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a b s t r a c t

Recent experimental work has succeeded in retarding or removing boundary-layer separation by means
of blowing supersonic microjets transversely through the wall. To provide some theoretical context for
suchwork, the current study examines the removal of separation by transverse blowingwithin the frame-
work of the standard Prandtl scalings for incompressible boundary layers. One key result, obtained using
asymptotic analysis, is that such removal is not possible for two-dimensional flow. Neither is removal
of separation possible by three-dimensional blowing in an initially two-dimensional separated boundary
layer if the blowing distribution has a finite-scale spanwise variation. The second key result obtained is
that the previous conclusion is no longer valid when there is nontrivial short-scale spanwise variation
of the blowing distribution. This result is obtained by providing a numerical counter-example in which
blowing, with a Görtler scale spanwise variation, creates an attached boundary layer flow where none
existed before the blowing. One consequence is that there are at least some flows in which transverse
Görtler-scale blowing can turn a separated flow into an attached flow, with a vanishingly small drag that
is inversely proportional to the square root of the Reynolds number. The flow physics of the computed
example is analyzed to obtain a better understanding of how the Görtler-scale blowing affects the flow.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Effective control of boundary-layer separation can have many
benefits. For example, avoidance of stall limits helicopter rotor ef-
ficiency and performance, especially on the retreating blades in the
presence of forward motion. Stall is also a limiting factor for con-
trol surfaces of missiles and projectiles. A large number of control
mechanisms have been developed, ranging from classical suction
and vortex generators to synthetic jets, and some are quite effec-
tive. The largest problem is often not efficiency but associated costs
and practical application in challenging real-life environments.

A new approach has been proposed recently that promises to be
muchmore robust and effective in applications. Control is achieved
by blowing supersonic microjets, with diameters described in mi-
crons, into the boundary layer. Experiments for both dynamic stall,
[1], and steady separation, [2–6], show that the microjets are ef-
fective in eliminating stall and its adverse effects on lifting forces
and resistance. These are very promising results, because unlike
classical suction, blowing will repel dirt and other contaminants,
rather than suck them toward the surface. See [7,8] for more on
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such issues. Moreover, sources of high pressure air, such as en-
gine bleed, may readily be found. Because of the micron dimen-
sions, the amount of air required by the microjets is negligible. By
its nature, the control can readily be completely removed when no
longer needed and it is easily modulated, [9,10].

However, optimizing the location, spacing and distribution of
the jets to predict and maximize benefits without prohibitive
situation-specific experiments is a significant problemdue to a lack
of understanding of why the control is effective. While the genera-
tion of enhanced streamwise vorticity seems to be a likely mecha-
nism for the beneficial effects, the process is clearly internal to the
boundary layer, due to the microscopic size and mass flow rates of
the jets, [2–6]. Modeling the process as classical vortex generators
that produce organized vortices of significant scale is simply not
realistic.

For those reasons, it seems worthwhile to look for a simple
model that may explain some of the issues involved in microjet
separation control. The simplest reasonable model would seem to
be two-dimensional laminar boundary layer flow with distributed
boundary-layer scale blowing through the wall. Of course, this
model will not describe the precise small-scale features of the flow
right at the microjets. However, the actual separation being re-
moved is well downstream of the microjets, where the small scale
details of the jets are presumably long diffused out. So the model
seems a reasonable starting point. And there is appreciable existing
data on the effects of blowing and suction within this model.

http://dx.doi.org/10.1016/j.euromechflu.2014.01.006
0997-7546/© 2014 Elsevier Masson SAS. All rights reserved.
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But the first problem now arises immediately. Since the pio-
neering paper of Prandtl [11] that initiated boundary layer the-
ory, the notion has been established that transverse suction, rather
than blowing is needed to remove separation. Indeed, considerable
practical experience in two-dimensional laminar boundary layer
computations, (e.g. [12,13]), suggests that transverse blowing pro-
motes, rather than prevents, separation.

The question then becomes whether it is even possible, within
the two-dimensional model, to remove separation by blowing, re-
gardless of howwell the blowing distribution is chosen to simulate
microjets. In Section 3 we show that the answer is no. Separation
cannot be removed by blowing in a two-dimensional laminar in-
compressible Prandtl boundary layer.

This result is interesting, because it indicates that microjet flow
control is not as trivial as it may seem. (Consistent with that, Vikas
Kumar, during his Ph.D. thesis defense noted that it was possible to
create separation using microjets where there was none before.)
Furthermore, the result generalizes to the statement that using a
three-dimensional blowing distribution cannot remove separation
either, as long as the distribution has a finite spanwise scale.

However, when the spanwise variation of the blowing distri-
bution becomes sufficiently small, the given analytical arguments
that exclude removal of separation are no longer valid. The ques-
tion becomes then whether it remains impossible to remove sep-
aration using transverse blowing on a boundary-layer scale. In
Section 6 it is shown by a counter-example that the answer is no.
The counter-example removes separation from a slightly concave
surface by blowing on a short, Görtler-type, spanwise scale.

The counter-example gives a reasonable qualitative explana-
tion of the experimental results of [2–4] within the simple frame-
work of incompressible laminar boundary layer theory. (Note that
the experiments were turbulent.) As discussed in Section 8, con-
siderable further efforts seem to be needed to gain a better under-
standing of other cases in which microjets have been used.

2. Comments on the definition of separation

One issue that seems to require clarification is what we mean
with the terms ‘‘separated’’ and ‘‘unseparated’’ flow. Prandtl’s clas-
sical criterion that separation starts at zero wall shear τx = 0 was
derived for two-dimensional flow, [11]. The present paper, how-
ever, dealswith three-dimensional flows, and in addition the span-
wise scales are small rather than finite in our flows. Some authors
have suggested using nxτx+nzτz , with x, z thewall plane and nx, nz
the unit vector normal to the separation line as the criterion for
separation in three-dimensional flow. (This would presumably be-
come τx = 0 at the first point of separation.) One other sugges-
tion we received is that we should instead expect a separation due
to the spanwise flow of the type whose asymptotic behavior was
described by Stewartson and Simpson [14]. (Actually, this separa-
tion does have zero wall shear in boundary layer approximation.
However, for the similar Banks and Zaturska [15] type of separa-
tion process, which might be expected to occur in steady flow for
say a wall jet inside a curved pipe, the streamwise wall shear could
be anything. That was shown numerically by Van Dommelen [16].)

However, in Appendix B, we provide numerical results that sug-
gest quite strongly that separation does not occur at the first wall
point with streamwise wall shear zero. We do not use zero wall
shear, in any direction, as a criterion for separation. Instead, we
have long adhered to the view first explicitly expressed by Sears
and Telionis [17]. Since this view is not that well known, we will
give a review here.

Already in his pioneering study in 1904, Prandtl [11] had
identified zerowall shear as the criterion of steady separation from
a fixedwall. This criterion subsequently becamewidely established
as a convenient definition of separation in general. However, in

the 1950s, a number of authors, including Moore [18], Rott [19],
and Sears [20], (MRS), had expressed concerns about the physical
meaning of the criterion in unsteady flows, and in steady flows over
moving walls.

Generalizing the earlier work by Moore [18], Sears’ Ph.D. stu-
dent Telionis revisited the question in the 1970s. Based on a study
that some called more philosophical thanmathematical, Sears and
Telionis [17] proposed a generalization of Prandtl’s criterion: the
separation point would still be at zerowall shear, but not necessar-
ily at the wall. They proposed that in general, the separation point
would move with the local flow velocity. This reduces to Prandtl’s
original condition for steady separation from a fixedwall: in steady
flow a separation point cannot move and it is the fluid at the wall
that is at rest. Sears & Telionis dubbed the generalized conditions
the MRS conditions.

The theory received some supportwhen various early boundary
layer computations of relevant flows showed the MRS conditions
to apply, [21]. However, these early solutions were subject to the
criticism that the prescribed external flow was inconsistent with
a separated flow. And there was more criticism. For one, some ar-
gued that Prandtl’s criterion of zero wall shear remained ‘‘conve-
nient’’ even if the separation was unsteady. More significantly, it
was noted that the MRS conditions are incomplete. To apply the
MRS conditions to find the separation point requires knowledge
of the velocity of the separation point. Now in steady flows that
velocity is zero, and in flows with symmetries, like semi-similar
flow, it can be deduced from the symmetry. But in general unsteady
flows, it requires a priori knowledge of the position of the separa-
tion point versus time, the very thing that was to be found.

But Sears & Telionis had an answer to all these criticisms. In
1948, Goldstein [22] had addressed issues in previous numerical
work, that computed boundary layers at Prandtl’s point of zero
wall shear. He showed that at such a point a self-consistent singu-
lar solution exists, in good agreement with earlier computations
by Hartree. Noting this Goldstein singularity, Moore [18] wrote
‘‘Of course, the full Navier–Stokes equations do not show such a
singularity. However, the existence of a singular boundary-layer
solution is no doubt a reliable indication of separation, insofar as
the boundary-layer equations are able to describe it.’’ (Emphasis
added.) Sears and Telionis [17] inverted that: ‘‘[. . . ] that the ap-
pearance of the Goldstein singularity, modified as necessary, in the
solution of the boundary layer equations, be adopted as the most
general definition of separation’’. (Emphasis added.)

This proposal came under much greater criticism still than the
MRS conditions, and from two groups. The first group argued that
the Navier–Stokes equations do not have a singularity, and that the
interest was in the solution of the Navier–Stokes equations, not the
boundary-layer equations. However, this criticism does not allow
for muchmeaningful mathematical analysis in fluid mechanics. As
a simple example, consider the case of the thin Blasius’ boundary
layer along a flush flat plate at large Reynolds number, [23]. Taken
literally, that case is nonsensical: mathematics knows no subjec-
tive terms like ‘‘thin’’ and ‘‘large’’. Instead it has limit processes. In
such a setting, ‘‘thin’’ reallymeans that the limit is zero, and ‘‘large’’
that the limit is infinite. Limit processes require that the problems
are embedded in a larger setting than just a single example flow.

In particular, the limit process relevant for flows like those
in this paper is where the Reynolds number is allowed to go to
infinity. And that almost unavoidably brings in singularities. The
Blasius boundary layer above is rigorously defined as the ‘‘jump in
flowvelocity at thewall at infinite Reynolds number’’, a singularity.
The Blasius velocity profile is rigorously defined as ‘‘the limiting
flow velocity in suitably rescaled coordinates for infinite Reynolds
number’’, which is nonsingular in this case.

