Using the appendix B tables

Revised 5/4/04

Contents

1 Overview 1
2 Bare $T v$ - and $p v$-diagrams 1
2.1 The bare Tv-diagram 1
2.2 The bare $p v$-diagram 2
3 Isolines 2
3.1 Some isolines in the Tv-diagram 3
3.2 Some isolines in the $p v$-diagram 3
4 Table dimensionality 4
5 Determining the phase 5
5.1 Phase from p and T in the $T v$-diagram (broken line first) 5
5.2 Phase from p and T in the $p v$-diagram (broken line first) 9
5.3 Phase from p and T in the $T v$-diagram (straight line first) 11
5.4 Phase from p and T in the $p v$-diagram (straight line first) 13
5.5 Phase from p and v 15
5.6 Phase from T and v 18
5.7 Phase from T and x 18
5.8 Phase from p and x 19
5.9 A common theme 20
5.10 Other cases 20
6 The $T s$-diagram and isentropes 20

1 Overview

The tables in Appendix B of the book ${ }^{1}$ allow you to figure out the intensive variables, p, T, v, x (if defined), \ldots. of various substances (water, amonia, methane, nitrogen, refrigerants). The generic problem is: given any two of the intensive variables of a substance, figure out any other intensive variables you need.

Unfortunately, the table to use depends not just on the substance, but also on the phase it is in (when the substance is in vapor form you must a different table than if it is in liquid form, for example.) And to figure out the phase, you need to understand and use either the $p v$ - or the $T v$-diagram, as explained in the next section.

2 Bare $T v$ - and $p v$-diagrams

2.1 The bare Tv-diagram

The generic shape of a bare $T v$-diagram is shown below:

Legend:

—— saturated liquid

- saturated vapor compressed liquid
2-phase
superheated vapor

The vertical axis represents the temperature T, while the horizontal axis represents the specific volume v. Each point in the graph represents one particular state of the substance, with the point's height giving the temperature and the point's horizontal position the specific volume.

At the darkest grey points the water is in liquid form; at the lightest grey points the water is in vapor form, and inside the medium grey bell-shaped region the water is a mixture of liquid and vapor.

[^0]Points on the dark blue line represents liquid that is just ready to start boiling. Such liquid is called "saturated liquid." The liquid of the darkest grey region is not yet ready to boil; such liquid is more precisely called compressed liquid.

Similarly, on the light blue line, we have vapor that is just ready to start condensing into water; such vapor is called "saturated vapor." The lightest grey points where the vapor is not yet ready to condense into liquid are called "superheated vapor."

In the medium gray bell-shaped region, the water is a mixture of saturated liquid and saturated vapor. We will therefor call it the two-phase or saturated region.

2.2 The bare $p v$-diagram

The generic shape of a bare $p v$-diagram is very similar to that of the bare $T v$-diagram in the previous section, but points at the same height now have the same pressure:

Legend:

- saturated liquid saturated vapor compressed liquid 2-phase superheated vapor

3 Isolines

An example of an isoline is a horizontal line in a $T v$-diagram. Any two points on the same horizontal line in a Tv-diagram have the same temperature. (They will have different pressures, specific volumes, etc, but the temperatures will be the same.) A line on which all states have the same temperature is called an isotherm. So, horizontal lines in the Tv-diagram are isotherms.

On a vertical line in the $T v$ diagram, (or in the $p v$ diagram for that matter), all points have the same specific volume. Such a line is called an isochore.

3.1 Some isolines in the Tv-diagram

The picture below shows examples of isolines in the $T v$-diagram. We already mentioned that any horizontal line is an isotherm, on which all points have the same temperature. Similarly, any vertical line is an isochore, on which all points have the same specific volume. New are the isobars, which are lines on which all points have
the same pressure. (Recall that a bar is a unit of pressure and a barometer is a device to measure pressure.)

Legend:

——saturated liquid

- saturated vapor
compressed liquid
2-phase superheated vapor
- isotherms
- isobars
- isochores

Isobars in the $T v$-diagram are not straight: starting from a small specific volume in the compressed liquid region, they first go up. Next they stay horizontal in the two phase region, (like the isotherm in that region), and then they go up again when they cross into the superheated vapor region. It is important to remember this shape:
isobars go up in the Tv-diagram
(except in the two-phase region, where they stay horizontal.)

