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1 9/04 W

1. If the density of air at sea level is 1.225 kg/m3, and the molecular mass 28 g/mol,
then what is the number of molecules per unit volume? What is the average spacing ℓ
of the molecules? (First compute the average volume per molecule, then think of the
molecules as being equally spaced in all three directions of a 1× 1× 1 m3 box)

Consider a molecule of average diameter d that moves over one free path length λ.
During that motion it will hit another molecule if the center of the other molecule is
within a radius d from the path of the molecule. In other words, the center of the
other molecule must be inside a cylinder of radius d around the path λ of the first
molecule. There should be about one collision in a free path, so there should be about
one other molecule within the cylinder. So the free path can be ballparked from setting
the volume of the cylinder equal to the average volume per particle:

πd2λ = average volume occupied per particle

Take the average diameter of the molecules to be 0.3 nm and compute λ. A more
careful analysis says you still need to divide this by

√
2, so do so.

2. Continuing the previous question, suppose you have a body of typical size L in the
flow of some gas. Which length, ℓ or λ, relative to L, determines whether you can
define a meaningful “pointwise” density and velocity at a given time and position (by
taking a small volume around the point and then taking the ratio of mass inside to
volume, respectively momentum inside divided by mass inside at a given time)? (Of
course, the small volume must be small compared to the body for it to be considered
a “point” instead of a region in the flow.)

Which length determines whether you can define a meaningful “pointwise” density and
velocity that would be enough info, say, to compute the further flow development? In
other words, the pointwise density and velocity (and temperature) must fully determine
the state of the gas at the points.

In particular, take sea-level air like in the previous question. Then for what body
size L can you no longer use the normal (Navier-Stokes) equations to compute the
flow at the “points” around the body? For what size body can you no longer find a
meaningful continuum velocity for the “points” around the body by averaging mass
and momentum in small volumes even if you used molecular dynamics?

3. The Lagrangian equation for inviscid flow is Newton’s second law in the form ρ~a =
−∇p+ ρ~g, i.e. mass per unit volume times acceleration equals pressure force per unit
volume plus gravity force per unit volume.

(a) In this question you need to write that in Eulerian form first to give the Euler
equations. Compare with the equations in the appendices in the back of the book.

(b) Now substitute the ideal stagnation point as discussed in class into your Euler
equations, and verify that the Euler equations contain the same acceleration vector
as the Lagrangian solution already discussed in class.
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(c) Then compute the pressure field (Eulerian) from these Euler equations. Make
sure you do that properly, as discussed in class. Include gravity, producing a
force per unit volume ρ~g where the acceleration of gravity ~g points down in the
minus y-direction. Compare the result with the Bernoulli law.

(d) Conversely, starting with the Bernoulli law, take minus the gradient and verify
that that gives the 2D Euler equations, assuming that ∂u/∂y equals ∂v/∂x. (For
ideal stagnation point flow, they are both zero). In writing the Bernoulli law, you
can assume that the constant in it is the same for all streamlines.

Hints: Note that the pressure is a scalar, not a vector. And that you need to write it
in terms of x and y, to take the gradient. The gradient of the pressure is a vector. The
acceleration is the Lagrangian time derivative of the particle velocity; read your notes.
In finding the pressure, put the solution of the first equation into the second.

4. If the surface temperature of a river is given by T = 2x+3y+ ct and the surface water
flows with a speed ~v = ı̂ − ̂, then what is c assuming that the water particles stay
at the same temperature? (Hint: DT/Dt = 0 if the water particles stay at the same
temperature. Write this out mathematically in Eulerian form.)

5. A boat is cornering through this river such that its position is given by xb = f1(t),
yb = f2(t). What is the rate of change dT/dt of the water temperature experienced by
the boat in terms of the functions f1 and f2?
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2 9/11 W

1. The velocity field of shallow water waves is just below the surface y ≈ 0 given by

u = ǫ sin(kx+ ωt) v = −ǫ cos(kx+ ωt)

Find the pathlines for these water waves. Since this would be a messy process if done
exactly, simplify it by assuming that ǫ is small. In that case the particle displacements
are small, and that allows you to approximate x in the sine and cosine by the x-value
ξ of the initial particle position, which is constant for a given particle:

u = ǫ sin(kξ + ωt) v = −ǫ cos(kξ + ωt)

Find and draw a representative collection of particle paths under that assumption.
Show the features.