The second group that strongly criticized the singularity pro-
posal consisted of theoreticians. They were familiar with the cen-
tral role of singularities in any meaningful analysis of fluid flows.
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However, they argued that the Goldstein singularity was the wrong
one. Stewartson [24] had tried to build up a valid complete asymp-
totic separated flow field, one in which the Goldstein singularity
provided the upstream end of the separated region. He failed, and
his analysis indicated quite strongly that it was not possible. (Sub-
sequently it was found that the Goldstein singularity does occur
physically in some other flows not analyzed by Stewartson, [25].
But these flows do not apply to the present study.)

The correct asymptotic flow field corresponding to Prandtl’s
classical conditions of steady separation from a fixed wall was
subsequently identified by Sychev [26] and Smith [27]. It has an
upstream singularity much weaker than the Goldstein singular-
ity, one without an intuitive indication that a separation is im-
minent. (To be fair, neither Moore nor Sears & Telionis suggested
that an unmodified Goldstein singularity would appear. Also, if fol-
lowing the ideas Sears & Telionis, a boundary layer computation
is conducted using the Sychev–Smith external flow at given finite
Reynolds numbers, the resulting position of theGoldstein singular-
ity should give an asymptotically correct location of separation.)

The more important issue was for unsteady flows. The classical
example was Prandtl’s circular cylinder impulsively started in mo-
tion in a direction normal to its axis. This case too was analyzed by
Blasius, [23], and he found that after about a third diametermotion,
points of zero wall shear develop. But here the very problems ap-
pear about which Moore, Root, and Sears were concerned. At least
they do if you take the expanded view of a theoretician in which
the flow at any Reynolds number is considered. For the steady Sy-
chev–Smith flow above, the boundary layer immediately upstream
of the zero wall shear point is vanishingly thin, of order O(Re)−1/2.
However, immediately downstream the thickness is finite. So there
is a solid mathematical justification for saying the boundary layer
‘‘separates from thewall’’ at zerowall shear. The ratio of the bound-
ary layer thickness immediately downstream of zero wall shear to
the one immediately upstream of it is unbounded. It becomes ar-
bitrarily large when you take the Reynolds number large enough.
(Note that this statement does not require a subjective choice of
what number is ‘‘large’’.)

The same does not happen in case of the impulsively started
cylinder after, say, half a diameter motion. The boundary layer at
a point downstream of the point of zero wall shear is a bit thicker
than at a point upstreamof it. However, the ratio stays prettymuch
the same regardless how large you make the Reynolds number. In
the limit of infinite Reynolds number, the boundary layer every-
where collapses at the same rate to an infinite thin one at the sur-
face of the cylinder. Therefore most theoreticians would see very
little justification for calling this flow ‘‘separated’’. (At least not in
Prandtl’s [11] original sense of a significant departure of the bound-
ary layer from the wall, causing a complete change of the flow
field.)

(The numerical results in Appendix B suggest, but do not prove,
that zerowall shear also fails in the same sense for theGörtler-scale
flows studied here.)

The key questionwas now if the boundary layer solution for the
impulsively started circular cylinder would show a singularity at
all. (Note that the impulsively started case does not have the prob-
lemswith the external flow being inappropriate that invalidate the
Goldstein singularity in the steady case.) If there was no singular-
ity for any finite time, it might not strictly invalidate the theory of
Sears & Telionis, but it would seem to make it fairly academic. And
whether there was such a singularity was a matter of considerable
controversy, with claims and counter-claims flying about.

VanDommelen and Shen [28]were the first to provide a numer-
ical solution that showed that a singularity does indeed form, and
that could be independently verified. Cowley [29] independently
reached an equivalent conclusion using a very different approach.
After about 3/4 diameter motion, the boundary layer solution

develops singularities 111◦ from the front stagnation point, locally
terminating the existence of the O(Re−1/2) thin boundary layer.
This was obviously a considerable victory for Sears & Telionis, es-
pecially since the MRS conditions were found to apply. The physi-
cal flow development was analyzed in Lagrangian coordinates in
[30], and in Eulerian coordinates in [31, Appendix F] and [32].
These studies showed that physically the upper part of the bound-
ary layer is ejected upward away from the wall, like in the Gold-
stein and Sychev–Smith cases. This flow development leads to
a singularity at truly infinite Reynolds number, (or to the used
boundary-layer approximation eventually becoming invalid just
before that at large Reynolds numbers). But for the Goldstein and
the Sychev–Smith singularities, the region near zero wall shear
that causes the separation is viscous and thin compared to the up-
stream boundary layer. For the Van Dommelen & Shen case, the
region is inviscid and thick compared to the upstream boundary
layer. So, once again the actual singularity bore little resemblance
to the Goldstein one.

The other main success for Sears & Telionis was for an already
fully developed separation that is in upstream motion compared
to the wall. The local asymptotic flowwas first described Vic.V. Sy-
chev, with some modifications by later authors [32–34]. This flow
too satisfies the MRS conditions. It is inviscid and relatively thick
like the Van Dommelen & Shen one. The external flow is of course
a fully separated one in this case.

The case of steady separation from amovingwall can be viewed
as a simplified case of unsteady separation: the flow seems un-
steady when moving along with the wall, (e.g. [17,18]). Therefore
such flows have received considerable attention. The Vic.V. Sy-
chev theory above should normally apply to them at high enough
Reynolds number. Complete flow fields, at finite Reynolds num-
bers, for such flows do tend to indicate that the MRS conditions
are useful, (e.g. [35–38]). However, as the same references indicate,
the Moore–Rott–Sears conditions have not been convincingly ver-
ified when the separation point moves downstream compared of
the wall.

Various other separation criteria have been proposed over the
years for finite Reynolds number flows to generalize zero wall
shear. But if these criteria fail for the high-Reynolds-number
laminar-flow cases where the physical separation process is well
understood, it raises questions about their general value. Despite
the difficulty of realizing high-Reynolds-number laminar flows ex-
perimentally, theoretically these are the flowswhere both the gov-
erning equations and their solution are most confidently known,
(typically using the method of matched asymptotic expansions).

Based on the above background, in this studywe judgewhether
or not an unseparated flow exists by examining whether a nonsin-
gular boundary layer flow solution exists everywhere for the as-
sumed attached external flow. If such a solution exists, then there
is a self-consistent composite asymptotic flow field in the limit of
infinite Reynolds number in which the external flow is attached in
ameaningful sense,with viscous effects restricted to a vanishingly-
thin, O(Re−1/2), boundary layer at the wall. Such a flow clearly
would not meet Prandtl’s definition of separation.

The problems and uncertainties in trying to formulate a separa-
tion criterion are avoided by directly examining whether or not a
nonsingular O(Re−1/2) thick boundary exists everywhere. But this
requires some care. As Sears and Telionis [17] noted, singularity
is often associated with obvious numerical problems such as lack
of iterative convergence. But obtaining a numerical solution that
appears to be smooth is not sufficient to establish nonsingular-
ity; numerical dissipationmight smooth singular behavior. It must
be shown that the numerical solution converges to a smooth one
with mesh size. To do so, the present results were computed at
three mesh sizes, representing a factor 4 in mesh size change, cor-
responding to a factor 16 reduction in estimated numerical error.

For the flows considered here, in the purely two-dimensional
case the only type of singularity known to occur is the Goldstein
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one, or more accurately the Goldstein–Stewartson one, [22,39,40].
As already mentioned this singularity occurs at zero wall, and it
does not occur physically for the flows considered. However, our
concern is with the absence of the singularity. If we encounter the
singularity, we simply conclude that the assumed attached flow
does not exist. Then we do not care that what we did compute is
physically meaningless.

That is also the reason that classical viscous–inviscid interaction
is not of interest for the present study, except for the theoretical
result of [24]. Here the objective is to establish that an unseparated
flow field is being created by blowing. It is not to describe the
separated flow if such an unseparated flow field does not exist.
In particular, in the current study only the absence of singularity
needs to be established.

When the present flows are not two-dimensional, it is not clear
what type of singularity to expect if no attached flow exists. Ap-
pendix B summarizes our best numerical observations. However,
in the considerable number of Görtler-scale flows of the type con-
sidered here that we have computed over the years, we have never
seen evidence of singular behavior indicative of separation when
the streamwisewall shear remainedwell clear of zero. Note further
that at the first reversal point of the streamwise shear, downstream
marching of the boundary layer solution becomes improperly
posed. Downstream boundary conditions would be needed to
solve the boundary layer beyond that point. For these reasons, the
streamwisewall shear remains an important variable. Positive val-
ues are an indication, though not a proof, of an ‘‘unseparated’’,
i.e. nonsingular, solution.

It may be noted that the three-dimensional Stewartson and
Simpson [14] and Banks and Zaturska [15] type singularities are
not consistent with the present flows, which include spanwise dif-
fusion. Nor do we consider some straightforward generalization
of them very likely to form. We would normally expect diffusive
terms to smooth singular behavior. Indeed, for constant stream-
wise velocity our cross flow satisfies the equivalent of the unsteady
two-dimensional Navier–Stokes equations, Section 5. These equa-
tions are known to be nonsingular for all time. Thus the streamwise
flowmust at least be a factor in any singular behavior. And one con-
sequence of the fact that the streamwise flow becomes zero at the
wall is that it gives the cross flow diffusion more time to act. Note
also that in the two-dimensional Goldstein singularity, the lead-
ing order nontrivial term is nonsingular in the transverse direction,
though it is singular in the streamwise direction. Consistent with
these conjectures, while the computations of Section 6 show some
suggestion of spanwise particle motion on a collisional path, this
development is arrested before it can develop into a singularity.

3. Effect of two- and normal three-dimensional blowing

The purpose of this section is to give amore objective argument
than just practical experience that blowing in incompressible
steady two-dimensional boundary layers along fixed walls cannot
remove separation. An immediate consequence will then be that
three-dimensional blowing cannot remove separation either, as
long as the normal three-dimensional boundary layer equations
apply. The reason is that these equations do not allow for spanwise
interaction except through convection. Therefore their solution
at each spanwise position remains quasi-two-dimensional even
when the spanwise variations in blowing are finite. So the two-
dimensional Goldstein singularity [22,39,40] will still appear at
any position of zero (streamwise) shear, and then the analysis of
Stewartson [24] still indicates that the assumed attached flow does
not actually exist.

This section will accept as an empirical numerical observation
that a two-dimensional steady laminar boundary layer over a fixed
wall with a given attached external flow terminates in a Goldstein

singularity when the wall shear becomes zero. Over the years,
numerous numerical computations, including ones by the first
author, [12,13], have shown that the Goldstein singularity appears
at zero wall shear with or without blowing.

It will further be assumed that in the presence of the Goldstein
singularity, there is no longer a composite asymptotic flow field
consisting of an attached external potential flow and a thin bound-
ary layer near the wall, [24]. Without an asymptotic flow field in
which the external potential flow is the attached one, the flow is
physically separated in the sense discussed in the previous section.

