
Fluid Mechanics

EML 5709

Homework

Dr. Leon van Dommelen

Fall 2014

Contents

1 HW 1 1

2 HW 2 4

3 HW 3 6

4 HW 4 8

5 HW 5 10

6 HW 6 11

7 HW 7 13

8 HW 8 15

9 HW 9 18

10 HW 10 19

11 HW 11 22

12 HW 12 24

13 HW 13 27

1 HW 1

In this class,

• Questions must be answered in order asked.
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• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. What is the key number that determines whether the continuum assumption is valid
for a gas? Explain its definition in detail. So for a body moving through air at standard
sea-level conditions, when is the continuum approximation valid?

2. Couette flow is the viscous flow in the gap between two horizontal plates, the top one
of which is moving in the positive x-direction with some velocity U . If y is distance
measured from the bottom plate at x = 0, for laminar flow the fluid velocity is given
by

~v = ı̂u u =
U

h
y

where h is the distance between the plates. Sketch the plates and the fluid velocity
vectors at some line of constant x (giving the velocity profile). For a simple two-
dimensional unidirectional flow like this,

τyx = µ
∂u

∂y

where the constant µ is called the kinematic viscosity of the fluid. Also, because the
positive and negative z directions are equivalent in this problem, shear forces in the
z-direction can only be zero, so

τyz = τxz = 0

At a point at a position 0.75 h above the bottom plate, the stress tensor is given by

¯̄τ =







−p µU/h 0
µU/h −p 0
0 0 −p







Here p is the pressure (which is an inviscid effect). Fully explain every term in this
stress tensor. Draw a little cube around the given point. Clearly show all stress
components on the surfaces of this little cube, in terms of the quantities above, after
drawing a magnified cube if needed.

3. Going back to the previous question, suppose there is a little area A going through
the considered point above, parallel to the z-axis, but rotated 30◦ counterclockwise
from the positive y-axis. (So take a small surface normal to ı̂ and then rotate it 30

degrees around the z-direction.) Find the stress force per unit area ~R acting on that
area A. Then find the components of the stress force normal and tangential to area A.
Comment on the tangential component of the pressure force and the normal component
of the viscous stress force.
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4. Going back to the second-last question, suppose you rotate the coordinate system xyz
45◦ counterclockwise around the z-direction to get an x′y′z′ coordinate system. Find
the stress tensor in this rotated coordinate system. Is the x′y′z′ coordinate system
the principal axis system? Draw again a little cube around the given point with the
stresses on its surfaces. But this time show the cube and correct stress components
aligned with the new coordinate system.
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2 HW 2

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. Two-dimensional ideal stagnation point flow is given by

~v = ı̂cx− ̂cy

where c is some constant. Find the vorticity (in 3D). Find the strain rate tensor.
Diagonalize it by rotating the axes suitably. What are the principal strain axes (i.e.
the directions of ı̂′, ̂′, and k̂′)? What are the principal strain rates? Neatly sketch
the deformation of a small initially square particle (aligned with the principal strain
axes), during a small time interval. Also sketch the deformation of a small initially
circular particle. Also show the complete particle changes when you include the solid
body rotation.

2. If you put a cup of coffee at the center of a rotating turn table and wait, eventually,
the coffee will be executing a “solid body rotation” in which the velocity field is, in
cylindrical coordinates:

~v = ı̂θΩr

where Ω is the angular velocity of the turn table, r the distance from the axis of
rotation, and θ the angular position around the axis. Find the vorticity and the strain
rate tensor for this flow, using the expressions in appendix B. Do not guess. (The book
might different, bad, symbols for r and θ.) Show mathematically that indeed the coffee
moves as a solid body, i.e. the fluid particles do not deform, and that for a solid body
motion like this, indeed the vorticity is twice the angular velocity.

3. In Poiseuille flow (laminar flow through a pipe), the velocity field is in cylindrical
coordinates given by

~v = ı̂zvmax

(

1− r2

R2

)

where vmax is the velocity on the centerline of the pipe and R the pipe radius. Use
Appendix B to find the strain rate tensor of this flow. Do not guess. Evaluate the
strain rate tensor at r = 0, 1

2
R and R. What can you say about the straining of small

fluid particles on the axis?

4. Is the Poisseuille flow of the previous questions an incompressible flow?

5. Find the vorticity of the Poisseuille flow of the previous questions. Do the fluid particles
on the axis rotate?
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6. For the Poisseuille flow of the previous questions, given that the principal directions
of the strain rate tensor are everywhere

ı̂′ =
1√
2
(̂ır + ı̂z) ̂′ =

1√
2
(̂ır − ı̂z) k̂′ = ı̂θ

find the principal strain rates. Sketch the deformation of a fluid particle at an arbitrary
radius r. In particular, in the r, z-plane, neatly sketch a particle that was spherical at
time t at time t+ dt. What happens in the θ direction with the particle?
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3 HW 3

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. For the Poisseuille flow of the previous homework, find the viscous stress tensor and the
total stress tensor at an arbitrary radial position r from the axis. Assume a Newtonian
fluid. Show the stresses acting on a small volume drdθdz at an arbitrary radius r
graphically in the r, z-plane. (Describe the stresses on its two surfaces normal to ı̂θ
only in words.) Include the pipe in the picture.