2. As noted in the previous question, the velocity field of shallow water waves is near the
surface given by

u = ǫ sin(kx+ ωt) v = −ǫ cos(kx+ ωt)

where amplitude ǫ, wave number k, and frequency ω are all positive constants. Find
and draw the streamlines of the flow. Do not approximate in this case. Compare with
the pathlines. Why are they not the same?

3. Continuing the previous question, draw the streakline coming from a generator at the
origin, which is turned on at time t = 0. Draw the streakline for times ωt = 0, 1

4
π,

1

2
π, π, 2π, 4π, 6π, . . . . In a separate graph, draw the particle path of the particle that

was released at time zero. Compare its position at the given times with that in the
streaklines. Hint: Read up on how to get streaklines in your notes.

4. For stagnation point flow, write down the velocity derivative tensor, then its antisym-
metric part, and then find the angular velocity of the fluid rotation produced by that
part. Repeat for the “solid body rotation” flow

u = −dy v = dx

with d a constant.
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3 9/18 W

1. In Poiseuille flow (laminar flow through a pipe), the velocity field is in cylindrical
coordinates given by

~v = ı̂zvmax

(
1− r2

R2

)

where vmax is the velocity on the centerline of the pipe and R the pipe radius. (a) Use
appendix B to determine whether this is an incompressible flow. (b) Use Appendices
B and C to find the velocity gradient and strain rate tensors of this flow. Do not

guess. Compare whether the results are consistent. (c) Evaluate the strain rate tensor
at r = 0, 1

2
R and R. What can you say about the straining of small fluid particles on

the axis? (d) Also find the vorticity. Do particles on the axis rotate? If not, what do
they do?

2. (20pt) For the Poisseuille flow of the previous question, derive the principal strain
rates and the principal strain directions for an arbitrary radial position r using class
procedure.

3. For the Poisseuille flow of the previous questions, make a neat picture of a vertical r, z
plane through the axis showing, for a point at an arbitrary r, z, a small cubic fluid
particle, in cross section (so a square), that is aligned with the principal strains at that
point. Using arrows as appropriate, show the translational, straining, and average
rotational motions that this particle is performing. If the particle was a small solid
sphere, instead, would you expect it to rotate, and if so, in which direction?

4. Write out the continuity equation

1

ρ

Dρ

Dt
+ div~v = 0

in cylindrical and spherical Eulerian coordinates, for both a compressible and an in-
compressible fluid separately (4 equations).

(Here incompressible means that the density of individual fluid particles is constant,
not that all fluid particles must have the same density. Usually, when people say
incompressible they mean that the density is the same everywhere. But looking in the
sea, different regions have different density, because of different salt, but the individual
particles are still pretty much incompressible.)

Note that
D

Dt
=

∂

∂t
+ ~v · ∇

and use the appendices.

Next assume that ~v and ρ only depend on r and t (so the flow is cylindrically or
spherically symmetric). How do the equations simplify?

In the incompressible case (density the same everywhere), you should see that there is
a quantity that must be a constant (at least for any given time) in each flow. What is
it?
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In the compressible steady flows, there is also a quantity that must be constant. What
is that? What happens to the radial velocity when going to large r?

5. Use the expression derived in class to ballpark the kinematic viscosity ν of standard
air. From that ballpark the dynamic viscosity µ. Use the data from Appendix A in
the book and the posted solutions of homework 1 for the free path length. Compare
with the exact values.
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4 9/25 W

1. Two-dimensional Poiseuille flow (in a duct instead of a pipe) has the velocity field

~v = ı̂vmax

(
1− y2

h2

)

Here x is along the centerline of the duct, y across the gap measured from the middle,
and h is half the duct height. Neatly sketch the duct and its velocity profile. Find the
viscous stress tensor for this flow, assuming a Newtonian fluid, using Table C3 in the
book.

Evaluate the viscous stress tensor at y/h = 1

2
. Draw a little cube of fluid at that

position in the duct (in cross-section, and aligned with the axis), and sketch all viscous
stresses acting on that cube. In a different color, also sketch the inviscid pressure forces
acting on it. (Assume the pressure has some value p.)

Next assume that the little cube is rotated counter-clockwise over a 30 degree angle
(around the z-axis). Find the total stresses σ (including pressure) normal and τ tan-
gential on the now oblique front surface of the little cube. To do so, first find a unit
vector ~n normal to the surface. Then find the vector stress on the surface using ~R = ¯̄τ~n.
Then find the components of ~R in the direction of ~n (so normal to the surface), and
normal to ~n (so tangential to the surface).