It should be noted that there are some limitations to the above
assumptions, as discussed more fully in Appendix B. Most promi-
nently, in the marginal case that the wall shear becomes zero at
a single point, with the shear still positive upstream and down-
stream of the point, the Goldstein singularity takes a degenerate
form. In that case, the flow is still unseparated in the sense of Sec-
tion 2.

Now consider the precise question to be addressed in this sec-
tion. Suppose that for a given (attached, two-dimensional) external
flow, the boundary layer solution ends in a point of zerowall shear.
The Goldstein singularity at such a point implies that the assumed
attached flow does not exist. The real flow must be separated. The
question is whether blowing through the wall might be able to in-
crease thewall shear above zero everywhere, thus allowing the de-
sired attached flow to be achieved. It will be shown that the answer
is no; blowing will invariably reduce the wall shear. Therefore, it
can only generate a separated flow where none existed before.

It may first bementioned that there are various rigorous results
about the absence of separation in a strictly favorable pressure gra-
dient, and about the shape of the velocity profile, [41,42]. (Unfor-
tunately the latter more accessible reference omits the blowing
velocity.) Oleînik and Samokhin [43] give an extensive review of
what has been proved rigorously for the boundary layer equations.

The relevant two-dimensional momentum and continuity
equations and wall boundary conditions are, in suitable scalings,
[44],

uu,x + vu,y = −p,x + τ,y u,x + v,y = 0
τ ≡ u,y [u = 0]wall [v = vw(x)]wall.

(1)

Here x is the nondimensional distance along the wall and y the
scaled nondimensional distance away from it; u and v are the cor-
responding velocity components; p(x) is the given pressure (corre-
sponding to unseparated flow); vw(x) the given blowing velocity;
and τ the scaled nondimensional shear (or negative vorticity). Sub-
scripts following a comma indicate partial derivatives.

To examine the effect of the blowing, the above problem will
be embedded in a generalized one. The generalized problem dif-
fers from the one above in that the wall blowing velocity is some
multiple t of the given blowing velocity vw, with 0 ≤ t ≤ 1 a pa-
rameter. So t = 0 gives the solution without blowing, while t = 1
gives the solution for the given blowing velocity. When t is gradu-
ally increased from 0 to 1, the solution changes from the one with-
out blowing to the one with the given blowing velocity. (One may
take the parameter t to be time in a quasi-steady process in which
the blowing distribution is gradually increased from zero.)

It will be assumed that the solution of the generalized problem
is a smooth function of both the spatial coordinates and the param-
eter t as long as τ stays above zero. The only singularities observed
numerically are at zero shear, (cf. [45, p. 371]). For a strictly favor-
able pressure gradient, it has in fact been shown rigorously that a
well-behaved solution exists for the standard boundary layer prob-
lem, [42,43].

Using the assumptions above and asymptotic expansion pro-
cedures, it will be shown that the derivative τ ′ of the shear with
respect to t is never positive. Therefore, the shear will go down,
rather than up when the blowing is applied between t = 0 and
t = 1. Therefore, the shear cannot be increased above zero and so
the separation cannot be removed.
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Since the shear τ is the critical quantity, it is convenient tomake
it the dependent variable. That can be done by taking a y derivative
of the momentum equation above and applying the continuity
equation. It is further convenient to take u as an independent
variable instead of y. That gives the Crocco [46] equation:

uτ,x − p,xτ,u = τ 2τ,uu [v = tvw]wall

vτ = −p,x + ττ,u


wall . (2)

The additionalwall boundary condition is themomentumequation
at the wall u = 0.

Differentiation with respect to t gives

uτ ′

,x − p,xτ ′

,u = τ 2τ ′

,uu + 2ττ,uuτ ′


ττ ′

,u +
p,x
τ
τ ′

= τvw


wall

(3)

where a prime denotes a partial t derivative.
The above is a linear equation for τ ′ given the flow at any value

of t . The solution for τ ′ can be written as

τ ′(x, u) =


all x0

vw(x0)G(x, u; x0) dx0 (4)

where G(x, u; x0) is the response at position x, u to a delta function
blowing velocity at x0. The values of x0 range over the chosen
blowing distribution. Note however that G(x, u; x0) is zero for x <
x0, since the boundary layer equation has no upstream influence.

To prove the desired result that the blowing vw cannot remove
the separation, it suffices to show that G(x, u; x0) is everywhere
nonpositive. That implies the needed result above that τ ′ is posi-
tive, because then the integrand in (4) is.

(Note that the result will be somewhat stronger than merely
that the total blowing distribution cannot remove separation. It
will imply that every separate infinitesimal part of the blowing dis-
tribution can only decrease the shear. So no part of the blowing
distribution can have a beneficial effect on separation.)

First note that G(x, u; x0) is a solution of Eq. (3) for τ ′ when vw
is a delta function at x0. Since in the equation, τ is an arbitrary
nonconstant function, there is no simple solution even for a delta
function blowing velocity. In lack of such a solution, we will use a
two-part argument. First an argument will be given to show that if
solutions τ ′ to (3) are initially nonpositive, and negative at thewall,
they will stay nonpositive for all x. Then we will use an asymptotic
expansion for x → x0 to argue that solution G(x, u; x0) is indeed
initially of that form.

First consider therefore an arbitrary solution τ ′ to (3) that at
some initial x is negative at the wall, and nonpositive elsewhere.
Also assume for now that the corresponding vw is positive beyond
the initial x. Under those conditions, consider the possibility of
τ ′ developing positive values at any arbitrary downstream point
before the terminating Goldstein singularity. In particular, let τ ′

m
be the hypothetical positive maximum of τ ′ over all u for given
x. Because of the assumed initial condition and nonsingularity, τ ′

m
must have evolved from an initial zero value. This initial zero value
cannot be at the wall, because the wall boundary condition in (3)
would imply that there are already positive values of τ ′ above the
wall at that point. However, the initial zero value cannot be at a
finite distance from the wall either. To see that, divide (3) by uτ ′ to
get, at the maximum,

d ln τ ′
m

dx
=

τ 2

uτ ′
m
τ ′

,uu +
2
u
ττ,uu. (5)

The left-hand side integrates to positive infinity between the zero
point and any existing positive value. However, the first term in
the left-hand side is nonpositive at themaximumwhile the second
term is finite. So the two sides cannot match, which implies that
the postulated positive maximum cannot develop this way.

Finally the positive τ ′
m cannot originate from infinity either. This

seems intuitively obvious; consider a computation that would use
a cut-off at a large value of the stream functionψ . Assume that this
computation would prescribe a decreasing fraction of the positive
vorticity at the cut-off as estimated from asymptotic analysis. (This

should surely be noworse than prescribing zero vorticity at the cut
off.) Then if positive τ ′ originates from infinity, this computation
could not produce it. Then the error in the computation could not
go to zero even when the position of the cut off is allowed to
become infinite. That is hard to believe.

Mathematically, the fact that indeed positive τ ′
m cannot origi-

nate from infinity can be derived using asymptotic analysis. To do
so, Von Mises coordinates will be used, in which the stream func-
tionψ is taken as the independent coordinate instead of u or y. The
vorticity and the vorticity equation can then be written as
τ ≡ e−Q Q,x = −uQ 2

,ψ + uQ,ψψ + u,ψQ,ψ .
Assuming that the blow up of Q for infiniteψ takes the asymptotic
form of powers of ψ times powers of lnψ , it is seen that Q must
be O


ψ2


. Otherwise the first term in the right-hand side cannot

be matched. Then the critical final term in (5) above,
2
u
ττ,uu = −2uQ,ψψ − 2u,ψQ,ψ

stays finite at infinity. Then according to (5), positive τ ′ cannot
originate from infinity either.

While this argument is based on asymptotic analysis, and there-
fore not a rigorous proof, there are some rigorous results that sup-
port it. In terms of y, (note that ψ = O(y) for large y),

u = ue(x)− e−q 2ττ,uu =
∂

∂y


u,yy
u,y


. (6)

An asymptotic suction profile has q linear in y, and Theorem 4 of
[47] implies that in a further evolution of such a profile, q remains
bounded between linear expressions in y. Quadratic blow up of
q occurs for profiles that develop from similarity solutions, [47].
In particular Theorem 5 in that reference implies that if the ini-
tial condition for q is bounded between quadratics in y, then it re-
mains bounded between such quadratics. The strongest result for
the present case may be Theorem 3.3.1 of [43]. It shows that for
suitable initial conditions, in which 2ττ,uu is initially finite, it stays
finite for at least some x-range, or for any x in case of a favorable
pressure gradient.

The conclusion is that if τ ′ is initially nonpositive, and negative
at the wall, it cannot become positive as long as the blowing
velocity is positive. This result can be strengthened slightly: the
blowing velocity can be allowed to be zero. The reason is that zero
blowing velocity is the limit of positive blowing velocity. Assuming
properly-posedness, the limit of nonpositive τ ′ cannot be positive.

Therefore if G(x, u; x0) is initially nonpositive, and negative at
the wall, it will stay nonpositive for all x. To show that G(x, u; x0)
meets these requirements, asymptotic analysis will again be used.
Consider first the response of Eq. (3) to a blowing distribution vw
given by a Heaviside unit step function at a position x0. Upstream
of x0, the solution τ ′

H will be zero since the boundary layer equation
has no upstream influence. Downstream of x0, asymptotic analysis
shows that the solution for x → x0 takes the same form as that
immediately behind a jump in wall blowing in the usual boundary
layer equations:

τ ′

H ∼ −τ
2/3
0 ξ̄ 1/3f (η̄) ξ̄ ≡ x − x0 ↓ 0 η̄ ≡

u

τ
2/3
0 ξ̄ 1/3

. (7)

Here τ0 is the wall shear at x0. The above solution can be found
in [12] with function

f (η̄) =


3e−η̄3/9

− η̄


∞

η̄

η̄0e−η̄30/9 dη̄0

 
∞

0
η̄0e−η̄30/9 dη̄0 (8)

given in terms of the incomplete Gamma function, but an equiva-
lent solution in terms of hypergeometric functions can be distilled
from [48]. It is also implicit in the linearized interactive solution
of [49] after scaling away the interaction region. While this is an
asymptotic solution, and therefore not rigorous, (as is the Gold-
stein–Stewartson singularity, for that matter), its applicability to
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the normal boundary layer equations has been verified numeri-
cally, [12].

The response to a delta function blowing velocity can be ob-
tained by taking the limit for ε ↓ 0 of the sum of an upward step of
height 1/ε at x0 and anopposite downward step at x0+ε. That gives

G(x, u; x0) ∼ −τ
2/3
0 e−η̄3/9/ξ̄ 2/3


∞

0
η̄0e−η̄30/9 dη̄0

η̄ ≡
u

τ
2/3
0 ξ̄ 1/3

. (9)

This is the exact response for the leading order equation

uτ ′

,x = τ 20 τ
′

,uu

to a delta function Neumann boundary condition. (That it is a so-
lution is readily verified by direct substitution. The coefficient can
be verified by integrating the above equation over a semi-infinite
vertical strip.) Therefore it is an asymptotic solution of the original
equation for finite η̄. Note further that the integral can be written
in terms of Γ ( 23 ).