2. Repeat the previous question, but now do it in principal axes.

3. You may have noticed that if a stream of water exits a faucet, immediately after it
exits, it contracts. The radius of the stream rapidly decreases. The stream is “thinner”
below the faucet exit than the faucet exit. This effect has nothing to do with gravity,
and everything with viscosity. Your task is to explain why this happens and find out by
what factor the stream gets thinner under idealized conditions. Ignore gravity. Use a
control volume that is a circular cylinder of finite length. Take one end of the cylinder
to be the circular exit area of the faucet. That is your surface 1. The other circular
end is surface 2. Since the stream gets thinner, the stream will only occupy the center
part of surface 2. There is no mass flow through the outer ring. (The density of air is
assumed zero, and its viscosity too, but it has a pressure.) Take the curved surface of
the cylinder to be surface 3. Sketch the flowfield and control volume. Assuming that
at surface 1, the velocity is our beloved axial Poiseuille flow

~v = ı̂zvmax

(

1− r2

R2

)

write the mass and momentum outflows
∫

ρ~v · ~n dA and
∫

ρ~v · ~n~v dA for this surface.
(Recall that dA = rdrdθ in polar coordinates in a plane of constant z.) Also write
these integrals for surface 3. For surface 2, assume that at this position, viscous effects
have smoothed out the initial parabolic velocity profile to a uniform one, in which all
particles now move at the same velocity Ve. As already noted the area Ae is less than
the cross sectional area of the cylinder. At this time, Ve and Ae are still unknowns.
Write the mass and momentum outflows through surface 2 in terms of these unknowns.

4. Continuing the previous question, write the z-components of surface force integrals for
surfaces 1, 2, and 3. You can assume that τviscouszz is negligible on surfaces 1 and 2, but
other viscous stresses like say τviscouszr are not negligible on surface 1. You can assume
the pressure is atmospheric on surface 1. What do you think of surface 2? Show all
reasoning.
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5. If you now write the equations of mass conservation and momentum conservation for
the control volume, you get two equations that you can use to find expressions for
Ve and Ae. Use the expression for Ae to find the contraction factor of the stream.
Notes: For a real faucet, the stream is probably turbulent, and the velocity profile at
the faucet exit would be flatter than parabolic. This should reduce the contraction,
because there is less change in velocity needed to create the uniform velocity profile.
And gravity will also thin the stream, but not just at the exit but also further down.

6. In a piping system, a stream of water enters an elbow with a pressure of 325 kPa and
a velocity of 5 m/s. The entrance area has a diameter of 3 cm. The elbow bends the
stream around over 120 degrees and the water then exits at the ambient pressure of
100 kPa through an area one fifth of the entrance area. Use mass and momentum
conservation to find the force required to keep the elbow into place. Hints: You may
want to include the elbow itself in the control volume. (If you do not, do not forget
to account for the pressure force that the atmospheric pressure exerts on the outer
surface of the elbow.) Either way, you may want to use the concept of “gauge,”or
“gage,” pressure to simplify the force integrals over the weird surfaces of your control
volume. (See your undergraduate thermo or fluids book.)
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4 HW 4

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. Write the momentum equation in the x-direction for the same cylindrical coordinates
finite volume as used in class. Approximate the time derivative of the x-momentum
inside the control volume. Angle θ is the angle between ~r and the positive x-axis,
positive counterclockwise. Remember that the unknowns are the cylindrical velocity
components vr and vθ. The x-component of velocity vx is not, and must be rewritten
in terms of the chosen unknowns.

2. Continuing the previous question, approximate the integral giving the net flow of x-
momentum out of the control volume. Use similar techniques as in class.

3. Continuing the previous question, approximate the x-components of the surface and
gravity forces. Assume that the stress tensor in cylindrical coordinates at the finite
volume center points can be computed. (This would be done using the formulae as
found in Appendix B.) Note that the x-component of the force is needed. I think it is
easier to take x-components of the cylindrical-coordinate forces than to transform the
cylindrical tensor into a Cartesian one.

4. A cylinder of radius R is surrounded by a fluid. The cylinder is rotating with angular
velocity Ω. (a) If the fluid is inviscid, what is the fluid velocity boundary condition at
the surface of the cylinder, in terms of cylindrical coordinates? (b) Same question, but
viscous fluid. (c) Is it possible for the fluid outside the cylinder to be at rest?

5. Consider the following velocity field:

u = C(x3 − 3xy2) v = C(y3 − 3x2y)

where C is a “constant” that only depends on time. This flow field applies for y > 0;
at y = 0 the flow meets a stationary solid surface along the x-axis. Based on the
boundary condition, would this be a viscous flow, an inviscid one, or an impossible one
(that enters the solid wall)? Now write the complete three-dimensional viscous stress
tensor, assuming a Newtonian fluid.

6. Continuing the previous question, assume that the fluid has a constant density ρ and
viscosity µ and that the pressure is given as

−p = 1

2
ρC2(x3 − 3xy2)2 + 1

2
ρC2(y3 − 3x2y)2 + 1

4
ρĊ(x4 − 6x2y2 + y4) + ρgy

Note the leading minus sign. Also, gravity g is in the minus y direction and Ċ means
the time derivative of C. Write out the conservative continuity and x- and y momentum
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equations given in class. Then plug in the given velocity and pressure and the stress
tensor and so show that the equations of viscous incompressible flow are satisfied.
Note: I think it is quickest not to multiply out products but just use the product rule
of differentiation.
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5 HW 5

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. In the upper half plane y ≥ 0, consider the two-dimensional flow

u = cx v = −cy p+ ρgy = p0 − 1

2
ρu2 − 1

2
ρv2

where c and p0 are constants. Find and neatly draw the streamlines, particle paths
and streaklines of this flow. Put flow direction arrows on the lines. What is the name
for the shape of the streamlines?

2. Find the particle acceleration vector field for the flow of the previous question. Very
neatly draw a few acceleration vectors in your graph. Does density times acceleration
equal the pressure force per unit volume plus the viscous force per unit volume, plus
the downward gravity force per unit volume, assuming a Newtonian fluid?