3.2 Some isolines in the $p v$-diagram

Isolines in the $p v$-diagram are quite different. First of all, isobars are now horizontal straight lines, since the vertical coordinate is pressure. Isotherms are no longer straight:

Legend:

—— saturated liquid

- saturated vapor
- compressed liquid 2-phase superheated vapor
- isotherms
- isobars
- isochores

It is easy to remember that isobars are straight horizontal lines and isochores are straight vertical lines, because p and v are on the axes. But remember:
(except again in the two phase region, where they stay horizontal.)

4 Table dimensionality

Before trying to figure out example states in the next section, let's have a first look at some typical tables, taking those for water, ("the steam tables"), as an example.

Table B.1.1 gives the properties of the saturated lines. Those are the dark and light blue lines in the $T v$ and $p v$-diagrams. Saturated tables are one dimensional: you need only a single number to figure out your place in the table.

As an arbitrary example, suppose that I know that the temperature is $200^{\circ} \mathrm{C}$ and that the state is saturated. The relevant parts of Table B.1.1 on page 676 of the book are then:

Table B.1.1 (continued)
Saturated Water

Temp$\left({ }^{\circ} \mathbf{C}\right)$	Press (kPa)	SPECIFIC VOLUME, $\mathrm{m}^{3} / \mathrm{kg}$			INTERNAL ENERGY, kJ/kg		
		Sat. Liquid v_{f}	Evap $v_{f g}$	Sat. Vapor v_{g}	Sat. Liquid u_{f}	Evap. $u_{f g}$	Sat. Vapor u_{g}
:	!	:	:	:	:	:	:
200	1553.8	0.001156	0.12620	0.12736	850.64	1744.66	2595.29
;		:			.		:

In order of appearance, the title tells me that this table is for "saturated water." The table header tells me that the values in the first column are the temperatures, so I look up the given $200^{\circ} \mathrm{C}$ in the first column. The entire row I find applies to saturated water at $200^{\circ} \mathrm{C}$. For example, the value in the second column tells me that the pressure is 1553.8 kPa for saturated water at $200^{\circ} \mathrm{C}$ (the kPa unit is found in the table header for the second column).

The value in the third column tells me that the specific volume of the saturated water at $200^{\circ} \mathrm{C}$ is 0.001156 $\mathrm{m}^{3} / \mathrm{kg}$ if it is all in liquid form (the " f " in v_{f} stands for liquid; think " f luid"). Similarly the value in the fifth column tells me that the specific volume of saturated water is $0.12736 \mathrm{~m}^{3} / \mathrm{kg}$ if it is all in vapor form (the " g " in v_{g} stands for vapor; think " g as"). (The value in in the fourth column I skipped is merely the difference between the two.)

Similarly, the value in the sixth column tells me the internal energy, used later in the course, if the saturated water is in liquid form, and the eight column shows the one if it is in vapor form. There is more; the row of data extends to the facing page 675 , giving enthalpy and entropy, but you get the idea.

We emphasize once more that we need only one piece of information to find our location in the saturated table. Suppose that instead of the temperature, we had only been given that the water is saturated at a pressure of 1553.8 kPa . We would simply have looked up this value in the second, pressure column, of table B.1.1, and found the exact same row. Then we could have read off that the temperature was $200^{\circ} \mathrm{C}$ in the table, this need not be given now.

The superheated vapor and compressed liquid tables, however, are two-dimensional. We need two pieces of information to find our location in those tables. For example, if we are given that, say, the temperature of
superheated water vapor is $300^{\circ} \mathrm{C}$ and the pressure is 50 kPa , we turn to table B.1.3 for saturated water vapor, then we locate the block of data corresponding to 50 kPa on page 682 , top left quarter page, and then we locate the row corresponding to $300^{\circ} \mathrm{C}$ in that block:

Table B.1.3
Superheated Vapor Water

Temp $\left({ }^{\circ} \mathbf{C}\right)$	$\begin{gathered} \mathrm{v} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$	$\begin{gathered} \mathbf{u} \\ (\mathrm{kJ} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \mathbf{h} \\ (\mathrm{kJ} / \mathrm{kg}) \end{gathered}$	$\stackrel{\mathrm{s}}{(\mathrm{~kJ} / \mathrm{kg}-\mathrm{K})}$	$\begin{gathered} \mathrm{v} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$	$\begin{gathered} \mathbf{u} \\ (\mathrm{kJ} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \mathbf{h} \\ (\mathrm{kJ} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \mathrm{s} \\ (\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}) \end{gathered}$
	\vdots	\vdots	\vdots	\vdots	$P=50 \mathrm{kPa}$ (81.33)			
\vdots	\vdots	\vdots	\vdots	:	:	:	:	:
300	:	:	:	:	5.28391	2811.33	3075.52	8.5372
\vdots	\vdots	\vdots	:	:	:	:	\vdots	:
\vdots	\vdots	\vdots	\vdots	:	;	:	;	:

You see that at $300^{\circ} \mathrm{C}$ and 50 kPa , the specific volume $v=5.28391 \mathrm{~m}^{3} / \mathrm{kg}$, the internal energy $u=2811.33$ $\mathrm{kJ} / \mathrm{kg}$, the "enthalpy" $h=3075.52 \mathrm{~kJ} / \mathrm{kg}$ and the "entropy" $s=8.5372 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$. Don't forget to check the units.

5 Determining the phase

In this section, we will determine the phase of a substance, given two intensive variables. Note that we need to determine the phase to figure out what table to use. When we know the table, our two intensive variables should also be enough to read off that table.

5.1 Phase from p and T in the $T v$-diagram (broken line first)

Example 1: $p=100 \mathrm{kPa}$ and $T=200^{\circ} \mathrm{C}$
Suppose we are given that water is at a pressure $p=100 \mathrm{kPa}$ and at a temperature $T=200^{\circ} \mathrm{C}$. We want to figure out what phase the water is in, which will tell us what table to use.

We will use the $T v$-diagram in this example, and the idea is to sketch both the horizontal $200^{\circ} \mathrm{C}$ isotherm and the broken 100 kPa isobar. The state we are looking for should be on both of those lines, since it is both 100 kPa and $200^{\circ} \mathrm{C}$. To be on both lines, the state must be the point where they intersect.

The broken-line-first method draws the broken isobar first:

Legend:

- saturated liquid saturated vapor
compressed liquid 2-phase superheated vapor

The state we are looking for is somewhere on the green isobar.
Now, before drawing the $200^{\circ} \mathrm{C}$ isotherm, we need to locate the temperature of the horizontal part of the isobar. Since the horizontal part is saturated, we get its temperature by looking up 100 kPa in the saturated table. Looking in table B. 1.1 for 100 kPa , we find that that exact value is not in the table; the closest is 101.3 kPa , which is close enough. According to table B.1.1, the saturated temperature at 100 kPa pressure is $100^{\circ} \mathrm{C}$.

If we want, or need, to be more precise, we can interpolate in table B.1.1 to exactly 100 kPa . That gives $99.61^{\circ} \mathrm{C}$. For water, however, there is a quicker method. The book gives another tabulation of the saturated data, "pressure entry" table B.1.2, for round values of the pressure. If we look in B.1.2, we immediately see that the saturated temperature at 100 kPa is $99.62^{\circ} \mathrm{C}$ exactly. Pretty much the same as we found using interpolation. Note however, that for substances other than water, no separate "pressure entry" table is available.

In any case, the conclusion is that the temperature of the horizontal part is $99.62^{\circ} \mathrm{C}$. Mark it on the T-axis at the height of the horizontal part of the isobar:

Legend:

- saturated liquid
- saturated vapor
compressed liquid 2-phase superheated vapor

Finally, draw the $200^{\circ} \mathrm{C}$ isotherm. Since $200^{\circ} \mathrm{C}$ is more than $99.62^{\circ} \mathrm{C}$, we draw the $200^{\circ} \mathrm{C}$ isotherm above the
horizontal part of the isobar:

Legend:

- saturated liquid
- saturated vapor
compressed liquid
2-phase
superheated vapor

The point where the green 100 kPa isobar intersects the red $200^{\circ} \mathrm{C}$ isotherm is the state of the water. We see that it is in the light grey superheated vapor region.