(It might seem conceivable that there could be some, so far
unrecognized, nontrivial expansion intermediate to the η̄ and finite
u ones in which G could reverse sign. However, this turns out not
to be possible on behalf of (5) since u would exceed O(ξ̄ 1/3).)

4. Governing equations for Görtler-scale blowing

The previous section showed that according to the usual three-
dimensional boundary layer equations, transverse blowing can-
not remove separation in an originally two-dimensional boundary
layer. In particular, transverse blowing invariably decreases the
streamwise wall shear rather than increases it. However, the ex-
periments show that removal of separation is possible. Therefore, it
seems logical to look for assumptions in the normal boundary layer
that may need to be modified to explain the experiments qualita-
tively.

Looking at the experiments, the most obviously suspect as-
sumption is that the spanwise scales are finite. In the experiments,
the microjets are a fraction of a millimeter in diameter, and their
spanwise spacing is comparable to the thickness of the turbulent
boundary layer. For laminar boundary layers along slightly curved
walls, it is well known that spanwise convection and diffusion are
no longer negligible on a spanwise scale of the order of the bound-
ary layer thickness. These Görtler scalings have been studied ex-
tensively in the framework of boundary layer instabilities, [50,51].

In the present study, it will be assumed that the flow is periodic
in the spanwise direction, with a period of order of the boundary
layer thickness. The arc length along the wall, measured from the
start of the boundary layer, will be denoted byx, the transverse
distance from the wall asy, and the spanwise coordinate asz, with
periodλ. The corresponding velocity components areu,v, and w;
the pressure isp; the constant density isρ; and the wall curvature
isκ . To prevent centrifugal acceleration from fully dominating the
cross-plane pressure field, the wall curvature needs to be asymp-
totically small. Using a suitable reference velocity U and reference
length ℓ, the following scaled nondimensional variables can be de-
fined inside the boundary layer:

x =
x
ℓ

y =
y
ℓ

√
Re z =

z
ℓ

√
Re

u =
u
U

v =
v
U

√
Re w =

w
U

√
Re

p =
p −paρU2

Re λ =

λ
ℓ

√
Re κ = κℓ√Re

(10)

wherepa is the spanwise-averaged wall pressure and Re = Uℓ/ν
is the Reynolds number.

Substitution into the Navier–Stokes equations, written in
boundary layer coordinates, yields the following asymptotic equa-
tions:

uu,x + vu,y + wu,z = u,yy + u,zz + ueue,x (11)

uv,x + vv,y + wv,z = v,yy + v,zz − p,y + κu2 (12)
uw,x + vw,y + ww,z = w,yy + w,zz − p,z (13)

u,x + v,y + w,z = 0. (14)

These equations are known in numerical work as the ‘‘fully
parabolized Navier–Stokes equations’’. Compared to the full
Navier–Stokes equations, there is neither a streamwise pressure
interaction nor a viscous diffusion term to bring in dependence
on the downstream solution. As asymptotic equations for high
Reynolds numbers, and including curvature, they are attributed to
Hall [52].

It will be assumed that the flow above the boundary layer is a
potential flow. In this potential flow all spanwise variations decay
exponentially within a distance of the order of the period. There-
fore, at physically finite distances above the boundary layer, the
flowwill be two-dimensional. However, there may be a small con-
stant spanwise velocity component that persists. Flow quantities
immediately above the boundary layer will be indicated by a sub-
script e. Matching requires:

u ∼ ue v ∼ −ue,xy + vd w ∼ we

p ∼
1
2


ueue,xx − ue,x

2 y2 +

ue,xvd − uevd,x + κue

2 y + pe0
(15)

where the remainders are exponentially small and ue, vd, and pe0
are functions of x, whilewe is constant. All computations reported
here takewe to be zero.

The wall boundary conditions in this study are

u = w = 0, v = vw(x, z), at y = 0 (16)

where vw is a chosen blowing distribution. The boundary condi-
tions at infinity are

u ∼ ue(x), w ∼ 0, for y → ∞ (17)

where ue is a chosen external flow. Periodic boundary conditions
are used in z, the scaled period being λ.

In the limit in which λ tends to infinity, u and v become quasi-
two-dimensional. However, the scaled spanwise velocity w does
not become zero. There is an interaction between the viscous
boundary layer flow and an inviscid upper deck above it thatmain-
tains a nonzero spanwise velocity component.

5. Numerical scheme

According to the previous section the asymptotic Görtler-scale
blowing problem requires solution of the parabolized Navier–
Stokes equations (11)–(14). These equations must be solved nu-
merically. Suitable numerical schemes are more complex than for
the normal three-dimensional boundary layer equations. The ad-
ditional problems are the spanwise diffusion terms and especially
the fact that the cross-flow pressure gradients are unknown.

The computations here are based on the use of the physical ve-
locity and pressure variables. In that respect they are similar to the
ones of [53], who used a SIMPLE algorithm. Many other existing
schemes tend to be inspired by and/or targeted for stability prob-
lems, [52,54,55].

Note that if the streamwise velocity is everywhere equal to a
constant, the Eqs. (11)–(14) are identical to the two-dimensional
unsteady Navier–Stokes equations (with x/u as ‘‘time’’). Unfortu-
nately, the streamwise velocity is not constant but drops to zero at
the wall. That makes the effective ‘‘time’’ step near the wall very
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large. In particular, the Courant number near the wall blows up
with mesh refinement, assuming it is at an equal rate in all three
directions.

There are additional complications due to the fact that an
asymptotic problem is solved. Itmeans that the distance away from
the wall extends to infinity. Furthermore the velocity in that direc-
tion and the pressure become infinite with distance away from the
wall.

In addition, for a flat-plate-like boundary layer as computed
here, one that starts at zero thickness and continues to down-
stream infinity, there is a problem of vastly unequal scales. At the
start of the boundary layer, the boundary layer thickness is much
smaller than the spanwise period. Far downstream it is the other
way around. (Physically, at the start of the boundary layer there is
a thin viscous layerwith an inviscid upper deck above it. Far down-
stream, there is a three-dimensional layer at the wall with a thick
two-dimensional boundary layer above it.) In the transverse direc-
tion, sufficient mesh points must be provided to resolve the flow
on both scales.

To dealwith these challenges, the code uses algebraicmappings
of the x, y, z flow domain onto a unit cube in a computational
α, β, γ domain. Modified dependent variables were defined to
account for the infinities. Details can be found in Appendix A.

A final problem is a bit less self-evident. The thin boundary layer
at the start of the plate contains highly concentrated streamwise
vorticity. (Velocity componentw blows up proportional to x−1/2 at
the start of the boundary layer, the same as v, generalizing the be-
havior of Blasius flow. But in addition the viscous y-range is small of
order x1/2.) In a numerical computation it may be hard to describe
the strong exponential decay of the vorticity at the upper edge of
the viscous layer accurately. The length scale of the decay becomes
smaller with distance from the wall while the mesh spacing is ex-
panding to accommodate the much thicker upper deck. So some
vorticity might ‘‘leak out’’ somewhat into the overlying potential
flow due to numerical errors. That concentrated vorticity will drift
downstream in the potential flow until it hits the boundary layer at
a stationwhere the vorticity levels aremuch lower. So even a small
amount of vorticity, on the upstream scale, may provide a signifi-
cant error at a downstream station. Consistent with this idea, we
encountered convergence problems in the initial region when the
computation started out fully three-dimensional. The only solution
we found to work was to use a cut-off at a suitable large value of
y above which we prescribed a zero vorticity condition instead of
z-momentum.

Of course, the cut-off adds an additional parameter to worry
about. Every numerical solution produced a plot of the value of the
streamwise velocity and vorticity at the cut-off, to ensure that the
vorticity at it was accurately zero. In addition, every flowwas com-
puted for at least two values of the cut-off, to ensure that the results
are independent of its location. Fortunately, the vorticity decays
exponentially with distance from thewall, and it was generally ob-
served that the cut-off did not produce a perceivable difference in
the results as long as it was sufficiently clear of the vorticity layer
but not far enough for the mesh nonlinearity to become a major
factor.

The finite difference equations in each cross plane were solved
iteratively using a custom scheme. It is based on the p′ method of
[56]. The p′ method is relatively intuitive, simplifying its adapta-
tions to handle the infinitely thin viscous layer thickness at the
start of the computation and the infinite mesh spacing at infinity.
The custom scheme appears to be ‘‘fast’’ in the sense that the com-
putational time per mesh point is approximately independent of
mesh size. Since this is described in [57], the details can be skipped
here. As long as the equations are fully converged, the iterative
scheme does not make a difference. All results presented here are
fully converged, to a target maximum error of no more than 10−8.

Note that this is the actual truncation error in the relevant trans-
formed equations, not a difference between iterates, and not mul-
tiplied by a small mesh size. In various computations at the finest
meshes 10−8 seemed to bemore than round-off error allowed, and
the maximum value was then allowed to increase to 10−7. (It may
seem surprising that a 10−8 error would not be achievable in 64 bit
precision for the meshes used. However, these problems typically
occurred relatively far downstream, where the period-scale mesh
spacing is much smaller than the viscous-scale one.)

All computations were conducted at 3 mesh sizes, with each
mesh size a factor two larger in each direction than the previous
one. This corresponds to a factor 16 reduction in numerical error
from the coarsest mesh to the finest. Convergence analysis based
on these results indicates that the results presented in the next
sections are everywhere accurate to at least about line thickness,
Appendix A.

6. Removal of marginal separation by blowing

The objective in this section is to show that Görtler-scale blow-
ing can indeed remove separation under at least some circum-
stances. This will prove that the restrictions of Section 3 do not
apply to those flows.

To show this, first a suitable external flow must be chosen.
Note that any desired external flow can always be achieved by
suitable shrouding, for example by creating a slender duct. For the
present purposes, a marginally separated two-dimensional flow
provides a convenient example. For a separation that is much
stronger thanmarginal, removal of separation by blowingmight be
difficult or impossible within the current framework. Even if it is
not, the stronger required blowing would put very high demands
on numerical accuracy. In addition, for a marginal separation the
boundary layer both upstream and downstream of the marginal
separation location is known. The solution with blowing can be
compared with it to assess the various effects of the blowing.

