Korolev et al. 2002). At Uw = −2 and −5, the pressure
rises very slowly from its initial value. The streamlines at Uw = −5 show that the
recirculating region at this wall velocity extends upstream beyond X = −100 (using
a computation with Xmin = −150.) Following (2.3f ), this explains how the small
upstream pressures can produce a significant streamline displacement. At Uw = −5
the pressure further shows an almost discontinuous behaviour near the shock much
like the pressure distribution in the case of inviscid flow theory.

4. Concluding remarks
In this paper, we have investigated the process of a shock wave interacting with

a boundary layer over an upstream moving wall for a supersonic external flow.
Assuming the wall speed to be of O(Re−1/8), the interaction process is explained
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FIGURE 7. Streamline pattern for Uw =−0.2, Ps = 3.5.
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FIGURE 8. (Colour online) Velocity profiles for Uw =−0.2, Ps = 3.5.

by means of ‘triple-deck theory’. At large values of the scaled wall velocity |Uw|, the
rise in pressure from its initial value takes place very slowly over an extended range,
as is seen from the pressure distributions in figure 11. A recirculation region is formed
that has a wedge shape at its upstream end. As Uw is decreased, the length of the
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FIGURE 9. Vorticity distribution for Uw =−0.2, Ps = 3.5.

recirculation region increases. A similar behaviour is observed in turbulent marginal
separation for large values of angles of attack, Scheichl & Kluwick (2007).

Our other task was to examine the Moore–Rott–Sears criterion for the flow
considered. The velocity and vorticity distribution do not show evidence of the MRS
criterion. In that respect, the present results seem to be quite similar to those of
Inoue (1981a,b), even though the flow is very different. The theoretical work of Araki
(2006) which has a similar wall pressure distribution also failed to provide sufficient
evidence of the MRS point. We can therefore say that the MRS criterion does not
seem applicable for the upstream moving wall case in the flow computed here.

As a referee pointed out, there is a question as to how far a flow of the type
considered in this paper describes separation in a meaningful sense. The physical
scalings of the considered flow, together with the attached downstream boundary
condition, make the effects of the recirculating flow on the inviscid flow above the
boundary unavoidably relatively minor. More fundamentally, as Sears & Telionis
in particular have emphasized, a meaningful definition of separation in all but
the most trivial cases requires a limit process. Loosely speaking, the definition of
separation (if physically meaningful) is that the boundary layer moves significantly
away from the wall at a well-defined location. But ‘significantly’ is not an objective
mathematical term. There are no concepts like large or small in mathematics, but
only limit processes. For the standard Sychev–Smith separation, the limit process is
that the body-scale Reynolds number tends to infinity. But that Reynolds number does
not appear unambiguously in the present scaled flow. However, consider figure 13
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FIGURE 10. Velocity and vorticity distribution for Uw =−0.2, Ps = 3.5 showing: U = 0 and
1 (—, with labels 0 and 1 respectively); and ∂U/∂Y = 0 (- - -).
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FIGURE 11. Pressure P for the shock strength Ps = 3 and various values of the wall
velocity Uw.

where −d2A/dX2 is plotted against X. Recall that the normal Sychev–Smith separation
is characterized by a localized positive peak in this parameter at the location of
separation. It describes the rapid curving of the boundary-layer streamlines away from
the wall in the region of separation. In the present flow, a similar positive peak
seems to develop at negative X when the shock pressure jump Ps increases. The
rapid curvature away from the wall of the main boundary-layer streamlines is also
qualitatively evident in the streamlines overlying the viscous sublayer in figure 7.

The localization of the peak with increasing pressure jump is perhaps more clearly
seen in figure 14, in which the horizontal and vertical axes have been rescaled to keep
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FIGURE 12. Skin friction τw for the shock strength Ps = 3 and various values of the wall
velocity Uw.
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FIGURE 13. Negative second derivative of the displacement function A(X) for the wall
velocity Uw =−0.2 and various values of shock strength Ps.

the maximum at the same position. The present authors would therefore argue that for
larger pressure jumps, a well-defined location can be identified for which ‘separation’
seems to occur in a mathematically and physically meaningful sense (i.e. within the
setting of Ps→∞). Yet there is no sign of a corresponding approximate establishment
of the MRS conditions in this region. The classical MRS velocity profile has an
interior vorticity minimum. However, our results show a monotonic increase in
vorticity away from the wall, figure 9.

Further support for this conclusion would have to come from a complete asymptotic
description of the flow in the limit of infinite Ps. However, such an analysis is outside
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FIGURE 14. Scaled negative second derivative of the displacement function A(X) for the wall
velocity Uw =−0.2 and various values of shock strength Ps .

the scope of this study. And even if the Moore–Rott Sears conditions were to become
meaningful in a limited range of very large values of Ps, clearly their practical value
would still be significantly limited for the flows considered here.
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