So, we have found the phase: our water is in the superheated vapor phase.
If we want to figure out other intensive variables, say the specific volume, we should use superheated vapor Table B.1.3 to find them. The relevant parts of this table, on page 682 of the book, are then:

Table B.1. 3
Superheated Vapor Water

Temp $\left({ }^{\circ} \mathbf{C}\right)$	\mathbf{v} $\left(\mathbf{m}^{3} / \mathbf{k g}\right)$	\mathbf{u} $(\mathrm{kJ} / \mathrm{kg})$	\mathbf{h} $(\mathrm{kJ} / \mathrm{kg})$	\mathbf{s} $(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$	\mathbf{v} $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	\mathbf{u} $(\mathrm{kJ} / \mathrm{kg})$	\mathbf{h} $(\mathrm{kJ} / \mathrm{kg})$	\mathbf{s} $(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$
\vdots								
		$P=100 \mathrm{kPa}(99.62)$		\vdots	\vdots	\vdots	\vdots	
200	2.17226	2658.05	2875.27	7.8342	\vdots	\vdots	\vdots	\vdots
\vdots								
\vdots								

In the block of data relevant to 100 kPa , we find the row corresponding to $200^{\circ} \mathrm{C}$ in the first column. In the column marked \mathbf{v}, we then find that the specific volume $v=2.17226 \mathrm{~m}^{3} / \mathrm{kg}$.

The reason that we had to look up the temperature of the horizontal, saturated part of the isobar is that we have to know whether to draw our isotherm above of below the horizontal part of the isobar. As a second example demonstrating the difference, assume that the pressure is again given to be 100 kPa , but the temperature is now given as $40^{\circ} \mathrm{C}$.

Example 2: $p=100 \mathrm{kPa}$ and $T=40^{\circ} \mathrm{C}$

The first two steps, drawing the broken isobar and locating its horizontal part, are the same as before:

However, since $40^{\circ} \mathrm{C}$ is less than $99.62^{\circ} \mathrm{C}$, we now draw the isotherm below the horizontal part of the isobar:

Legend:

——saturated liquid

- saturated vapor
- compressed liquid

2-phase
superheated vapor

The intersection point of isotherm and isobar is now in the superheated region, so we must use superheated vapor table B.1.3, not B.1.4.

If we actually try to do so, we run into a problem however. The given pressure of 100 kPa is not in table B.1.4! The lowest pressure in the table is 500 kPa . Fortunately, if this happens for a compressed liquid, it is often sufficiently accurate use the saturated value as an approximation. In the saturated table B.1.1, we find the specific volume of saturated liquid water to be $v_{f}=0.001008 \mathrm{~m}^{3} / \mathrm{kg}$ at the correct temperature of $40^{\circ} \mathrm{C}$, but
the wrong pressure of 7.384 kPa . Make sure you get the temperature right. This saturated value $v=0.001008$ $\mathrm{m}^{3} / \mathrm{kg}$ is sufficiently accurate for our compressed liquid too. Despite the error in pressure.

If you really need a more accurate value for the specific volume, you could interpolate the saturated value at 7.394 kPa that we just read off and the compressed liquid value at 500 kPa from table B.1.4 to find the value at 100 kPa . But in this example, you would still get 0.001008 for the specific volume if you did that.

Note that for substances other than water, the book does not provide a compressed liquid table, and you have no choice other than to use saturated values for the compressed liquid phase.

5.2 Phase from p and T in the $p v$-diagram (broken line first)

Let us try to redo the first example we did in the previous subsection. But now, we will use the pv-diagram instead of the $T v$-one. We are again given that water is at a pressure $p=100 k P a$ and at a temperature $T=200^{\circ} \mathrm{C}$.

Example 1: $p=100 \mathrm{kPa}$ and $T=200^{\circ} \mathrm{C}$
The procedure is very similar to the one in the Tv-diagram. Again, we draw the broken line first, but in the $p v$-diagram, the broken line is the isotherm. So we draw the $200^{\circ} \mathrm{C}$ isotherm:

Legend:

- saturated liquid - saturated vapor
compressed liquid 2-phase superheated vapor

Next we figure out the pressure of the horizontal, saturated part of the isotherm by looking up $200^{\circ} \mathrm{C}$ in table B.1.1. The saturated pressure at $200^{\circ} \mathrm{C}$ is there found to be 1553.8 kPa . Mark it in the graph:

Legend:

Finally draw the 100 kPa isobar below the horizontal part, since 100 kPa is less than 1553.8 kPa :

Legend:
——saturated liquid

- saturated vapor
compressed liquid
2-phase
superheated vapor

The intersection point again shows that the state is superheated vapor, as it should.