There are some other desirable characteristics for the
marginally separated flow. To avoid having to choose arbitrary
initial conditions, it is desirable to start the boundary layer as a
three-dimensional generalization of a similarity solution. In partic-
ular, the boundary layer was assumed to start at finite velocity and
zero thickness like the Blasius boundary layer in two-dimensions.
(A Hiemenz-like initial condition would be another logical choice.
However, the initial condition would be more difficult to obtain
due to the finite boundary-layer thickness.)

Such an initial condition has the further advantage that the
initial flow can be compared to theoretical results obtained by
asymptotic expansions. That provides a check on the numerical
solution, but more importantly, it allows the initial flow to be well
understood theoretically.

Note that a Blasius-type assumption of a boundary layer that
starts at zero thickness brings in a corresponding singularity at the
initial position. It has been suggested that it would be better to pro-
vide somemodified initial condition that avoids the singularity.We
must disagree, and not just for the reasons mentioned above. The
further reasons are the same as those for which fluid dynamicists
will still study the flat plate as a fundamental example, and not
say some thin paraboloid or ellipsoid that would avoid the Blasius
singularity. Not only does an artificial ‘‘smoothing’’ of the singular-
ity increase the parameter space by an additional dimension, the
appropriate smoothing parameter to still approximate a flat plate
also brings in a Reynolds number dependence. That eliminates the
great advantage of boundary layer theory of providing a solution
that is asymptotically independent of the Reynolds number.

It is also convenient to assume that far downstream, the exter-
nal flow velocity is again constant. This is to ensure that the separa-
tion is eliminated, and not merely pushed downstream. When the
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flow is seen to return to a Blasius boundary layer, it can reasonably
be concluded that no separation will occur farther downstream.

A suitable external flow meeting these constraints can be
obtained using the approximate Pohlhausen method and some
heuristic considerations, Appendix C. The external flow, and the
corresponding two-dimensional wall shear without blowing, are
shown in Fig. 1. The velocity drops monotonously a total of 36%
going downstream. Marginal separation is found to occur at a nor-
malized streamwise coordinate x = 2.93.

Despite considerable numerical experimentation, so far we
have been unsuccessful in removing separation assuming that the
wall is flat. Our general observation in these computations is that
blowing initially has an unfavorable effect on separation. While
Görtler-scale streamwise vortices are created, they do not seem to
be sufficient to offset the initial unfavorable effects. If the scaled
spanwise period λ is small, the vortices diffuse away quite rapidly.
For larger scaled periods, the vortices are too far apart to prevent
separation between them.

However, the Stratford ramp flow [2–4] has a concave wall in
the region of separation. Since in Görtler scalings, any wall cur-
vature is asymptotically small, even a small amount of curvature
can correspond to a large scaled curvature. This can strengthen the
streamwise vorticity following the Görtler mechanism, [52].

In the example presented in this section, it allows the vortices
to survive long enough to remove the marginal separation. In this
example, the curvature was taken to be

κ0 ≡ κxue(0)xν = −10. (18)

Hereue(0) is the external flow velocity at the start of the plate.
The corresponding wall blowing velocity was taken to be

vw0 ≡
vwue(0)

ue(0)xν
= Cv tan


fv
π

4


1 − cos

2πzλ


e−(ξ0/ℓv)
2

Cv = 0.0694 fv = 0.875 ℓv = 0.034.

(19)

The parameter fv allows a spiky spanwise blowing distribution to
be described, to more closely resemble a microjet. In particular,
the blowing velocity in the center of the period becomes infinite
for fv = 1. For practical purposes, the values of fv are limited
by numerical resolution. Parameter Cv adjusts the strength of the
blowing, which must be kept low enough to prevent separation in
the initial region. The final exponential describes the streamwise
decay of the blowing distribution. It is in terms of the streamwise
coordinate

ξ0 ≡
xλ

 νue(0)x . (20)

The coordinate ξ0 is particularly convenient to describe the
initial flow, where the boundary layer is thin compared to the
period. In particular, ξ0 arises naturally in the asymptotic equations
when written in the Blasius-type similarity variables

η0 ≡
yx

ue(0)xν Z ≡
zλ . (21)

In the asymptotic equations,x appears only in the combination ξ0.
Use of ξ0 instead of x also eliminates the Blasius-type square root
singularity in the flow variables at the start of the plate.

Note that the figures will use ξ and η, normalized with the local
external flow velocityue instead ofue(0), rather than ξ0 and η0.
We find the constant initial velocity more intuitive in comparing
flow parameters. However, the local velocity is more suitable for
plotting, especially for the velocity profiles. The plotted dependent

Fig. 1. External flow and the corresponding marginal separation without blowing.
Vertical lines refer to plotted stations for the solutions with blowing.

variables are

u ≡
uue

τx =
τxρu2

e

uexν ωx = ωx
xue

vd ≡
vdue

uexν p =
p −paρu2

e

xλ
uexν

(22)

for the streamwise velocity, shear, and vorticity, the displacement
velocity, and the cross-plane pressure, respectively. The displace-
ment velocity is the velocity that the boundary layer induces in
the potential flow immediately above the boundary layer. It is well
known that the displacement thickness is a more awkward quan-
tity in three dimensional flows. (However, for the current flows,
the displacement thickness could in principle be found by taking a
spanwise average of the two-dimensional expression.)

Figs. 2 and 3 show the numerical results. In particular, Fig. 2(a)
shows the streamwise wall shearτx and displacement velocityvd
for the marginally-separated two-dimensional flow in terms of ξ .
The various features described by [58–60] are evident.

Fig. 2(b) shows how the three-dimensional blowing raises
the wall shear well above zero in the region where the two-
dimensional flow would separate. On the other hand, now the
minimum shear dips down quite close to zero in the very early
development. However, the solution remains nonsingular. Far
downstream, the Blasius wall shear is approached, but slowly. At
the end of the plotted range, corresponding to x = 51, the shear
is only 80% of the Blasius value. However, at the end of the com-
putation, corresponding to x = 102, that has improved to 91%. It
appears therefore that the separationhas been fully eliminated, not
just pushed downstream.

Consider now some physics of the flow. One surprising
observation is the existence of two very disparate length scales,
as evident in the figures. In fact, we found it convenient to plot the
initial development on a different ξ -scale than the later one. The
short initial scale is not a numerical artifact. It is fully supported
by an asymptotic expansion of the initial flow, shown as straight
dot–dash lines. The asymptotic expansion is essentially exact. Note
that the asymptotic solution is not used in the finite difference
solution of the full problem. The finite difference equations
implicitly create their own initial conditions. So the excellent
agreement in both the initial values and initial slopes is nontrivial.

The very early development is accurately described by the
asymptotic solution. A typical streamwise station is indicated by
1, (encircled), in Figs. 2 and 3. The streamwise velocity profiles at
this early stage are shown at the top left in Fig. 3. These are Blasius
profiles including a wall blowing velocity. The maximum blowing
velocity (19) is 0.35 and occurs at the center of the period. This
stays well clear of the value 0.6192472 at which the Blasius profile
gets ‘‘blown-off’’, [61–65].

The contour lines of streamwise vorticity at station 1 are plotted
below the velocity profiles in Fig. 3. They show two counter-
rotating vortices away from the wall above a reversed vorticity
layer near the wall. Like the velocity profiles, the finite difference
and asymptotic results are identical at this station.

The reason for the reversed vorticity at the wall can be read-
ily understood. In this early stage, the viscous layer is thin enough
that the streamwise vorticity is dominated by thew,y term, withw
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a

b

c
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Fig. 2. Removal of separation by blowing: (a) streamwise wall shear and displace-
ment velocity (2D means no blowing), (b) streamwise wall shear, (c) streamwise
vorticity, (d) wall pressure. Mesh size is 1024 × 192 × 256. Solid lines are wall
values and dot–dash ones asymptotic theories.

the spanwise velocity and y the distance from the wall. The strong
blowing near the center of the period creates a displacement effect
above the viscous layer that drives a flow away from the symmetry
plane. However, the Blasius-type scalings imply that
w ∝ 1/

√
x.

Physically this corresponds to a deceleration of the potential flow
away from the symmetry plane with increasing x. The correspond-
ing spanwise pressure force is directed toward the symmetry
plane, cf. Fig. 2(d). This pressure force drives the viscous fluid par-
ticles immediately above the wall toward the symmetry plane.
Hence a reversal of the sign of w,y must exist in the interior of the
viscous layer.

There is a feedback mechanism, as the particle motion near
the wall has a compressive effect on the spanwise vorticity at the
symmetry plane. That tends to reduce the spanwise vorticity, or
equivalently the streamwise wall shear, following Kelvin’s theo-
rem. Fig. 2(b) shows that the initial rapid evolution toward separa-
tion is well understood from second order asymptotic theory.

However, when station 2 is reached, the first order asymptotic
theory is self-evidently no longer a reasonable first approximation.
The velocity profiles, Fig. 3, show a dramatic thickening of the
boundary layer, as might be expected from the near-separation.
Note also that the true velocity profiles are now very different
from even the second order asymptotic theory, shown as dot–dash
lines. Similarly, the contour lines in Fig. 3 show that the streamwise
vortices are quite different, and stronger, than the ones predicted
by the asymptotic theory.

Fig. 3. Top: streamwise velocity profiles. Remainder: streamwise vorticity con-
tours. Encircled numbers indicate the streamwise locations shown in Fig. 2.

Why the trend toward separation gets arrested around station
2 is not obvious. We would ascribe it tentatively to spanwise
diffusion. To be sure, at station 2 the boundary layer is still very thin
compared to the spanwise scaleλ/2π . So normally the spanwise
diffusion would be expected to be a minor effect. However, as
the velocity profiles and vorticity contours in Fig. 3 indicate, the
region of near-separation around the center period is quite sharp.
In addition, Lagrangian motion will carry fluid from regions with
significantly higher shear closer to the center plane over time. And
qualitatively, it is well known that it does not take that much for a
laminar boundary layer to separate.

Note however that in addition to the streamwise vorticity, the
deceleration of the streamwise motion contributes to the cross
plane velocity field. This contribution takes the form of a source
distribution that wants to drive the fluid away from the center
plane.

The displacement velocity, shown in Fig. 2(a), does not show
much evidence of the significant developments in the viscous layer
at the center plane. The reason is that the displacement velocity
applies to the motion above the inviscid upper deck. The upper
deck has a thickness comparable to the period,muchmore than the
thickness of the viscous layer. So only an average of the evolution
over the entire period is evident in the displacement velocity.

After recovery, the wall shear quickly returns to a level much
more consistent with first order asymptotic theory. However, go-
ing from station 2 to station 3, there is some additional thickening
of the velocity profiles, Fig. 3. (For station 3 and beyond, the small-x
asymptotic results will no longer be shown.)