3. Consider the velocity field

~v =
t

r
ı̂r +

1

r
ı̂θ

This represents an ideal circulatory flow around an expanding cylinder of radius t. (So
the fluid is restricted to r > t). Find and draw the streamlines and particle paths of
this flow.

4. For the flow of the previous question, find the expression for the streakline at some
time t if the moving smoke generator at some earlier time τ was at position rg = 2τ ,
θg = 0. There is no requirement to draw the curve. But be sure to eliminate τ to get
a relation between r and θ only.

5. Write the equation that applies for hydrostatics of a Newtonian fluid, in terms of h.
Now take the curl of the equation (i.e. premultiply by ∇×). Simplify the expressions
using the formulae for ∇ in the vector analysis section of your mathematical handbook.
This should show you that ∇(ρg) is parallel to ∇(h) where h is the height above
sea-level. Explain why that means that ρg only varies with h, i.e. the density must
be everywhere the same in a plane of constant height. In your explanation, use a
coordinate system with its z-axis upward, so that z = h, and write out the gradients.
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6 HW 6

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. In the Euler equations given in your notes, ignore gravity. Now use the energy equation
to convert the Dρ/Dt derivative in the continuity equation by a Dp/Dt one. That
achieves that continuity and x-momentum involve derivatives with respect to only p
and ~v. Write out these equations for the special case of one-dimensional, unsteady,
inviscid, compressible flow (nonlinear acoustics in a pipe). Now add ρa2 times your
continuity equation to ±a times your momentum equation and show that the result is
of the form:

[

∂p

∂t
+ (u± a)

∂p

∂x

]

± ρa

[

∂u

∂t
+ (u± a)

∂u

∂x

]

= 0

Argue from your knowledge of calculus that the terms in the square brackets are
derivatives dp/dt and dp/dt, not along particle paths, but along the paths of sound
waves moving left and right. The above two equations (one for each sign) are called
the “compatibility equations.”

2. Continuing the previous question, for normal acoustics the variations in u and p are
small enough that the u in u±a can be ignored, and that the coefficients a and ρ can be
assumed to be constants. Write the equations under these conditions. Now you know
from calculus (shifting a function to the right) that a pressure wave moving to the
right without changing shape is given by p = f1(x − at) (where function f1 describes
the shape of the pressure wave). Similarly a wave in the velocity field moving in the
same direction takes the form u = f2(x− at). Show that to satisfy both compatibility
equations, the shapes of the pressure and velocity waves must be related as f ′

1 = ρaf ′

2.
(The energy equation then gives the perturbation in density as the final of the three
unknowns in a one-dimensional compressible flow.)

3. Write the nondimensionalized incompressible Navier-Stokes equations out fully in terms
of the scaled Cartesian velocity components (u∗, v∗, w∗) and the scaled pressure p∗.
Include the continuity equation too!

4. A fan makes a lot of aerodynamic noise. Assume that the power P of the emitted
acoustic noise and the volumetric flow rate Q produced by the fan depend on the fan
diameter D, its frequency Ω, the air density ρ, and the air speed of sound a. Use the
Buckingham Π theorem to find simplified expressions for the acoustic power and the
volumetric flow rate. As selected parameters, use the two parameters that are beyond
your control as a fan designer, and the fan diameter.
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5. Assuming that the volumetric flow rate is also a given, what can you say about the
likelyhood of improving the noise generated by the fan by messing around with fan
diameter and frequency? Hints: consider the acoustic power per unit flow rate. And
think about the physical interpretation of the relevant nondimensional parameter(s).

6. Using the formulae in the scanned class notes, and corresponding notations, find the
stress tensor for Stokes flow around a sphere, in spherical coordinates.

7. Find the drag force on the sphere by finding the stresses on the surface of the sphere,
taking z-components of them, and then integrating over the surface.
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7 HW 7

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. A rotating cylindrical axis of radius r0 is enclosed within a stationary concentric pipe of
inner radius r1. The angular velocity of the axis is Ω0. There is fluid in the gap between
the axis and pipe. Find the fluid velocity. Make the following assumptions:

1. “Incompressible” fluid.

2. Newtonian fluid.

3. The velocity only depends on r, not θ, z, or t.

4. There is no velocity component in the axial direction.

5. No gravity, (or alternatively, the pressure is the kinetic pressure).

Show that given only the above assumptions, the pressure must be of the form

p = p0(r) + p1(t) p0(r) =
∫ r

r1

ρv2θ
r̄

dr̄

where p1(t) is the pressure on the pipe surface, and that vθ must be of the form

vθ = Ωr +
Γ

2πr

where Ω and Γ are integration constants. The first term above is our beloved “solid
body rotation” with angular velocity Ωı̂z around the z-axis, while the second term is
called an “ideal vortex flow” with circulation Γ. At every step that you make, list which

one of the above assumptions, or earlier result, you are using.

2. Now put in the boundary conditions for vθ to find Ω and Γ. Then find the moment
around the z-axis that the pipe exerts on the fluid. Also find the power that the axis
loses due to friction from the fluid.