Example 2: $p=2000 \mathrm{kPa}$ and $T=200^{\circ} \mathrm{C}$

The first two steps are the same as above, but in the third step, we draw the 2000 kPa isobar above the horizontal part, since 200 kPa is greater than 1553.8 :

Legend:

- saturated liquid

saturated vapor

compressed liquid
2-phase
superheated vapor

The intersection point of the 2000 kPa isobar and the $200^{\circ} \mathrm{C}$ isotherm is seen to be in the compressed liquid table.

Example 3: $p=100 \mathrm{kPa}$ and $T=400^{\circ} \mathrm{C}$

If we try to repeat the procedure of examples 1 and 2 immediately above, we run into trouble. The given value of the temperature is higher than the highest temperature in table B.1.1. The top of the two-phase region is known as the critical point, (C.P.), and its temperature is $374.1^{\circ} \mathrm{C}$ for water. The given temperature of $400^{\circ} \mathrm{C}$ is higher than that, so it will never enter the two-phase region.

If this happens, simply draw the isotherm to stay above the two-phase region; the rest is unchanged:

Legend:

- saturated liquid
- saturated vapor
compressed liquid 2-phase superheated vapor

The phase of the water at 100 kPa and $400^{\circ} \mathrm{C}$ is seen to be superheated vapor.

5.3 Phase from p and T in the $T v$-diagram (straight line first)

Sometimes it is more convenient to draw the straight isoline first. For example, if you are locating several states in the $T v$-diagram, all with the same temperature, it is quicker and neater to draw this constant temperature line first.

Example 1: $p=100 \mathrm{kPa}$ and $T=50^{\circ} \mathrm{C}$
In this method, we first draw the straight $50^{\circ} \mathrm{C}$ isotherm:

Legend:

——saturated liquid

- saturated vapor
compressed liquid
2-phase superheated vapor

Now the trick is to find out what isobar coincides with this isotherm in the two-phase region. So, we look up $50^{\circ} \mathrm{C}$ in table B.1.1, and find that its saturated pressure is 12.35 kPa . We can now draw this isobar as a
dotted line:

Note that it does indeed coincide with the $50^{\circ} \mathrm{C}$ isotherm in the two phase region.
Finally, we draw the 100 kPa isobar. Since 100 kPa is greater than 12.35 kPa , we draw the 100 kPa isobar above the 12.35 kPa isobar:

We see that the water is compressed liquid.
Example 2: Also determine $p=5 \mathrm{kPa}$ and $T=50^{\circ} \mathrm{C}$
Since the temperature is again $50^{\circ} \mathrm{C}$, we can use the same graph as above and simply add the 5 kPa isobar.

Since 5 kPa is less than 12.35 kPa , we draw it below that isobar:

The state now is superheated vapor.
Note that we only needed to do one table look up, for $50^{\circ} \mathrm{C}$, to do the figure. Using the broken-line-first method, we would have had to do two table look ups, one for the constant part of each isobar.

5.4 Phase from p and T in the $p v$-diagram (straight line first)

This goes very similar.
Example 1: $p=100 \mathrm{kPa}$ and $T=50^{\circ} \mathrm{C}$
We draw the straight 100 kPa isobar:

Legend:

——saturated liquid

- saturated vapor
compressed liquid 2-phase superheated vapor

We look up the isotherm that coincides with the isobar in the two phase region. Table B.1.2 shows it is the
$99.62^{\circ} \mathrm{C}$ isotherm. Draw it as a dotted line:

Legend:

- saturated liquid
- saturated vapor
compressed liquid 2-phase superheated vapor

Finally, draw the $50^{\circ} \mathrm{C}$ isotherm:

Legend:

- saturated liquid saturated vapor
- compressed liquid

2-phase
superheated vapor

The state is compressed liquid.
Example 2: $p=100 \mathrm{kPa}$ and $T=200^{\circ} \mathrm{C}$

The first two steps are the same as above, but the $200^{\circ} \mathrm{C}$ isotherm is above the $99.62^{\circ} \mathrm{C}$ one:

The phase is superheated liquid.