Note: This is essentially question 5.3 from the book, but do not assume that the
pressure is 5; just leave it as p.

2. The two-dimensional Poiseuille flow of the last question had the velocity field

~v = ı̂vmax

(
1− y2

h2

)

Here x is along the centerline of the duct, y across the gap measured from the middle,
and h is half the duct height. Find the strain rate tensor of this flow, and from that the
viscous stress tensor, assuming a Newtonian fluid. Compare with the direct expression
for the stress tensor found in the last question. Also write out the total stress tensor,
(including pressure), as given by

Tij = −pδij + τij

Here δij is called the Kronecker delta or unit matrix, it is 1 if i = j and zero otherwise.

3. 5.6. Z is the height h. The final sentence is to be shown by you based on the obtained
result. Hints: take the curl of the equation and simplify. Formulae for nabla are in
the vector analysis section of math handbooks. If there is a density gradient, then
the density is not constant. And neither is the pressure. Tij is the book’s notation
for the complete surface stress, so the book is saying there is no viscous stress. (That
is self-evident anyway, since a still fluid cannot have a strain rate to create viscous
forces.)
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4. 6.1. Use the appendices. Based on the results, confirm that this is incompressible flow,
and discuss in what direction the viscous stresses on the surface of the sphere are. Also
state in which direction the inviscid stress on the surface is.

5. Noting that in the above flow, the pressure is given by p − p∞ = −3µU cos(θ)r0/2r
2,

evaluate the pressure and shear stresses on the surface of the sphere. Then for a small
surface area element of the sphere find the pressure and viscous stress forces on the
element. Evaluate the components of these forces in the axial direction (the line θ = 0)
and then integrate these forces over all surface elements to find the total drag force
exerted by the fluid on the sphere. Thus recover the Stokes formula for the drag of
a sphere at low Reynold number, FD = 6πµr0U . Note that the surface element on a
spherical surface of radius r0 is given by r20 sin θdθdφ.

6. 6.2 Discuss your result in view of the fact, as stated in (6.1), that the Reynolds number
must be small for Stokes flow to be valid. So what about the dynamic pressure, (as
produced by the kinetic energy of the fluid particles), in Stokes flow?
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5 10/02 W

1. As seen in class, the second law requires that the dissipation for a Newtonian fluid
may not be negative. Examine what constraints this puts on the values of µ and λ.
To do so, first write out the strain rate tensor and then the compressible Newtonian
stress tensor in terms of the strain rates only. (So write div~v in terms of the strain
rates.) Then note that τijsij simply means multiplying all corresponding components
of the two tensors together and then adding all 9 terms together (much like taking
a dot product between vectors). Then explain why µ must be positive (or at least
not negative) because otherwise, say, a Couette flow field in which only s12 = s21 is
nonzero would violate the second law. Then argue that with µ positive, the worst-case
scenario for negative entropy generation occurs when all off-diagonal (i 6= j) strain
rates are zero. So you can from now on limit your considerations to only the terms
involving diagonal (i = j) strain rates. (But that is expected, since you can always
switch to principal axes where there are no off-diagonal terms.) For the diagonal terms
the following trick works: your terms should include what can be considered the dot
product between the vectors ~v1 = (s11, s22, s33) and ~v2 = (1, 1, 1). You should know
that ~v1 · ~v2 = |~v1||~v2| cos(θ). Here cos2(θ) is no bigger than one, and it is one only
if the two vectors are parallel. (In general this is known as the “Cauchy-Schwartz
inequality.”) From that argue that λ may not be more negative than −2

3
µ. In the

marginal case of Stokes’ hypothesis that λ is −2

3
µ, there is one particular straining in

which the dissipation, though not negative, is zero. Show that that corresponds to a
uniform expansion or compression in all directions. Apparently, such an expansion is
perfectly reversible according to Stokes, unlike, say, a unidirectional expansion in the
x-direction only. What do you think of that?

2. Write down the worked-out mathematical expressions for the integrals requested in
question 5.1. This is a good exercise in identifying various surface and volume integrals
in integral conservation laws. Explain their physical meaning, if any. Don’t worry
about actually doing the integrations. However, show integrands and limits completely
worked out.

Take the surfaces SI , SII , SIII , and SIV to be one unit length in the z-direction. (To
figure out the correct direction of the normal vector ~n at a given surface point, note
that the control volume in this case is the right half of the region in between two
cylinders of radii r0 and R0 and of unit length in the z-direction. The vector ~n is a
unit normal vector sticking out of this control volume.)