3. Show the changes that occur in your analysis above if you do not use the kinetic
pressure, but include gr, gθ, and gz explicitly in the equations. Assume that the axis
of the pipe is slanting downwards by an angle α. Take the θ = 0 plane to be the plane
sticking vertically upward from the axis. Warning: gr and gθ are not constants, but
depend on θ. (I think it may be easiest first to define a Cartesian coordinate system
where x is inside the mentioned vertical plane, normal to z, and y is sideways. Note
that the height then does not depend on the sideways coordinate y. Figure out the
height h in terms of x and z by looking in the x, z plane and convert that to cylindrical.
Then you can find the gravity vector components by taking a gradient of −gh.) Show
that the final result is the kinetic pressure as expected from your earlier solution. Do
you now appreciate kinetic pressure?
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4. A water pipe of radius r0 is sticking straight up. Water is coming out of the top of the
pipe and runs down the outer surface of this pipe as a thin sheet of water. You are to
find the flow field in the sheet sufficiently far below the top end. Assume that the sheet
is sufficiently thin compared to the radius of the pipe that you can approximate it as a
sheet along a flat pipe surface, with z the coordinate along the perimeter of the pipe,
y the distance from the pipe surface, and x the downward coordinate. So x, y, z can be
approximated as Cartesian coordinates. Next make the following assumptions:

1. “Incompressible” fluid.

2. Newtonian fluid.

3. The streamlines well below the top of the pipe go straight down. (What
does that mean?).

4. The velocity field is steady and independent of z, i.e. ~v = ~v(x, y).

5. The velocity field is steady, i.e. ~v = ~v(x, y, z).

6. The air exerts a constant atmospheric pressure pa on the free water surface.

7. However, the shear stress that it exerts on the surface may safely be ignored.

Use only the above assumptions. At every step that you make, list which one of the

above assumptions, or earlier result, you are using. Do not forget that since there is
a free surface, you cannot use the kinetic pressure in this problem. You will need to
include gravity explicitly.

5. Based on your solution above, answer a few physical questions:

1. What is the vertical force per unit span in z that the pipe surface exerts
on the water?

2. Explain why that force has this simple value in physical terms. Use a
suitable control volume to do so.

3. What is the volumetric flow rate Q?

4. Suppose you increase the flow rate coming out of the top of the pipe by
a factor 8. What happens to the maximum velocity in the sheet below?
What happens to the sheet thickness? Which of the two changes most to
accommodate the larger volumetric flow rate?

5. Form the most meaningful Froude number to describe the sheet flow, fol-
lowing the ideas of, say, pipe flow, and relate it to other nondimensional
numbers based on your solution. In particular, consider a Reynolds number
based on Q and r0 as something your Froude number might depend upon.
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8 HW 8

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. Find the expressions for ı̂r, ı̂θ, and ı̂φ in spherical coordinates in your notes. Now
answer the following questions:

1. What is the x-component of ı̂r? What is the z-component of ı̂θ.

2. Write the (vector) flow velocity ~v in terms of the spherical velocity compo-
nents vr, vθ, and vφ and the unit vectors ı̂r, ı̂θ, and ı̂φ. From that find the
expression for the x-component of velocity vx in spherical coordinates. Do
that by taking x-components of the vectors, not by making up nonexisting

x-components of the scalars. Do the same for the z-component of velocity
vz. Finally, write the expression for the linear momentum in the z-direction
in a volume of fluid in terms of the spherical coordinates r, θ, and φ and
spherical velocity components vr, vθ, and vφ.

3. Consider a spherical surface of radius ℓ around the origin. Find the unit
vector ~n normal to that surface in terms of the spherical unit vectors ı̂r,
ı̂θ, and ı̂φ. Also find the spherical coordinates expression for the area dA
of a little element dθdφ of this spherical surface. Find ~v · ~n in terms of
vr, vθ, and vφ. Find the z-component of ~v · ~n~v in terms of vr, vθ, and vφ.
Do that by taking z-components of vectors, not by making up nonexisting

z-components of scalars.

4. Continuing with the spherical surface, find the z-component of vector ~n.
Find the z-component of −p~n. Find the expression for the z-component of
the integral

∫ −p~ndA over the spherical surface.

5. Continuing with the spherical surface, in terms of the viscous stress tensor

¯̄τ =







τrr τrθ τrφ
τθr τθθ τθφ
τφr τφθ τφφ







find the force per unit spherical surface area ¯̄τT~n as a column of spherical
stress components. Combine the components into an actual vector using
ı̂r, ı̂θ, and ı̂φ. Find the z-component of that vector. Find the expression
for the z-component of the integral

∫

¯̄τ~ndA over the spherical surface.

6. Now reconsider the Stokes flow around a sphere done in a previous home-
work set, 6.6. Take as control volume the sphere r ≤ ℓ with as surface

the spherical surface r = ℓ. Write the integral z-momentum equation for
this control volume. Ignore gravity. But besides the usual surface force
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integrals, you should also include the external force needed to prevent the
sphere from being blown away. This external force is, of course, equal to
the drag force D that the fluid exerts on the sphere.

7. Substitute in the Stokes flow velocity components and pressure and viscous
stresses of the earlier homework. Assume that ℓ is much larger than the
radius of the sphere R, so that you can ignore the O(1/ℓ4) terms in the
viscous stresses. If the stresses in your earlier homework solution were not
correct, get the correct ones from the posted homework.

8. Do the integrals and take the limit that R/ℓ → 0. Do you get the correct
drag force of the sphere?

2. In an earlier homework set, 7.1, you solved a viscous flow around a rotating axis.
This flow has circular streamlines. For this viscous flow, how much of the centripetal
acceleration of the fluid particles comes from the pressure force per unit volume and
how much from the viscous force per unit volume?

3. In an earlier homework set, 5.2, you examined “ideal stagnation point flow.” Have
another look at that solution (the correct solution is on the web). Was the pressure
given by the Bernoulli law, even though the flow was assumed to be viscous? So, was
the viscous stress zero? What was it? Was the viscous force per unit volume zero? The
same things happen for any incompressible flow that is “irrotational,” i.e. for which
the vorticity is zero. Such flows are also called “ideal” flows or “potential” flows. Now
consider another irrotational flow that you looked at in an earlier homework, 4.6. This
flow was unsteady. Was the viscous stress tensor zero? What was it? Was the viscous
force per unit area zero? If so, then apparently the pressure was given by an extended
Bernoulli law that applies to unsteady flow.