There are a couple of surprising features of the velocity profiles
at station 3. Noting that the streamwise shear is given by the slope
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of the velocity profile, it is seen that an internal point of maximum
shear has developed that exceeds the values at thewall. This maxi-
mum corresponds to the ‘‘hump’’ in the dotted line in Fig. 2(b) that
gives the global maximum shear. Secondly, the shear has devel-
oped negative values in the interior of the boundary layer.

The relative strengthening of the shear might be readily under-
stood as the opposite of the process that reduced the wall shear
at the wall: the streamwise vortices will produce stretching of the
spanwise vorticity near the top of the viscous layer. The formation
of the reversed shear ismore complex. This processwould not even
be possible in a two-dimensional boundary layer, [41]. Taking the
y-derivative of the streamwisemomentum equation, the evolution
equation for the shear is seen to be

dτx
dx

= τx,yy + τx,zz + w,zτx − w,yu,z .

The left-hand side is the derivative of the shear following the cross-
plane particle motion, or following a local extremum in shear.
The first two terms in the right-hand side will always reduce
the magnitude of an internal extremum of shear. The third term,
the vortex stretching effect already mentioned, can increase an
extremum. But it cannot reverse the sign of the shear, cf. Section 3.
The final term in the right-hand side is zero at the center plane
by symmetry. It can be concluded that the reversed shear cannot
have formed first at the symmetry plane, unlike what the velocity
profiles might seem to suggest. (This assumes, reasonably, that the
second order derivatives are not zero at the extremum.) Indeed,
examination of the streamwise shear contours (not presented
here) shows that two negative shear extrema are located at
symmetric positions somewhat away from the center line.

Going from station 2 to station 3, the (scaled) streamwise
vortices gather evenmore strength. On the other hand, the strength
of the wall vorticity decreases. As a result, the vortices away from
the wall take over as the locations of the strongest vorticity. The
values of the extrema are plotted as the dashed lines in the center
graph in Fig. 2(c).

The vortices at station 3 have also become quite compact.
Looked at inviscidly, their close proximity to each other would
mean that their effects cancel each other significantly over most of
the domain. Thewall pressure distribution has become remarkably
flat, Fig. 2(d), making the wall pressure gradient almost zero away
from the center plane.

Going to station 4, the vortices diffuse out someand a significant
spanwise pressure variation reestablishes itself. Once again, this
pressure distribution tends to drive the fluid near the wall toward
the center plane. The wall shear at the center plane stops evolving
toward the spanwise average and decreases again a bit.

Around station 4, the boundary layer thickness has grown to
be comparable to the spanwise scale. In terms of inviscid vor-
tex motion, the streamwise vortices are now well separated from
their mirror images below the wall. Their inviscid effect on the
flows near the ends of the period is to stretch the spanwise vor-
ticity and draw higher-momentum fluid closer to the wall. Near
the center plane, however, they compress the spanwise vorticity
and contribute to a motion away from the wall. Consistent with
this picture, going to station 5, the wall shear in the center plane is
observed to stagnate, Fig. 2(b). On the other hand the wall shear
near the ends of the period grows quite significantly. Around sta-
tion 6, the location of separation without blowing, the wall shear
near the ends extendswell above the Blasius value for zero adverse
pressure gradient. And all velocity profiles have been energized
enough that they are well clear from separating.

The boundary layer is now getting quite thick compared to the
spanwise scale, suggesting that spanwise diffusion will become a
dominating effect. The rise in wall shear at the center plane from
station 5 to station 6 is consistentwith an increasing importance of

spanwise diffusion. And so is the rapid and apparently exponential
decay of all three-dimensional flow features between stations 6
and 7. In any case, at station 7, the velocity profiles are fully two-
dimensional, although still well away from a Blasius profile. And
all contour lines of streamwise vorticity have disappeared.

7. Autogenous suction

Atik and Van Dommelen [13] showed that in two-dimensional
flow, separation can theoretically be eliminated by ‘‘autogenous
suction’’, boundary layer suction driven by the adverse pressure
gradient that causes the separation. In the scheme, the fluid that is
sucked away where separation wants to occur is ducted toward
the lower pressure region farther upstream of separation. Since
boundary-layer suction volumes are asymptotically small, the
head loss can be asymptotically small. On the other hand bound-
ary layers can support a finite, though numerically small, pressure
drop. There is much less hydraulics involved in ducting the fluid
a small fraction of the chord upstream than to duct the fluid all
the way along the wing span toward a pump in the fuselage, as
has been done inmore conventional applications. However, [13] do
find that the blowing distribution needs to be very precisely tuned
to prevent the upstream blowing to cause separation before the
downstream suction has picked up enough strength to prevent it.

This raises the question whether autogenous suction could be
used in the current framework. It could circumvent the need in the
two-dimensional case to finish all blowing before suction can start.
In three dimensions, fluid can be ducted spanwise and ejected at a
station only slightly upstream and only a boundary-layer thickness
scale distance away in the spanwise direction. Both the suction and
the blowing could then contribute to generating the streamwise
vortices that are to prevent the separation. Such a scheme is likely
to bemore robust to small flow changes than the two-dimensional
one.

As a proof of concept, in this section a limiting case will be
examined in which the head loss for the ducted fluid is assumed to
be zero. Thus the fluid is ejected at the same streamwise position
as it is sucked away. This case can be done using the same blowing
distribution (19) as in the previous section if its spanwise average
is subtracted.

It turns out, maybe not surprisingly, that it is easier to remove
separation with a combination of suction and blowing than with
pure blowing.Whilewe did not succeed in eliminating the need for
negative wall curvature completely, we did manage to reduce its
magnitude by a factor 4. At the same time we reduced the blowing
velocity (before subtracting the average) by a factor 2.

As Fig. 4(b) shows,with these reductions in boundary-layerma-
nipulation we did get quite close to separation in the region where
the two-dimensional boundary layer separates. However, the near-
separation in the initial region is gone, and with it the associated
complex dynamics. Qualitatively, Figs. 4 and 5 are not unlike Figs. 2
and 3, but note the very different numbers on the axes and con-
tours.

It should of course be noted that for practical application, the
microjet scheme is significantly simpler. This is especially so be-
cause a source of high pressure air is often readily available,
e.g., from the aircraft engines.

8. Discussion

8.1. Conclusion

This paper was concerned with the effect of small-volume
transverse blowing on laminar boundary-layer separation. In par-
ticular, the case of three-dimensional blowing into an otherwise
two-dimensional incompressible boundary layer was addressed.
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Fig. 4. Like Fig. 2, but for spanwise-alternating blowing and suction.

The blowing was assumed to stay within the normal small trans-
verse boundary layer scale. The most interesting result for prac-
tical purposes was to show that in at least some circumstances,
such blowing can remove separation. However, blowing that can
validly be described by the normal three-dimensional boundary-
layer equationswill not do so. Such blowingwill only promote sep-
aration. To be able to remove separation, a blowing distribution
is needed that varies nontrivially in the spanwise direction on the
short Görtler scale.

The numerical results indicate that the beneficial effects are due
to the enhancedmixing by streamwise, Görtler scale, vortices. As is
well known, such vortices,while small in the cross plane, persist for
finite distances downstream.While the use of streamwise vortices
to eliminate separation is well established, the current results
manage to do sowhile staying fullywithin boundary layer scalings.
The generated drag stays small of order Re−1/2 like in a normal
attached laminar boundary layer.

These Görtler-scale flows are quite hard to compute numeri-
cally. A new scheme was formulated to allow for the various prob-
lem areas.

According to the present results, an equal combination of
blowing and suction, such as in asymptotic autogenous suction, is
more effective than blowing alone.

What is the nature of the Görtler-scale boundary-layer solution
when an attached flow does not exist is not yet clear. Numerical
results so far suggest that the Görtler-scale boundary-layer solu-
tion remains nonsingular as long as the streamwisewall shear does
not reverse. In the absence of singularity, a self-consistent high
Reynolds number composite solution consisting of an attached

Fig. 5. Like Fig. 3, but for spanwise-alternating blowing and suction.

potential flow and a thin boundary layer at the wall exists. Fol-
lowing Sears and Telionis [17], such flows should be defined to
be unseparated for physical reasons. The numerical results of Ap-
pendix B suggest that if an attached solution does not exist, there
may be a singularity in the region of reversed flow in the Görtler-
scale boundary-layer solution. However, this result is obtained by
extrapolation. The downstream-marching boundary layer problem
is improperly posed for reversed streamwise wall shear, and code
modifications would be needed to explore the region beyond zero
wall shear.

8.2. Additional remarks

Interesting as the above results may be, a primary objective of
this study was to create a simple model to gain some understand-
ing of flow control by microjets. Now that such a model has been
established, some insight may become possible. For example, if
the experiments and the model agree, some more abstract under-
standing of the mechanics may have been obtained. On the other
hand, if experiments and themodel disagree, the question ‘‘Why?’’
can be raised. This too is likely to increase understanding.

The current results are still very limited. Only a couple of ex-
amples have been computed so far. But one conclusion of all the
numerical experimenting done to achieve these examples is that
it is not really that easy to achieve effective separation control in
laminar flow in the described way. Surely not as easy as it is ex-
perimentally in turbulent boundary layers. The initial, quasi-two-
dimensional, effect of blowing on separation is adverse. Farther
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downstream there may be a beneficial effect, but it first needs to
overcome what is left of the earlier adverse effects. Our numeri-
cal observations are that the streamwise vortices tend to diffuse
away before they have the time to do much good. In both success-
ful cases we had to assume a slightly concave wall, in which the
Görtler instability mechanism helps to keep the vortices alive.

That obviously raises the question why this seems less of an
issue in turbulent flows, (e.g. [1,6]). It may be that the higher
average velocity of a turbulent velocity profile plays a part. Re-
call that for a constant streamwise velocity, the Görtler equations
become the two-dimensional unsteady Navier–Stokes equations,
with the streamwise coordinate taking the place of ‘‘time’’. If the
streamwise velocity is higher, the ‘‘time’’ available for diffusion
until the flow reaches a given downstream location is less. Also,
when the variation in streamwise velocity is smaller, the vortic-
ity becomes more streamwise, reducing three-dimensional vortex
mechanics that conceivably might disrupt the vortices. (The cross-
plane gradients of the streamwise velocity produce the nonstream-
wise vorticity components.) Including a turbulencemodel in future
computations might be a way to get some more insight in this is-
sue. (An unreported study of the effect of variable viscosity on the
initial flow was in fact conducted. The conclusion was that it did
not make much of a difference. But there does not seem to be a
good reason why it should for the initial flow.)