3. 5.14. (The class question but with the nozzle turning the flow 120 degrees.) Find both
the horizontal and vertical components of the force. Make sure that you clearly define
what control volume you are using, as there is no unique choice.
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6 10/09 W

1. 5.12. This question explains why the water stream coming out of a faucet contracts
in area immediately below the faucet exit. As always, both mass and momentum
conservation are needed.

The faucet exit velocity may be assumed to be of the form of Poisseuille flow:

vz = vmax

(
1− r2

R2

)

You can assume that the stress tensor at the faucet exit is of the form (in cylindrical
coordinates)

¯̄τ =




0 0 τ0r/R
0 0 0

τ0r/R 0 0




in other words, much like the strain rate tensor that you derived earlier for Poisseuille
flow.

Take the faucet exit as the entrance of your control volume. Take as exit to your
control volume a slighly lower plane at which the radius of the jet has stabilized to
R2 and the flow velocity has become uniform (independent of r). For a uniform flow
velocity there are no viscous stresses. Gravity can be ignored compared to the high
viscous forces in this very viscous fluid. (However, over a longer distance gravity will
lead to a further thinning of the jet.) And you can assume that the pressure at the
exit is already atmospheric, as it definitely is in the lower plane below.

2. Write a finite volume discretization for the x-momentum equation for the little finite
volume in polar coordinates. Just like the continuity equation done in class, your final
equation should only involve pressures, densities, and velocities at the center points of
the finite volumes. Ignore the viscous stresses for now.

The unknown velocities used in the computation should be taken to be the polar
components vr and vθ. But momentum conservation for x-momentum is asked. (Con-
servation of r-momentum or θ-momentum would be complete nonsense.) So you will
need to write the x-component of velocity in terms of the polar unknowns. Note that
in Cartesian coordinates, the polar unit vectors are given by

ı̂r = cos(θ)ı̂+ sin(θ)̂ ı̂θ = − sin(θ)ı̂+ cos(θ)̂

These should be able to allow you to evaluate the x-components of velocity and pressure
forces that you need.

3. Assuming that there are known viscous stress tensors at the centers of the sides of
the finite element, what additional terms do you get in the obtained equation due to
viscous forces? Assume the stress tensor is given in polar form. (So τrr, τrθ, etcetera.)
Once again you will need the polar unit vectors to get the x-components of the forces.
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7 10/16 W to 10/23 W
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8 10/23 W

1. 7.5. Use the appendices. Find both velocity and pressure field, but wait with inte-
grating the integral for the pressure until the next question. You may only assume
that vr = vr(r), vθ = vθ(r), vz = 0, and p = p(r, θ, z) in cylindrical coordinates. (And
that the fluid is Newtonian with constant density and viscosity, of course.) Do not
assume that the radial velocity is zero, derive it. Do not assume that the pressure is
independent of θ, derive it. Ignore gravity as the question says. Note that p must have
the same value at θ = 0 and 2π because physically it is the same point. Answer for vθ:

Ωr20r1
r21 − r20

(
r1
r
− r

r1

)

2. In 7.5, what is the moment needed to keep the rod rotating, per unit axial length?
What is the power needed? What is the pressure difference between the surfaces of
the pipe and the rod?

3. 7.6. Do not ignore gravity, but assume the pipe is horizontal. Careful, the gravity
vector is not constant in polar coordinates. Find its components using geometry or
from ~g = −g∇h. Assume x is horizontal like the axial coordinate z and y vertically
upwards. Do not ignore the pressure gradients: assume the pressure can be any function
p = p(r, θ, z, t) and derive anything else. Merely assume that the pressure distribution
at the end of the pipe and rod combination is the same as the one at the start. For the
velocity assume vr = vθ = 0 and vz = vz(r, z). Anything else must be derived. Give
both velocity and pressure field. Check that your answer is the same as you would get
from using a kinetic pressure. What is the force required to pull the rod through the
axis, per unit length?

4. Consider the below graph for the minor head losses due to sudden changes in pipe
diameter:
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Discuss the following issues as well as possible from the sort of flow you would expect.

(a) How come this minor head loss coefficient becomes zero for an area ratio equal to
1?

(b) Why do they use different scales and reference velocities for a sudden contraction
than for a sudden expansion?