5.5 Phase from p and v

If p and v are given, it is fairly obvious you want to use the $p v$-diagram to find the phase.
Example 1: $p=500 \mathrm{kPa}$ and $v=0.001 \mathrm{~m}^{3} / \mathrm{kg}$

First draw the horizontal isobar that represents all states with the given pressure of 500 kPa :

Now look up the saturated conditions at 500 kPa . Table B.1.2 shows that the specific volume of saturated liquid water at 500 kPa is $v_{f}=0.001093 \mathrm{~m}^{3} / \mathrm{kg}$ and that of saturated water vapor at 500 kPa is $v_{g}=0.37489$ $\mathrm{m}^{3} / \mathrm{kg}$. Show the isochores that have those specific volumes as vertical brown dotted lines in the pv-diagram. Make sure that they intersect the 500 kPa isobar at the blue saturated liquid, respectively saturated vapor
points on this line:

Finally draw the isochore with the given specific volume $v=0.001 \mathrm{~m}^{3} / \mathrm{kg}$ in the $p v$-diagram. Since 0.001 $\mathrm{m}^{3} / \mathrm{kg}$ is less than the saturated fluid value $v_{f}=0.001093 \mathrm{~m}^{3} / \mathrm{kg}$, this isochore will be before (i.e. to the left of) the v_{f} one:

Legend:

- saturated liquid saturated vapor
compressed liquid
2-phase
superheated vapor

The given state must be on both the green 500 kPa isobar and the brown $0.001 \mathrm{~m}^{3} / \mathrm{kg}$ isochore, so it must be their intersection point (encircled.) This point is in the darkest grey (compressed liquid) region. So, take table B.1.4 and find the entry corresponding to 500 kPa and $v=0.001 \mathrm{~m}^{3} / \mathrm{kg}$. (The given value $v=0.001$ $\mathrm{m}^{3} / \mathrm{kg}$ is not exactly in table B.1.4; you must use interpolation.)

Example 2: $p=500 \mathrm{kPa}$ and $v=0.1 \mathrm{~m}^{3} / \mathrm{kg}$
This is just like example 1, except that the given $v=0.1 \mathrm{~m}^{3} / \mathrm{kg}$ is now in between $v_{f}=0.001093 \mathrm{~m}^{3} / \mathrm{kg}$ and
$v_{g}=0.37489 \mathrm{~m}^{3} / \mathrm{kg}$. So the $v=0.1 \mathrm{~m}^{3} / \mathrm{kg}$ isochore is in between those two:

Legend:

- saturated liquid

- saturated vapor
compressed liquid
2-phase
superheated vapor

Thus this is a 2-phase (saturated) state.
You can immediately look up the temperature in the saturated table B.1.2; it is $151.86^{\circ} \mathrm{C}$. To get the quality x, use

$$
v=v_{f}+x\left(v_{g}-v_{f}\right) \quad \Rightarrow \quad x=\frac{v-v_{f}}{v_{g}-v_{f}}=0.2646
$$

Example 3: $p=500 \mathrm{kPa}$ and $v=1 \mathrm{~m}^{3} / \mathrm{kg}$
This is again just like example 1, except that the given $v=1 \mathrm{~m}^{3} / \mathrm{kg}$ is now greater than $v_{g}=0.37489 \mathrm{~m}^{3} / \mathrm{kg}$. So this isochore is towards the left of that line:

It follows that this state is superheated vapor. Look up 500 kPa and $1 \mathrm{~m}^{3} / \mathrm{kg}$ in the superheated water vapor table B.1.3. Interpolation will be needed.

5.6 Phase from T and v

Getting the phase from T and v works exactly like getting the phase from p and v, except that you now use the $T v$-diagram and temperatures instead of pressures.

5.7 Phase from T and x

If T and x are given, the obvious diagram to use is the $T v$-diagram. Let's decide right away that if x is given, the phase can never be compressed liquid or superheated vapor, because x is not defined for those phases.