Note that the fact that so far we have not succeeded in remov-
ing separation from flat and convex walls does not mean it cannot
be done. Clearly Görtler vortices will provide cross-plane mixing
whether the wall is concave or convex. In that respect, there is no
fundamental difference in the equations of motion for concave and
convexwalls. In either case, theGörtler vortices have a finite length
in the streamwise direction. The difference in length is quantitative
rather than qualitative. The numerical problem was to create vor-
tices that avoided zero wall shear in the region of blowing and that
remained strong enough traveling down to separation. In experi-
ments, a limited amount of ‘‘separation’’, i.e. reversed streamwise
flow, near the microjets may be fine. However, the computations
have to stay below the blowing level that creates reversed flow or
they become improperly posed. That limits the blowing that can be
applied. But in fact, the present computations could not even reach
the blowing level that produces zero wall shear. They were limited
by numerical resolution in resolving the strong initial gradients
in the initial near-separation caused by the blowing. If separation
could be approached more closely, the strong vorticity ejection of
Fig. 3 should strengthen still further.

Another issue is how well the used blowing distribution
simulates microjets. The relative spanwise size of the blowing
distribution was a much larger fraction of the period than in the
experiments. So was the streamwise size. The true microjet scale
would produce severe numerical resolution problems. However,
sharpening the blowing distribution might introduce stronger jet
entrainment. Such entrainment might act much like suction to
remove the low momentum fluid near the wall. And recall from
Section 7 that a combination of suction and blowing is considerably
more efficient than blowing alone.

Note also that according to the two-dimensional unsteady flow
analogy, the present computations barely seem to scratch the
surface. As seen in the cross plane, the computed transverse flows
are clearly low Reynolds number ones, where all relevant features
have the scale of the period. All the potential richness of high
Reynolds number cross-plane flows remains to be explored.

Another issue that may be important is the vortex stretching
found near, say, a front stagnation point. Conceivably this might be
another way besides wall curvature to keep the streamwise vor-
tices alive until they can do something beneficial. All computa-
tions so far have been started from a Blasius-like boundary layer
in which such stretching is absent. Future studies should look at
stagnation-point flows.

A final area that needs more attention is spanwise flow above
the boundary layer. Since the cross-flow scaling is small, such span-
wise flowmight have a dramatic impact. Thepresented results paid
relatively little attention to cross flow since in initial exploratory
studies, zero cross flow seemed towork best. Note that [66] did find
that cross flow can at least locally produce a beneficial effect, pos-
sibly by stirring up the vortex mechanics. However, these compu-
tations did not use the Görtler instability mechanism, whichmight
possibly be adversely affected by cross flow, [50,67]. In addition,
the current study attempted to simulate the effect of microjets,
which will drift downstream with the boundary layer fluid.

During the course of this study, the experimental work of
[68] became available. Their conclusions about the formation of
streamwise vortices and their beneficial effects seem very similar
to those of the present study.

Acknowledgments

This material is based upon work supported by the US Army
Research Laboratory and the US Army Research Office under grant
number W911NF-05-1-0295. We thank Prof. F.T. Smith for some
helpful comments.

Appendix A. Some data about the numerical solution

This appendix summarizes basic data about the numerical
solution. Note that many of the parameters below were chosen
based on heuristic arguments and trial and error.

For the computations of Sections 6 and 7, the streamwise com-
putational coordinate was defined as:

α =
1
π

arctan


x
l1α

+
1
π

arctan


x
l2α

l1α = 0.01 l2α = 5. (A.1)

This puts half the streamwise mesh points in a range of order 0.01,
and the other half in a range of order 5. The square roots remove
the singularity that would otherwise exist in the solution at x = 0.
The spanwise coordinate was

Z =
z
λ

= γ +
fγ
2π

sin(2πγ ) fγ = 0.66. (A.2)

The sine term increases the resolution at the center of the period,
where the blowing peaked. The transverse coordinate was

β = (1 − fβ)
2
π

arctan

2πy
fλλ


+ fβ

2
π

arctan


y
D(x)


fβ = 0.625 fλ = 0.69.

(A.3)

This spreads a fraction 1− fβ of themesh points over a length scale
comparable to the period. The remaining fraction fβ ofmesh points
is spread over a scaleD(x), taken as a crude estimate for the viscous
boundary layer thickness:

D(x) = CD
√
x

1 +

fD
1 + (x − xD)2/l 2D


CD = 4.41 fD = 1 xD = 6.2 lD =

1
2
xD.

(A.4)

To keep the computational unknowns finite, they were defined
as follows:

U =
u

R(x)
V = S(x)v − CVV0


y

D(x)


W = S(x)w (A.5)

P = T (x)p − CPD(x)P0


y

D(x)


K = R2(x)S3(x)κ. (A.6)
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Here R(x) = 1, S(x) =
√
x, and T (x) = D2S are chosen functions

that canbemodified basedon the type of flowcomputed. Functions
V0 and P0 with their coefficients capture the blow up of v and p,y
at large y:

V0 = ln

cosh

y
D


∼

y
D

− ln 2

CV = −RDSα,xUe,α − R′DSUe

(A.7)

P0 =
1
2
V 2
0

CP =
RT
S


D′

D
+

S ′

S


CV − α,xCV ,α


Ue −

T
DS2

C2
V .

(A.8)

The transformed momentum equations can be straightforwardly
rewritten in terms of these new coordinates and variables.

It is desirable that U and W approach the exact Ue and We at
infinite y. This avoids accumulation of errors in the external flow
boundary condition and simplifies code logic. It can be achieved
by evaluating the streamwise derivatives of the external flow by
the same difference scheme as used for the velocities inside the
boundary layer. Then it is seen from the governing equations that
the variables V and P,y approach constants too.

All streamwise, α, derivatives were discretized using the back-
ward, second order, A-stable finite difference formula. Our ex-
perience with boundary layer computations is that the implicit
viscosity in this discretization avoids oscillations that may occur
in Crank–Nicholson type discretizations in the presence of abrupt
changes in wall transpiration velocity, [12,13]. The α derivatives
drop out at the start of the plate, allowing the appropriate initial
conditions to be found iteratively by solving ordinary difference
equations in the β direction. This is preferable to putting in the
exact initial conditions, which would produce a relatively large er-
ror, [28].

Because the y stretching is in places very nonlinear, dependent
variables that vary accurately linearly or quadratic with ymay vary
very nonlinearly with β . Therefore, to maintain meaningful values
for the y derivatives everywhere, theywere evaluated in terms of y
instead of in terms of β . The same scheme was also used for the γ
derivatives. An additionalmodificationwasmade to the convective
γ -derivatives. These were approximated as

Cγ f,γ −
1
2
∆α∆γ

Cγ  f,αγ γ for f = U, V ,W (A.9)

using the normal second order γ differences and a first order
backward α difference. This discretization produces a diagonally-
dominant bidiagonal formula for the f -values in the current plane,
which aids the convergence of the used symmetric Gauss–Seidel
iterations in the γ -direction. The beta derivatives were evaluated
using central differences in the regions of normal variation ofmesh
size. In the regions of singular or near singular variation of mesh
size, a limited amount of upwinding was used. It was demanded
that the upwinding did not increase the formal truncation error by
more than 50%.

To obtain a good cross-plane discretization of the continuity
equation, the pressure and spanwise velocity location were stag-
gered in the cross-plane mesh like in a two-dimensional unsteady
MAC scheme [69]. The cross-plane pressure derivatives in the mo-
mentum equations and the velocity differences in the continuity
equation were evaluated correspondingly.

Fig. A.6 shows various data relevant to numerical accuracy. All
computations in this paperwere conducted at three differentmesh
sizes and two cut-off values so that their accuracy could be verified.
(The results at the two values of the cut-off are invariably for all
practical purposes indistinguishable. Itmay also bementioned that
because of the coarse spacing in the top of the viscous region, the

b

a

c

d

Fig. A.6. Tests onnumerical accuracyusing threemesh sizes, coarse (dots),medium
(short dash), and fine (solid). Themedium curves show results for two different cut-
offs (indistinguishable). See the text for details.

actual mesh point at which the switch from viscous to inviscid
equations is made is typically only one unit different.)

The top left velocity profiles provide a first sanity check.
They show Howarth flow, [70], as computed using the present
scheme. This is a two-dimensional flowwith an external flowgiven
by ue = 1 − x. The current scheme used mesh sizes 96,36,2/7
192,72,2/7, 192,72,2/9, and 384,144,2/7. These represent stream-
wise, transverse, and spanwise mesh points respectively, with the
value of the y/D cut-off following the slash. Quadratic convergence
with mesh size is observed, and only the separation profiles show
some noticeable differences between meshes. Symbols are the re-
sults of Howarth. These are impressively accurate for a compu-
tation done in 1938. (The Howarth values for the final separated
velocity profile are at x = 0.12).

The velocity profiles in the top center of Fig. A.6 provide a san-
ity check for a three-dimensional nonlinear case. Good quantita-
tive agreement exists with the velocity profiles computed by Hall
for the same flow, [52, Fig. 3(c)]. The mesh sizes in this com-
putation were 256,64,16/10, 512,128,32/10, 512,128,32/8, and
1024(2048),256,64/10. (For the finest mesh, the iterative proce-
dure would not converge at the position 100where the strong per-
turbation is impulsively applied. As a simple fix, the streamwise
mesh was doubled from that point on.) Note that this computation
and the Howarth one used somewhat different mesh stretchings
than the ones described above.

The remaining plots in Fig. A.6 apply to the main computations
of this paper in Sections 6 and 7, in particular Figs. 2–5. The plots in
Fig. A.6 show the parts of these figures where notable differences
between the meshes were found. The meshes were 256,48,64/8,
512,96,128/8, 512,96,128/10, and 1024,192,256/8.
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First, the velocity profiles top right in Fig. A.6 are at an early
stage in which strong, peaked blowing is applied. This blowing
nearly causes separation. The velocity profile on top of the blow-
ing peak gets blown far up, to where the viscous mesh resolution
becomes low. As a result, the coarsest mesh has clear difficulty re-
solving the top part of the velocity profile. However, quadratic con-
vergencewithmesh size is observed and the finest mesh should be
accurate to approximately line thickness.

Part (b) of Fig. A.6 shows the displacement velocity for the
cases of Sections 6 and 7, respectively. In the latter plot it is seen
that the coarsest mesh really struggles at the point where the
boundary layer gets very close to a marginal separation. Again, the
finest mesh seems to be accurate to approximately line thickness.
It may be noted that this is the only place where the differences
betweenmeshes are worth mentioning for the results of Section 7.
All remaining plots pertain to Section 6.

Part (c) of Fig. A.6 shows the streamwise wall shear on two
streamwise scales and the cross-flow wall pressure distribution.
Broken lines are a second-order asymptotic theory for small ξ .
Note that the initial conditions away from the boundaries are not
prescribed but computed on the finite difference mesh. Therefore
both the agreement in value with theory and the one in slope are
nontrivial. The results are seen to agree very well with theory.
Unfortunately, theory has only a very limited range of applicability.
Thewall shear quickly drops below the theory and suffers the near-
separationmentioned earlier. At about that time the coarsestmesh
also suffers resolution problems in computing the pressure and
wiggles develop. These disappear for the finer meshes and once
again the finest mesh seems to be accurate approximately to line
thickness.