(c) Why would the head loss coefficient be exactly one for a large expansion? Coin-
cidence?

(d) Why would the head loss coefficient be less than one if the expansion is less? If
the expansion is less, is not the pipe wall in the expanded pipe closer to the flow,
so should the friction with the wall not be more??

(e) Why is there a head loss coefficient for a sudden contraction? The mechanism
cannot be the same as for the sudden expansion, surely? Or can it?

(f) Any other observations you can offer?

In answering this, think of where the head loss comes from, what its source is. What
is lost?
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9 10/30 W

1. (Part of 7.17 with n = 1 only.) Assume that an infinite flat plate normal to ̂ accelerates
from rest, so that its velocity is given by uplate ı̂ = U̇ t ı̂ where U̇ is a constant. There is
a viscous Newtonian fluid above the plate. Assuming only that u = u(y, t), w = 0, and
that the kinetic pressure far above the plate is constant, derive a partial differential
equation and boundary conditions for the flow velocity of the viscous fluid. List them
in the plane of the independent variables.

2. (Part of 7.17 with n = 1 only.) Use dimensional analysis to show that the fluid velocity
profile is similar,

u

U̇t
= f(η) η =

y√
4νt

(The units of the constant U̇ should be obvious.) Hint: use ν and t as repeating
parameters, and use linearity of the partial differential equation. Then, based on the
above expression for u, and the appropriate equation of the previous question, work
out the equation that the scaled velocity profile f has to satisfy.

3. (Part of 7.17 with n = 1 only.) Find the solution for the velocity profile from the
equation found in the previous question. One way to do so is differentiate the equation
for f twice with respect to η, and so show that g = f ′′ satisfies the equation

g′′ + 2ηg′ = 0

This equation is the same as the one for f in Stokes’ second problem, and was solved
in class. The general solution was

g(η) = C1

∫
∞

η̄=η
e−η̄2 dη̄ + C2

Explain why C2 must be zero. Explain why then f ′ can be found as

f ′(η) = −
∫

∞

η̄=η
g(η̄) dη̄ = −C1

∫
∞

η̄=η

∫
∞

¯̄η=η̄
e−

¯̄η2 d¯̄η dη̄

Draw the region of integration in the η̄, ¯̄η-plane. Use the picture to change the order
of integration in the multiple integral and integrate η̄ out. Show that

f ′(η) = C1

[
η
∫

∞

¯̄η=η
e−

¯̄η2 d¯̄η − 1

2
e−η2

]

Integrate once more in a similar way to find f(η). Apply the boundary condition to
find C1.

Another way to solve is find the solution in a suitable math handbook. Note from
the above that the solution is related to the error function somehow. Unfortunately,
basic handbooks may not have the solution. You may need a somewhat more advanced
book, like Abramowitz and Stegun.
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10 11/06 W

1. For an ideal point vortex at the origin, the velocity field is given in cylindrical coordi-
nates r, θ, z by

~v =
Γ

2πr
ı̂θ

Show that the vorticity ~ω = ∇ × ~v of this flow is everywhere zero. Now sketch
a contour (closed curve) C that loops once around the vortex at the origin, in the
counter-clockwise direction. In fluid mechanics, (for any flow, not just this one), the
“circulation” Γ̄ of a contour is defined as

Γ̄ =
∮

C
~v · d~r

Here the integration starts from an arbitrary point on the contour and loops back to
that point in the counter-clocwise direction. Evaluate the circulation of your contour
around the vortex. Do not take a circle as contour C; take a square or a triangle or an

arbitrary curve. Of course you know that in polar coordinates an infinitesimal change
d~r in position is given by

d~r = ı̂rdr + ı̂θrdθ

(If not, you better also figure out what it is in spherical.) You should find that Γ has
a nonzero value for your contour.

2. So far so good. But the Stokes theorem of Calculus III says

∮
~v · d~r =

∫

A
∇× ~v · ~n dA

where A is an area bounded by contour C. You just showed that the left hand side in
this equation is not zero, but that the right hand side is because ∇× ~v is. Something
is horribly wrong???! To figure out what is going on, instead of using an ideal vortex,
use the “Oseen vortex”

~v =
Γ

2πr

(
1− e−r2/4νt

)
ı̂θ

To simplify the integrations, now take your contour C to be (the perimeter of) a circle
around the origin in the x, y-plane, and take area A to be the inside of that circle
in the x, y-plane. Do both the contour integral and the area integral. In this case,
they should indeed be equal. Now in the limit t ↓ 0+, the Oseen vortex becomes an
ideal vortex (the exponential becomes zero). (The Oseen vortex is an initially ideal
vortex that diffuses out in time due to viscosity.) So if you look at a very small time,
you should be able to figure out what goes wrong for the ideal vortex with the Stokes
theorem. You might want to plot the vorticity versus r for a few times that become
smaller and smaller. Based on that, explain what goes wrong for t ↓ 0+. Is the area
integral of the vorticity of the ideal vortex really zero? Read up on delta functions.