4. Derive the major head loss and friction factor for laminar pipe flow. Explain all
reasoning. The solution for the pressure distribution in pipe flow can be found in
almost any fluids book. Sketch a Moody diagram to show how the friction changes
when the flow in the pipe becomes turbulent.

5. Consider the below graph for the minor head losses due to sudden changes in pipe
diameter:
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Discuss the following issues as well as possible from the sort of flow you would expect.

(a) How come the head loss becomes zero for an area ratio equal to 1? Does that not
violate thermodynamics? There is always some viscous friction, surely?

(b) Why would the head loss be exactly one for a large expansion? Coincidence?

(c) Why would the head loss be less than one if the expansion is less? If the expansion
is less, is not the pipe wall in the expanded pipe closer to the flow, so should the
friction with the wall not be more??

(d) Why is there a head loss for a sudden contraction? The mechanism cannot be the
same as for the sudden expansion, surely? Or can it?
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9 HW 9

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. A stationary Newtonian fluid occupies the half space above a horizontal doubly-infinite
plate. Take the y coordinate of your Cartesian coordinate system to be normally up
wards from the plate. At time t = 0, the plate starts accelerating into the positive
x direction with a constant acceleration U̇ , so that its velocity is U̇ t. Assuming that
u does not depend on x and z because the plate is infinite in both directions, that
w remains zero because of symmetry, and that the (kinetic) pressure at infinite y
is a constant, simplify the Navier-Stokes to give equations for the kinetic pressure
and velocity fields. Solve the equation for the pressure field. Reduce the equation
for the velocity field to a single partial differential and find its initial and boundary
conditions. Then use dimensional analysis to argue that the solution must have a
similarity form. Derive the ordinary differential equation that the nondimensional
velocity profile f(y/

√
4νt) must satisfy for this flow.
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10 HW 10

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. Differentiate the equation obtained in the previous question twice; if your equation is
correct, f ′′ should satisfy the same equation as fStokes for Stokes’ first problem. So f ′′

too should be a combination of a multiple of the complementary error function and a
constant. Then two integrations should produce your desired function f , if you take
account of the boundary conditions. Your task is now to find a simple expression for f
in terms of the (complementary) error function and elementary functions. Note: you
might want to google “repeated integrals of the error function.” Note: Another way of
doing this is to change the order of integration in the double integrals you encounter.
For example, to find f ′ from f ′′, the integral of erfc can be written:

g(η) =
∫

∞

η1=η
erfc(η1) dη1 =

∫

∞

η1=η

(

∫

∞

η2=η1

2√
π
e−η2

2 dη2

)

dη1

the second equality from the definition of the complementary error function. If you
change the order of integration to integrate η1 first, you can do the first integral since
the integrand does not depend on η1. To figure out the new limits of integration,
simply draw the original region of integration in the η1, η2 plane and look at it. This
trick will give you f ′ in terms of a single integral. Repeat the trick to find f from f ′

and identify in terms of erfc. Write the velocity field.

2. For an ideal point vortex at the origin, the velocity field is given in cylindrical coordi-
nates r, θ, z by

~v =
Γ

2πr
ı̂θ

Show that the vorticity ~ω = ∇ × ~v of this flow is everywhere zero. Now sketch
a contour (closed curve) C that loops once around the vortex at the origin, in the
counter-clockwise direction. In fluid mechanics, (for any flow, not just this one), the
“circulation” Γ of a contour is defined as

Γ̄ =
∮

C
~v · d~r

Here the integration starts from an arbitrary point on the contour and loops back to
that point in the counter-clocwise direction. Evaluate the circulation of your contour
around the vortex. Do not take a circle as contour C; take a square or a triangle or an

arbitrary curve. Of course you know that in polar coordinates an infinitesimal change
d~r in position is given by

d~r = ı̂rdr + ı̂θrdθ
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(If not, you better also figure out what it is in spherical.) You should find that Γ has
a nonzero value for your contour.

3. So far so good. But the Stokes theorem of Calculus III says

∮

~v · d~r =
∫

A
∇× ~v · ~n dA

where A is an area bounded by contour C. You just showed that the left hand side in
this equation is not zero, but that the right hand side is because ∇× ~v is. Something
is horribly wrong???! To figure out what is going on, instead of using an ideal vortex,
use the Oseen vortex from your notes. To simplify this, now take your contour C to
be (the perimeter of) a circle around the origin in the x, y-plane, and take area A to
be the inside of that circle in the x, y-plane. Do both the contour integral and the
area integral. In this case, they should indeed be equal. Now in the limit t ↓ 0+, the
Oseen vortex becomes an ideal vortex. So if you look at a very small time, you should
be able to figure out what goes wrong for the ideal vortex with the Stokes theorem.
You might want to plot the vorticity versus r for a few times that become smaller and
smaller. Based on that, explain what goes wrong for t ↓ 0+. Is the area integral of the
ideal vortex really zero?

4. Do bathtub vortices have opposite spin in the southern hemisphere as they have in the
northern one? Derive some ballpark number for the exit speed and angular velocity
of a bathtub vortex at the north pole and one at the south pole, assuming that the
bath water is initially at rest compared to the rotating earth. Use Kelvin’s theorem.
Note that the theorem applies to an inertial frame, not that of the rotating earth. So
assume you look at the entire thing from a passing star ship. (But define the direction
of rotation as the one someone on earth looking at the bathtub sees.) What do you
conclude about the starting question? In particular, how do you explain the bathtub
vortices that we observe?