Part (d) of Fig. A.6 shows contour lines of streamwise vorticity
in two cross-flow planes at the near-separation. Again the coarse
mesh shows quite noticeable deviations while the finest mesh is
again accurate approximately to line thickness. Note also the poor
behavior of the coarsest mesh far from the wall. However, these
are quite small values of the vorticity in the near-potential region
where the vorticity is almost constant at zero. (The shown contour
lines are densely spaced around zero, the line of largest vorticity
having 60 times the vorticity of the one of lowest vorticity.)

Except for these cases where the accuracy is approximately
equal to line thickness, the results in Sections 6 and 7 seem to be
accurate to within line thickness.

Appendix B. The Goldstein singularity and blowing

According to numerous numerical computations, in two-
dimensional flow, an incompressible boundary layer terminates
in a Goldstein singularity at flow reversal for a prescribed exter-
nal flow with a sufficiently adverse pressure gradient. Then fol-
lowing [24] the obtained boundary layer solution is not physically
meaningful except as a signal that the assumed higher Reynolds
number solution with an attached external flow does not exist.

To be sure, there are some exceptions to the above statement.
First, [25] showed that for a pressure–displacement law different
from a thin boundary layer below a potential flow as assumed here,
the singularity may be removable.

Second, it is in principle possible to have zero wall shear
without a Goldstein singularity. The simplest example is, of course,
the Falkner–Skan separation profile. This special solution has the
wall shear zero everywhere. There is no singularity except at the
start of the boundary layer. More generally, at zero wall shear an
asymptotic expansion exists that is nonsingular, [22].

Catherall and Mangler [71] argue that nontrivial solutions of
this kind can in fact be created, by the trick of prescribing the dis-
placement thickness instead of the pressure near and in the re-
versed flow region. Physically these would correspond to attached

flow in the sense of Section 2; while there is reversed flow in the
asymptotic thin boundary layer, the asymptotic external flow is the
attached one for that body. However, the velocity and displace-
ment thickness boundary conditions used by Catherall and Man-
gler are, as noted by [24], rather artificial and contrived. No actual
bodies corresponding to these solutions were identified. More
work is needed to understand why such solutions have so far not
been observed numerically for given bodies.

Third, a marginal case of the Goldstein singularity exists. The
marginal case occurs when the flow around a body is initially un-
separated, and the flow parameters then changed to produce a
more adverse pressure gradient. Ruban [58,59] and independently
Stewartson et al. [60] showed that when the first point of zero wall
shear appears, the singularity is of a degenerate type. More im-
portantly, they showed that in an asymptotically small parameter
range around the critical ones, a small thin reversed flow region
can exist in the boundary layer region due to viscous–inviscid in-
teraction.

If nonsingular solutions as described by Catherall and Man-
gler [71] would show up numerically for prescribed external flows,
it would weaken the arguments of Section 3. Then it would be con-
ceivable that while the blowingmoves zerowall shear upstream, it
might also change the boundary layer into a nonsingular one. Such
a flow would then be unseparated in the terminology of Section 2,
though still ‘‘separated’’ in the classical sense.More study is needed
to address this concern.

As far as marginal separation is concerned, surely it should be
possible to create such a separation upstream of the original one
by blowing. However the flow would remain separated because of
the singularity downstream.

Within the context of the present numerical study, it may be
interesting to examine the effect of three-dimensional blowing on
the singularity itself. In particular, the results of this section will
suggest that for Görtler-scale blowing, a thin reversed flow region
of finite length may occur.

As mentioned in Section 3, if the spanwise scale of the blow-
ing exceeds the Görtler scaling, the flow is quasi-two-dimensional.
So then a Goldstein singularity will form at the first point where
the streamwise shear reaches zero. At other spanwise locations,
the boundary layer computation can be continued farther down-
stream. (However, the analysis of [24] applied at the first point of
zero wall shear suggests that the obtained solution is physically
not meaningful and that the assumed attached flow simply does
not exist.)

The above does not apply for a Görtler spanwise scaling. Here
different spanwise locations interact through spanwise diffusion.
As a result, the computation at all spanwise locations will become
improperly posed beyond the first point of reversed streamwise
flow. But intuitively it seems hard to imagine that the flow
over the entire span separates in the two-dimensional manner if
just a single point reverses. A weaker separation process seems
more likely. Since neighboring spanwise positions are linked, this
suggests that even at the reversal point, the singular behavior may
be weaker than in two-dimensional flow.

In order to understand this better, we performed a trial com-
putation of a Howarth [70] type flow. In such a flow, the constant
external flow of Blasius is replaced by ue = 1 − x. This creates an
adverse pressure gradient that without blowing produces separa-
tion at x = 0.120. Fig. A.6 showed the two-dimensional velocity
profiles without blowing, as computed using the current numeri-
cal scheme.

Thewall shear becomes zero at the separation point, but its gra-
dient blows up. In particular, if ∆ξ is the distance in terms of ξ to
separation, the wall shear is asymptotically proportional to

√
∆ξ ,

[22,39,40]. Therefore, if the wall shear is plotted against the wall
shear gradient on a double-logarithmic scale, asymptotically the
curve will approach a line of slope −1. This is shown in Fig. B.7(a).
The displacement velocity blows up as 1/

√
∆ξ , so its correspond-

ing plot has an asymptotic slope 1
3 .
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Fig. B.7. Effect of three-dimensional blowing on the Goldstein singularity.
Meshes are 96,36,36/7 (dots), 192,72,72/7 and 192,72,72/9 (short dashes), and
384,144,144/7. Long dashes indicate the quasi-two-dimensional solution valid for
long scaled period.

Table C.1
Pohlhausen parameter that causes separation at various
mesh sizes.

Mesh Ks

256 × 30 −0.076471
512 × 60 −0.076465
1024 × 120 −0.076435
2048 × 240 −0.076420
4096 × 480 −0.076416
8192 × 960 −0.076414

The numerical results, as computed using the present scheme,
agree well with these predictions. Fig. B.7(a) shows results for
three different mesh sizes. It should additionally be noted that the
streamwise mesh was several times doubled when approaching
the point of zero shear. For the smallest wall shear values, differ-
ences between the three meshes become visible. However, as long
as the results are mesh-independent, they are seen to follow the
expected theoretical slope.

To examine the effect of three-dimensional blowing, a simple
blowing distribution of the form

vw0 = 0.1

1 − cos

2πzλ


(B.1)

was added, using the variables as defined in Section 6.
The first flow reversal for this blowing distribution occurs at the

center period, where the blowing velocity is largest. However, as
Fig. B.7(b) shows, the wall shear gradient remains finite at flow
reversal in the absence of blowing. The figure shows the three
meshes both superimposed, as well as shifted apart so that they
can be seen independently. There are no significant differences
between themeshes. In fact, all threemeshes agree on the location
of the flow reversal and the wall shear slope at that location to
three digits accurate.

Fig. B.7(b) also shows the quasi-two-dimensional solution valid
for large scaled period. This solution separates earlier, with a
normal Goldstein behavior. Not only does the Görtler scaling shift

the flow reversal downstream, it also eliminates the square root
singularity when it does occur.

Fig. B.7(c) shows the displacement velocity with Görtler-scale
blowing. The behavior is similar to the Goldstein case, (shown as
the long dashes for the long scaled period case). However, the slope
seems to be somewhat smaller. A slope of −5/12 is shown as the
dot–dash lines.

Assuming a constant value for the slope, the displacement ve-
locity and its derivative at a given location ξ can be used to extrap-
olate a location ξs where the displacement velocity would become
singular. These extrapolated locations are shown in Fig. B.7(d).
In the top curve, the slope was assumed to be −5/12. In the
lower curve, the slope is taken to be the local derivative d (ln vd) /
d


ln vd,ξ


. Both curves seem to predict a singularity that is a finite

distance beyond the initial flow reversal point.
These results suggest that the flow may only become singular

a finite distance behind the first flow reversal. If so, local manipu-
lation, such as suction, might be applied near the singular point to
prevent the singularity. That then raises the possibility that there
might be attached flows with a finite region of reversed flow on
Görtler scalings. This would be different from the case of marginal
separation in two-dimensional flow, [58–60], where the reversed
flow region is asymptotically small.

Appendix C. External flow for marginal separation

The Pohlhausen approximation of the boundary layer equa-
tions, in the form of Holstein & Bohlen, and simplified by Walz,
[44, Eq. (10.37)], can be written as

K =
a

b − 1
Φ

Φ ′

dΦ ′

dΦ
a ≈ 0.47 b ≈ 6 (C.1)

where primes denote differentiation with respect to the stream-
wise coordinate x, K is a nondimensional parameter governing the
shape of the velocity profile, andΦ is an integral of the velocity:

K ≡ ue
′
δ22

ν
Φ(x) ≡

 x

x=0
ue

b−1(x) dx (C.2)

where δ2 is the boundary layer momentum thickness and ν the
viscosity.

Note that since normally only a relatively small drop in external
flow velocity is sufficient to produce separation, Φ is roughly
speaking proportional to x. Therefore, if the shape parameter K is
chosen to be a suitable function ofΦ , it will be a similar function of
x. But choosing K as a function ofΦ instead of x has the advantage
that (C.1) may be integrated by separation of variables.

In this study, we chose

K = KsΦe1−Φ . (C.3)

This has K zero, corresponding to Blasius flow, both at the start
of the plate and infinitely far downstream. At Φ = 1, however,
an extremal value Ks is reached. The expression above has the
advantages that the shape of the velocity profile immediately starts
evolving to the separated one, and that the shape far downstream
is exponentially close to the Blasius one. In addition, it allows (C.1)
to be integrated analytically.

Theoretically, marginal separation would occur when taking
Ks = −0.1567, the separation value, [44, p. 212]. However, the
accuracy of the Pohlhausen approximation near separation is low,
and the true flow separates earlier, (cf. [44, Fig. 10.7]). Indeed,
boundary layer computations show that marginal separation oc-
curs at Ks = −0.07641, Table C.1. In the three-dimensional
computations, Ks = −0.0765 was used to make sure that the
corresponding two-dimensional flow is indeed separated. We
could easily have increased the magnitude of this parameter fur-
ther, but that would involve making an arbitrary choice for that
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value. The logical value is surely as close as possible to themarginal
value, but still high enough that the two-dimensional flow is defi-
nitely separated in the sense of Section 2.

The actual position of separation is at x = 2.91 or ξ = 0.199.
(The Pohlhausen approximationwould give separation at x = 7.09
for the theoretical Ks, or minimum shear at x = 2.43 for the
actual Ks.)
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