3. Do bathtub vortices have opposite spin in the southern hemisphere as they have in the
northern one? Derive some ballpark number for the exit speed and angular velocity
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of a bathtub vortex at the north pole and one at the south pole, assuming that the
bath water is initially at rest compared to the rotating earth. Use Kelvin’s theorem.
Note that the theorem applies to an inertial frame, not that of the rotating earth. So
assume you look at the entire thing from a passing star ship. (Since you cannot see
through the earth, you will either need to fly above the north pole or above the south
pole, seeing different directions of rotation of the earth, counter-clockwise respectively
clockwise.) What do you conclude about the starting question? In particular, how do
you explain the bathtub vortices that we observe?

4. A Boeng 747 has a maximum take-off weight of about 400,000 kg and take-off speed of
about 75 m/s. The wing span is 65 m. Estimate the circulation around the wing from
the Kutta-Joukowski relation. This same circulation is around the trailing wingtip
vortices. From that, ballpark the typical circulatory velocities around the trailing
vortices, assuming that they have maybe a diameter of a quarter of the span. Compare
to the typical take-off speed of a Cessna 52, 50 mph.

5. Model the two trailing vortices of a plane as two-dimensional point vortices (three-
dimensional line vortices). Take them to be a distance 2ℓ apart, and to be a height
h above the ground. Take the ground as the x-axis, and take the y-axis to be the
symmetry axis midway between the vortices. Now:

(a) Identify the mirror vortices that represent the effect of the ground on the flow
field. Make a picture of the x, y-plane with all vortices and their directions of
circulation.

(b) Find the velocity at an arbitrary point x on the ground due to all the vortices.

(c) From that, apply the Bernoulli law to find the pressure changes that the vortices
cause at the ground. Sketch this pressure against x for both h significantly greater
than d and vice-versa. Ignore the fact that the flow is unsteady.

6. Continuing the previous question, Also find the velocity that the right-hand non-mirror
vortex R experiences due to the other vortices. In particular find the Cartesian velocity
components uR and vR in terms of Γ, h and ℓ.

Now the right non-mirror vortex R moves with the velocity that the other vortices
induce:

dℓ

dt
= uR

dh

dt
= vR

If you substitute in the found velocities and take a ratio to get rid of time, you get
an expression for dh/dℓ. Integrate that expression using separation of variables to
find the trajectory of the vortices with time. Accurately draw these trajectories in the
x, y-plane, indicating any asymptotes. Do the vortices end up at the ground for infinite
time, or do they stay a finite distance above it?
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11 11/13 W

1. Find the streamfunction for ideal flow around a circular cylinder where the incoming
flow at large distances has velocity ~v = Uı̂ with U a constant. To do so, first verify that
r±n cos(nθ)) and r±n sin(nθ)) are solutions of the Laplace equation by plugging them
into the Laplacian in polar coordinates. Next find the streamfunction that describes the
Uı̂ flow at large distances in Cartesian coordinates, and convert it to polar coordinates.
Next add a multiple of a r−n cos(nθ)) or r−n sin(nθ)) term (with n > 0 so that the flow
at large r is not affected) to satisfy the appropriate boundary condition at the cylinder
surface r = a.

2. You should have found the streamfunction to be

ψ = U sin(θ)

(
r − a2

r

)

Find the polar velocity components on the surface of the cylinder from this stream-
function. (Note that appendix D.2 has an error; the correct equation is vθ = −∂ψ/∂r.)
Is the velocity normal to the surface zero as it should be? Is the velocity tangential to
the surface the same as we got from the velocity potential? Use the Bernoulli law to
find the pressure on the surface in terms of the pressure p∞ far upstream. Where is the
pressure on the surface p∞? Where do you have stagnation pressure on the surface?