5. Consider a two-dimensional cylindrical “balloon” of radius R surrounded by an incom-
pressible fluid with an ideal vortex flow field. If we lower pressure inside the balloon,
its radius decreases. Then there is also an ideal “sink” flow field proportional to −Ṙ.
The complete ideal flow field is then:

~v =
Γ̄

2πr
ı̂θ +

RṘ

r
ı̂r

Now if this is a Newtonian fuid, over time viscous boundary layers would develop
around the surface of the balloon that would propagate outwards and the rotational
motion would slow down. But suppose we apply just enough of an axial moment on the
balloon to keep it rotating with the ideal flow fluid velocity? Then we have a viscous

no-slip flow around a body that is also an ideal one, i.e. an irrotational flow, i.e. one
with zero vorticity. Sounds interesting?

(a) Is the above flow indeed irrotational?
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(b) Integrate the circulation along a circular fluid contour around the cylinder. What
is it?

(c) Is the ring of fluid particles right at the expanding balloon surface a material
contour? Why?

(d) Suppose R decreases in time like R = R0t0/t, what happens when time increases
from t0 to 10 t0? In particular, what does the Kelvin theorem say about what
velocity component of the fluid particles at the surface? And what about the
other velocity component? What happens to the angular velocity Ω at which the
cylinder must rotate?

(e) What is the moment per unit axial length that must be exerted on the cylinder
to keep it rotating at the right speed? (Ignore the inertia of the balloon.) Does
the moment become infinite when R tends to zero? Should it not take more and
more effort to keep the flow rotating when total dissipation

∫

ε dV increases.
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11 HW 11

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. A Boeng 747 has a maximum take-off weight of about 400,000 kg and take-off speed of
about 75 m/s. The wing span is 65 m. Estimate the circulation around the wing from
the Kutta-Joukowski relation. This same circulation is around the trailing wingtip
vortices. From that, ballpark the typical circulatory velocities around the trailing
vortices, assuming that they have maybe a diameter of a quarter of the span. Compare
to the typical take-off speed of a Cessna 52, 50 mph.

2. Model the two trailing vortices of a plane as two-dimensional point vortices (three-
dimensional line vortices). Take them to be a distance 2ℓ apart, and to be a height
h above the ground. Take the ground as the x-axis, and take the y-axis to be the
symmetry axis midway between the vortices. Now:

(a) Identify the mirror vortices that represent the effect of the ground on the flow
field. Make a picture of the x, y-plane with all vortices and their directions of
circulation.

(b) Find the velocity at an arbitrary point x on the ground due to all the vortices.

(c) From that, apply the Bernoulli law to find the pressure changes that the vortices
cause at the ground. Sketch this pressure against x for both h significantly greater
than d and vice-versa.

(d) Also find the velocity that the right-hand non-mirror vortex R experiences due to
the other vortices. In particular find the Cartesian velocity components uR and
vR in terms of Γ, h and ℓ.

3. Continuing the previous question, the right non-mirror vortex R moves with the veloc-
ity that the other vortices induce:

dℓ

dt
= uR

dh

dt
= vR

If you substitute in the found velocities and take a ratio to get rid of time, you get
an expression for dh/dℓ. Integrate that expression using separation of variables to
find the trajectory of the vortices with time. Accurately draw these trajectories in the
x, y-plane, indicating any asymptotes. Do the vortices end up at the ground for infinite
time, or do they stay a finite distance above it?

4. Describe transverse ideal (inviscid) flow around a circular cylinder of radius r0 using
a streamfunction approach. Write the partial differential equation to be satisfied by
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the streamfunction in an appropriate coordinate system. Also write the boundary
conditions at the cylinder surface, r = r0, and the boundary condition at infinity,
r → ∞.

5. Find the streamfunction of the previous question. To do so, guess it to be a single
separation of variables term of the form f(r)g(θ). Assume an appropriate form for
g(θ) and then find f(r). Note: the equation that you get for f(r) should have two
different solutions of the form rn for some n.
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12 HW 12

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. From your streamfunction solution of the previous question, find the pressure on the
surface of the cylinder. Integrate the Cartesian components of the pressure force to find
the lift and drag per unit span that the cylinder experiences. Disappointing results?
Add an ideal vortex of strength −Γ to the flow around the cylinder. This adds an
additional velocity −ı̂θΓ/2πr. (Note that this addition does not lead to violation of
the boundary condition vr = 0 on the cylinder surface.) Find the pressure and then
the lift and drag forces. You should find the D’Alembert result that the drag is zero,
and the Kutta-Joukowski result that the lift is ρUΓ per unit span. They apply for any
finite body sitting in an incoming uniform flow if the flow is ideal (no vorticity in the
fluid.)