Example 1: Saturated liquid at $T=50^{\circ} \mathrm{C}$
Telling you that the water is saturated liquid is equivalent to telling you that $x=0$. Since we are saturated, the pressure is 12.35 kPa from table B.1.1.

The state is on both the $50^{\circ} \mathrm{C}$ isotherm and on the dark blue saturated liquid line:

Legend:

——saturated liquid

- saturated vapor
compressed liquid
2-phase superheated vapor

To find the specific volume, say, read off the v_{f} value in table B.1.1.
Example 2: Saturated vapor at $T=50^{\circ} \mathrm{C}$
Telling you that the water is saturated vapor is equivalent to telling you that $x=1$. Since we are saturated, the pressure is 12.35 kPa from table B.1.1.

The state is on both the $50^{\circ} \mathrm{C}$ isotherm and on the light blue saturated vapor line:

Legend:

- saturated liquid saturated vapor
 compressed liquid 2-phase superheated vapor

To find the specific volume, say, read off the v_{g} value in table B.1.1.
Example 3: $x=0.25$ and $T=50^{\circ} \mathrm{C}$

Since $x=0.25$, one quarter of the water is saturated vapor, and the remaining three quarters saturated liquid. Since we are saturated, the pressure is 12.35 kPa from table B.1.1.

The state is on the $50^{\circ} \mathrm{C}$ line, one quarter of the way between the saturated liquid and saturated vapor states:

Legend:

- saturated liquid
- saturated vapor
compressed liquid
2-phase superheated vapor

To find the specific volume, say, read off the v_{f} and v_{g} values in table B.1.1 and compute

$$
v=v_{f}+x\left(v_{g}-v_{f}\right)
$$

5.8 Phase from p and x

Getting the phase from p and x works exactly like getting the phase from T and x, except that you now use the $p v$-diagram and pressures instead of temperatures.

5.9 A common theme

As you have seen, the procedures vary a lot depending on the diagram used and what variables are given. But in every case, after we have drawn the first given isoline, we use the saturated tables to find out something more about that isoline before we draw the second given isoline.

5.10 Other cases

Later in the course additional intensive variables such as the internal energy u, the enthalpy h, and entropy s are encountered. In case one of those is one of the two given intensive variables, they behave much like v does. As a rule, treat them as you would v.

Example: $p=100 \mathrm{kPa}$ and $u=1000 \mathrm{~kJ} / \mathrm{kg}$

Since the given u is in between the $u_{f}=417.33 \mathrm{~kJ} / \mathrm{kg}$ and $u_{g}=2506.06 \mathrm{~kJ} / \mathrm{kg}$ values of table B. 1.2 at 100 kPa , the water is two-phase, saturated liquid plus saturated vapor. Compute x from

$$
u=u_{f}+x\left(u_{g}-u_{f}\right)
$$

then compute the specific volume, say, from

$$
v=v_{f}+x\left(v_{g}-v_{f}\right)
$$

where v_{f} and v_{g} are in the table.

6 The $T s$-diagram and isentropes

Later in the course, we encounter entropy s as another intensive variable. Plotting temperature versus entropy is often desirable, giving the $T s$-diagram. A sketch of its features is:

Legend:

- saturated liquid
- saturated vapor
- compressed liquid

2-phase superheated vapor
-_ isotherms

- isobars
-_ isochores
-_ isentropes
The lines of constant entropy are isentropes. They are vertical in the $T s$-diagram. Note that the isobars look similar to the isobars in the $T v$-plane; finding the phase in the $T s$-plane given p and T is really no different from doing it in the $T v$-plane.

We can also draw isentropes in the $p v$-diagram. They are not vertical like in the $T s$-diagram, but they do go down quite steeply:

Legend:

- saturated liquid
- saturated vapor
- compressed liquid

2-phase
superheated vapor
isotherms
isobars

- isobars
- isochores
- isentropes

Isentropes and isotherms are the building blocks of the Carnot cycle. A Carnot cycle is always a rectangle in the $T s$-diagram. In the $p v$-diagram, it is not; the actual shape there depends a lot on whether part or all of the cycle is in the two-phase region.

[^0]: ${ }^{1}$ Sonntag, R.E., Borgnakke, C., \& Van Wylen, G.J. (2003) Fundamentals of Thermodynamics 6th Ed. John Wiley \& Sons