3. The streamfunction of an ideal vortex at the origin equals (Γ/2π) ln r. Show that this
produces vr = 0 and vθ = −Γ/2πr. Add this to the streamfunction of the cylinder,
above. Show that the velocity component normal to the surface is still zero. So we
now have a cylinder with circulation around it. Recompute the pressure on the surface.
Then integrate the pressure forces on the surface to find the net horizontal and vertical
forces on the cylinder. According to D’Alembert, you should find that the horizontal
force (the drag) is zero in this ideal flow. Is it? According to Kutta-Joukowski, you
should find that the vertical force (the lift) is ρUΓ. Is it?

4. Consider a wall that for x > 0 is along the x-axis. A fluid is flowing in the minus x-
direction along this wall. At the origin however, the wall bends upwards by 30 degrees,
producing an inside corner of 150 degrees. Find the expression for the complex velocity
potential of this flow. To find the sign of the constant, find the velocity at a single, easy
point, and check its sign. As noted, the flow must be going in the negative x-direction.
Find the streamfunction and from that, sketch the streamlines. Find the velocity, and
so show that the corner point is a stagnation point. Find the wall pressure and sketch
its distribution with x.

In a real viscous flow at high Reynolds number, a thin boundary layer along the
wall upstream of the corner will be unable to withstand much of the adverse pressure
gradient slowing it down. So the boundary layer will separate before it reaches the
corner, and reattach to the wall downstream of it. Based on that, sketch how you
think the viscous streamlines will look like.

Next assume that at the origin the wall bends downwards by 30 degrees, producing
a 210 degree corner. Repeat the analysis and sketching. In this case you should
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find that there is infinitely large negative pressure at the corner. The boundary layer
approaching the corner now finds things plain sailing until it reaches the corner. But
right at the corner it is not going to go around it, as that would produce a very strong
adverse pressure gradient. Instead the boundary layer just keeps going straight along
the x-axis immediately behind the corner. That effectively eliminates the corner and its
associated pressure gradient. This effect is why flows around airfoils with sharp trailing
edges and sufficiently blunted leading edges satisfy the Kutta-Joukowski condition.

Finally, if the flow is unsteady (i.e. if the constant in your complex potential varies
with time), how does that affect whether the ideal flow at the corner has stagnation
or infinitely negative pressure?

5. Videos Dynamics: Potential flows: 290-294 and 299. In 290-293, do not try to ac-
curately reproduce the body sizes. Just take the absolute values of the singularity
strengths 2. And in 292, space them 4 intervals apart. In 294, just show the stream-
lines of the target flow, and comment on why one singularity is weird. In 299, try
to match the experimental flow reasonably well. Note in doing so that you can put
new singularities on top of old ones to adjust their strength; you do not have to start
again from scratch. Alt-PrintScreen should send the plots to the clipboard, so that
you can paste it into a program like MS Paint, where you can save it and print it out.
In all cases, shade or highlight the part of the flow field that you would want to “so-
lidify” (replace by a solid body like a cylinder or whatever). To get the body contour
accurately, starting streamlines from near the stagnation points can be effective.

6. Go to the class airfoil programs1 page. Download Matlab program cylinder.m. Print
it out and in the print-out mark where the complex potential for flow around a circular
cylinder is being set. Also mark where the streamlines are being drawn, and how that
works. Run the program in Matlab and print out the streamlines around a circular
cylinder. Then set variable Γ (Gamma) to an interesting value and print out those
streamlines too.

1https://www.eng.famu.fsu.edu/~dommelen/courses/flm/progs/jou_air/
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12 11/20 W

1. Go to the class airfoil programs2 page. Download Matlab program airfoil.m. Mark
where a cylinder potential is set in a complex ζ-plane. Also mark where this cylinder
is mapped to a Joukowski airfoil in a complex z-plane, and list the formula used to
get z from ζ that achieves this mapping. You may observe that program airfoil.m

is astonishingly simple for the complexity of the flow and graphics that it produces.

Then in Matlab, select parameters that produce the flow around a slightly cambered
Joukowski airfoil of roughly 10% thickness ratio at 15 degrees angle of attack. List
your parameters. Plot out the picture of the streamlines and isobars. Next set the
circulation to zero by setting variables Gamma and auto both to zero and replot to
show the effect of not satisfying the Kutta condition. Do the streamlines still come off
smoothly from the trailing edge? What happens to the pressure?