2. When the cylinder of the last question is accelerating however, D’Alembert no longer
applies. The unsteady term in the potential Bernoulli law comes into play. You must
be careful here, however: if you move along with the cylinder, your coordinate system
is no longer an inertial one and the potential Bernoulli law as written in class does not
apply. To keep it simple, assume that the cylinder is moving only along the x-axis of a
true inertial coordinate system. Take its center point position x0 to be some arbitrary
function of time x = x0(t). Moving along with the cylinder, the fluid at infinity seems
to move in the negative x-direction with speed −ẋ0. So the complex velocity potential
that you see when moving along with the cylinder is

F ′ = −ẋ0

(

z′ +
a2

z′

)

z′ = z − x0 = (x− x0) + iy

Here a is the radius of the cylinder and primes denote quantities perceived by someone
moving along with the cylinder. But we need the flow in the inertial system to find the
pressure. The −ẋ0z

′ term is the apparent uniform flow velocity caused by the motion
of the observer. An observer in the inertial coordinate system does not observe this
term; the fluid at infinity is at rest compared to this observer, so in the inertial system

F = −ẋ0

a2

z′

Noting that d/dz, keeping time constant, is the same as d/dz′, show then that for an
inertial observer

W = ẋ0

a2

(x− x0 + iy)2
φ = −ẋ0

a2(x− x0)

(x− x0)2 + y2
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the latter from first multiplying top and bottom of F with z̄′. Now find the pressure.
The expression for W allows you to find the kinetic energy. When differentiating φ
with respect to time, make sure to differentiate every x0 and ẋ0, not just half of them.
Next evaluate the pressure in particular on the surface, by noting that on the surface

x− x0 = a cos θ′ y = a sin θ′

There should be one additional term that you did not have for the nonaccelerating
cylinder. Show that it produces an additional pressure force

Fx = −ρπa2ẍ0

To balance this force of the fluid on the cylinder, you will have to exert the opposite
force. So the force above represents a drag D. Of course, if the cylinder has mass m
per unit span, to give it acceleration ẍ0 you also have to apply a force Fx = mẍ0. The
total force you must exert is therefore

Fx = (m+ ρπa2)ẍ0

So apparently the surrounding fluid exerts an additional force on the cylinder that acts
as if you have to accelerate an additional mass ρπa2. This additional mass is called
the “added mass” or “apparent mass”. It expresses the fact that in accelerating the
cylinder, you must also do work to add kinetic energy to the fluid in its vicinity. For
a circular cylinder, the apparent mass happens to be exactly that of a cylinder of fluid
of that radius. In general however, the apparent mass is different from that of a body
of fluid of the same shape.

3. Reconsider the two trailing vortices above the ground of the previous homework. In
this case however, write down the total complex potential due to the four vortices
first. Note: to find a source sitting at z0 instead of at the origin, replace z by z − z0.
For one vortex, z0 might be ℓ + ih. Differentiate the total potential with respect
to z to find the total W . From that find the pressure using complex conjugates.
Check that you get the same pressure as before. Also find the streamfunction of one
vortex and its mirror. Evaluate at the ground, where z = x, and then show that the
streamfunction is a constant, zero, at the ground as it should. Note, for any complex
number a = ar + iai = |a|eiα, where ar, ai, and α are complex numbers,

ln(a) = ln(|a|) + iα |a| =
√

a2r + a2i α = arctan(ai/ar)

If a is a ratio b/c=|b|eiβ/|c|eiγ, note that |a| = |b|/|c| and α = β − γ.

4. Consider a wall that for x > 0 is along the x-axis. A fluid is flowing in the minus x-
direction along this wall. At the origin however, the wall bends upwards by 30 degrees,
producing an inside corner of 150 degrees. Find the expression for the complex velocity
potential of this flow. To find the sign of the constant, find the velocity at a single, easy
point, and check its sign. As noted, the flow must be going in the negative x-direction.
Find the streamfunction and from that, sketch the streamlines. Find the velocity, and
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so show that the corner point is a stagnation point. Find the wall pressure and sketch
its distribution with x. In a real viscous flow at high Reynolds number, a thin boundary
layer along the wall upstream of the corner will be unable to withstand much of the
adverse pressure gradient slowing it down. So the boundary layer will separate before

it reaches the corner, and reattach to the wall downstream of it. Based on that, sketch
how you think the viscous streamlines will look like.

Next assume that at the origin the wall bends downwards by 30 degrees, producing
a 210 degree corner. Repeat the analysis and sketching. In this case you should
find that there is infinitely large negative pressure at the corner. The boundary layer
approaching the corner now finds things plain sailing until it reaches the corner. But
right at the corner it is not going to go around it, as that would produce a very strong
adverse pressure gradient. Instead the boundary layer just keeps going straight along
the x-axis immediately behind the corner. That effectively eliminates the corner and its
associated pressure gradient. This effect is why flows around airfoils with sharp trailing
edges and sufficiently blunted leading edges satisfy the Kutta-Joukowski condition.

Finally, if the flow is unsteady (i.e. if the constant in your complex potential varies
with time), how does that affect whether the ideal flow at the corner has stagnation
or infinitely negative pressure?
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13 HW 13

In this class,

• Questions must be answered in order asked.

• Solutions must be neat.

• You must use the given symbols.

• You must show all reasoning.

• Copying is never allowed, even when working together.

1. Consider the combination of a uniform flow of velocity U in the x-direction with a
source of strength q (volumetric flow rate per unit span) at the origin. (a) Find the
complex conjugate velocity W and from that the stagnation point(s). (b) Find the
equation for the streamline(s) passing through the stagnation point(s). Draw this and
other streamlines. (c) If you “solidify” (replace by a solid material) the fluid coming
out of the sink, you get the flow around a solid body. Shade this solid body in your
graph. (d) What is the maximum cross sectional (in the y-direction) area of the body?

2. Write down the complex velocity potential for flow around a cylinder of radius 2 in a
complex ζ plane if the velocity at infinity is Uı̂. What is the maximum velocity on the
surface of the cylinder? Then use the Joukowski transformation to map the circle to
an ellipse in a complex z-plane. What is the aspect ratio of the ellipse? What is the
maximum velocity on the surface of the ellipse? (Use the chain rule of differentiation
to find W .) What is the pressure coefficient Cp = (p− p∞)/1

2
ρU2 at that point?