2. Streamlines around a cylinder or sphere for very low Reynolds number, very viscous

Stokes flow look superficially the same as those for high Reynolds number ideal inviscid
flows: both are symmetric front/rear. But do they really look the same? Find out.
Unfortunately, Stokes flow around a cylinder is tricky. For truly low Reynolds numbers,
the flow in the vicinity of the cylinder becomes negligible, so the streamlines become
infinitely widely spaced. But Stokes flow around a sphere is more reasonable.

So, use the Matlab program streamlines.m3 to first plot the streamlines for potential
flow around a cylinder. Then create similar programs to plot the streamlines for both
potential and Stokes flow around a sphere. You will need to put in the appropriate
streamfunctions at the mesh points; potential flow around a sphere is in section 19.8,
and Stokes flow in 21.8. You also need to change the values of the streamfunction that
are plotted as streamlines; your streamlines should be equally spaced far upstream.
The simplest way to do so is write the axysymmetric streamfunction far upstream,
and then figure out what streamfunction values over there correspond to y values
equal to ±0.5∆y,±1.5∆y, . . .. Comment on the differences in streamline spacing be-
tween potential and Stokes flow near the surface. Also comment on the differences in
streamline curvature one or two radii away from the sphere.

3. Compute approximate values of the Reynolds number of the following flows:

(a) your car, assuming it drives;

(b) a passenger plane flying somewhat below the speed of sound (assume an aerody-
namic chord of 30 ft);

(c) flow in a 1 cm water pipe if it comes out of the faucet at .5 m/s,

In the last example, how fast would it come out if the Reynolds number is 1? How
fast at the transition from laminar to turbulent flow?

2https://www.eng.famu.fsu.edu/~dommelen/courses/flm/progs/jou_air/
3https://www.eng.famu.fsu.edu/~dommelen/courses/flm/19/hw/streamlines.m
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4. According to potential flow theory, what would be the lift per unit span of a flat-plate
airfoil of chord 2 m moving at 30 m/s at sea level at an angle of attack of 10 degrees?
What would be the drag?
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13 12/04 M

1. Using suitable neat graphics, show that the boundary layer variables for the boundary
layer around a circular cylinder of radius a in a cross flow with velocity at infinity equal
to U and pressure at infinity p∞ are given by:

x = aθ y = r − a u = vθ v = vr

Write the three appropriate partial differential equations for the unsteady boundary
layer flow around a circular cylinder in terms of the boundary layer variables above.
Also write the boundary conditions at the wall and above the boundary layer, at
y/

√
ν ≈ ∞. (Remember that y/

√
ν ≈ ∞ in the boundary layer solution should be

taken to be equivalent to y ≈ 0 in the potential flow above it.) Assume an unsteady flow
impulsively started from rest, where you can assume that outside the thin boundary
layer, the flow is still given by the ideal flow solution. Solve the pressure field inside
the boundary layer fully.

2. Rewrite the exact Navier-Stokes equations in polar coordinates, (the continuity equa-
tion and the r and θ momentum equations) in terms of the boundary layer variables
x, y, u, and v and the radius of the cylinder a. (So r, θ, vr and vθ may no longer
appear in the equations.) Carefully distinguish between r (which may not appear in
the results) and a. Compare these exact equations with the boundary layer equations.
Explain for each discrepancy why the difference is small at high Reynolds numbers,
where the boundary layer is thin.

3. According to potential flow theory, what would be the lift per unit span of a flat-plate
airfoil of chord 2 m moving at 30 m/s at sea level at an angle of attack of 10 degrees?
What would be the drag?

Next, what would be the viscous drag if you compute it as if the airfoil is a flat plate
aligned with the flow with that chord and the flow is laminar? Only include the shear
stress over the last 98% of the chord, since near the leading edge the shear stress will
be much different from an aligned flat plate. What is the lift to drag ratio? Comment
on the value. Use ρ = 1.225 kg/m3 and ν = 14.5 10−6 m2/s.

4. Assume that a flow enters a two dimensional duct of constant area. If no boundary
layers developed along the wall, the centerline velocity of the flow would stay constant.
Assuming that a Blasius boundary layer develops along each wall, what is the correct
expression for the centerline velocity?

5. Continuing the previous question. Approximate the Blasius velocity profile to be
parabolic up to η = 3, and constant from there on. At what point along the duct
would you estimate that developed flow starts based on that approximation? Sketch
the velocity profile at this point, as well as at the start of the duct and at the point of
the duct where the range 0 ≤ η ≤ 3 corresponds to 1

8
of the duct height accurately in

a single y versus u graph (not picture). Remember the previous question while doing
this!
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