3. Write down the complex velocity potential for the combination of (a) a uniform flow
of magnitude U in the positive x-direction, (b) a source of strength q = C/ε at the
origin, (c) a sink (negative source) of strength q = C/ε at z = ε. Show that in the limit
ε → 0, you get the potential flow around a cylinder. Find the radius of that cylinder.

4. Consider the complex velocity potential

F = U

(

ζ0 +
r20
ζ0

)

+
iΓ

2π
ln

ζ0
r0

where U , r0, and Γ are real positive constants. (a) What sort of flow is this? Sketch the
streamlines for Γ = 0, 0 < Γ < 4πr0U , and 4πr0U < Γ in separate complex ζ0 planes.
(b) Consider the conformal transformation ζ = ζ0e

iα. What does this transformation
do? In particular sketch the streamlines of velocity potential F in separate complex ζ
planes for α, say, 0.25 radians (about 15 degrees). (c) Find the value of Γ for which the
complex conjugate velocity W at the “trailing edge” ζ = r0 is zero. (Rewrite F first in
terms of ζ.) (d) What is the lift per unit length l of the cylinder for this circulation?
(e) Assume now that r0 = 1. In that case, the Joukowski transformation z = ζ + 1/ζ
maps the cylinder into a flat plate airfoil. Show that the lift coefficient

cl =
l

1

2
ρU2c

= 2π sinα

for that airfoil, if c is the chord, i.e. the distance between trailing edge and leading
edge of the flat plate in the z-plane.
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5. Continuing the previous question, if we want a Joukowski airfoil instead of a flat plate,
we can make the radius r0 slightly bigger than 1. In that case, the trailing edge is of
course no longer at ζ = 1, but at ζ = r0. Then the usual Joukowski transformation no
longer works correctly to produce a sharp trailing edge. But we can fix this by shifting
the transformation by an amount s equal to the shift in trailing edge:

z = ζ − s+
1

ζ − s
where s = r0 − 1

Noting this, download the matlab program airfoil.m1 and read through it. Now use
the program to make a nice picture of the streamlines around a cambered Joukowski
airfoil at an angle of attack. Note: you may want to make use of an undocumented
feature of the program. Explain what that feature is.

6. (a) Sketch the Joukowski airfoil of the previous question and then sketch and describe
the boundary layer coordinates and velocity components that you would use in finding
the boundary layer solution around the airfoil. (Do so at a nontrivial arbitrary point in
the boundary layer to make the features clear.) (b) Do the same for the boundary layer
around the ellipse, taking as the boundary layer starting point the front (upstream)
stagnation point. What are the boundary conditions at the wall? What is the initial
condition for u(0, y) at the start of the boundary layer? What is the boundary condi-
tion for the boundary layer u when y/

√
ν becomes “infinite” at the top point of the

ellipse? Suppose that the circle in the complex ζ-plane is given as ζ = 2eiφ. Then for
any arbitrary φ, at the corresponding x-position on the ellipse, what is the boundary
condition for the boundary layer velocity component u when y/

√
ν becomes “infinite?”

7. The Blasius solutions puts a semi-infinite plate along the positive x-axis in a uniform
flow in the x-direction. Then it finds the boundary layer that develops at large Reynolds
numbers along that plate. But consider the flow towards a sink at the origin of strength
q = 2πs:

F = −s ln z

We can put a semi-infinite plate along the positive x-axis in that flow instead. Find the
boundary layer solution for that flow. In particular, first find the potential flow velocity
on the surface of the plate. Then write the boundary layer equations. Write out the
boundary condition u → ue when y/

√
ν becomes “infinite;” in particular identify ue.

Now use dimensional analysis to find the form of the solution, noting that s, not some
U , is the given constant in this problem. Put the obtained streamfunction expression
in the boundary layer equations. Note, you may want to include a minus sign in your
expression for the streamfunction, since the flow is now in the negative x-direction. Do
not forget that unlike for Blasius, ∂p/∂x is not zero in this case.

(The obtained differential equation can be solved analytically without a computer, a
rarity in boundary layer theory. Can you do this for extra credit? The key step is to
define new variables α = f ′ and φ = f ′′ and then write an equation for dφ/dα in terms
of α and φ, noting that f ′′′ = df ′′/dη = (df ′′/df ′)(df ′/dη.)

1http://www.eng.fsu.edu/~dommelen/courses/flm/progs/jou_air/airfoil.m
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8. According to potential flow theory, what would be the lift per unit span of a flat-plate
airfoil of chord 2 m moving at 30 m/s at sea level at an angle of attack of 10 degrees?
What would be the viscous drag if you compute it as if the airfoil is a flat plate aligned
with the flow with that chord and the flow is laminar? Only include the shear stress
over the last 98% of the chord, since near the leading edge the shear stress will be
much different from an aligned flat plate. What is the lift to drag ratio? Comment on
the value. Use ρ = 1.225 kg/m3 and ν = 14.5 10−6 m2/s.

9. Assume that a flow enters a two dimensional duct of constant area. If no boundary
layers developed along the wall, the centerline velocity of the flow would stay constant.
Assuming that a Blasius boundary layer develops along each wall, what is the correct
expression for the centerline velocity in the entrance part of the duct?

10. Continuing the previous question. Approximate the Blasius velocity profile to be
parabolic up to η = 3, and constant from there on. Sketch the duct, including the
lines that correspond to η = 3 and the lines that correspond to the displacement thick-
ness. At what point along the duct would you estimate that developed flow starts
based on the parabolic approximation? Sketch the velocity profile at this point, as well
as at the start of the duct, and at the point of the duct where the range 0 ≤ η ≤ 3 cor-
responds to 1

8
of the duct height accurately in a single graph. Remember the previous

question while doing this!
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