1 Linear interpolation

1.1 Description

Linear interpolation is a way to fill in the "holes" in tables. As an example, if you want to find the saturated pressure of water at a temperature of $40^{\circ} \mathrm{C}$ you can look in Table B.1.1, (p.674), for $40^{\circ} \mathrm{C}$ in the first column. The corresponding desired pressure is then in the next column; in this case, 7.384 kPa . But what if you want to find the saturated pressure at $38^{\circ} \mathrm{C}$ instead of $40^{\circ} \mathrm{C}$?

A temperature of $38^{\circ} \mathrm{C}$ is not in the table. You could of course just ignore the difference between $38^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$, and still take the saturated pressure to be 7.384 kPa . But that is not acceptable in this class; it is too inaccurate. To get an accurate value, you must use linear interpolation. (Though taking the closest value, $40^{\circ} \mathrm{C}$, is of course better than nothing in case you forgot how to do linear interpolation during an exam.)

Let's introduce a few symbols. Let g be your given value, $38^{\circ} \mathrm{C}$ in this example. Let g_{1} and g_{2} be the two closest approximations to g in the table. A look at Table B.1.1 shows that the two closest values you can find in the table are $35^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$, so in our example $g_{1}=35^{\circ} \mathrm{C}$ and $g_{2}=40^{\circ} \mathrm{C}$. (The desired value is in between those two, hence the "in" in "interpolation.")

Also, let d be our desired value, in our example the saturated pressure. Let d_{1} and d_{2} be the approximate desired values corresponding to g_{1} and g_{2}. In our example, Table B.1.1 gives the saturated pressure at $g_{1}=35^{\circ} \mathrm{C}$ to be $d_{1}=5.628 \mathrm{kPa}$ and the saturated pressure at $g_{2}=40^{\circ} \mathrm{C}$ to be $d_{2}=7.384 \mathrm{kPa}$. Both d_{1} and d_{2} are approximations to our desired pressure, but neither is accurate enough.

The formula for linear interpolation is:

$$
d=d_{1}+\frac{g-g_{1}}{g_{2}-g_{1}}\left(d_{2}-d_{1}\right)
$$

So, in our example, the desired saturated pressure d at $38^{\circ} \mathrm{C}$ is:

$$
d=5.628 \mathrm{kPa}+\frac{38^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}}{40^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}}(7.384-5.628) \mathrm{kPa}=6.682 \mathrm{kPa}
$$

1.2 A nonsaturated example

You need two variables to read off the compressed liquid or superheated vapor tables. In the next example, we will find the specific volume of steam at a given temperature of $100^{\circ} \mathrm{C}$ and a given pressure of 20 kPa .

Steam (superheated water vapor) is found in Table B.1.3. We have no difficulty finding the given $100^{\circ} \mathrm{C}$ in that table, but we cannot find the given pressure of 20 kPa . The closest pressures in the table are 10 kPa and 50 Kpa.

So in the linear interpolation formula from the previous section,

$$
d=d_{1}+\frac{g-g_{1}}{g_{2}-g_{1}}\left(d_{2}-d_{1}\right)
$$

we set the given value g equal to 20 kPa , and the closest table values g_{1} and g_{2} to 10 kPa and 50 kPa .
The desired quantity d is now the specific volume at $100^{\circ} \mathrm{C}$ and 20 kPa . We set the value d_{1} to the specific
volume at $g_{1}=10 \mathrm{kPa}$ (and $100^{\circ} \mathrm{C}$,) so $d_{1}=17.19561 \mathrm{~m}^{3} / \mathrm{kg}$ according to the table, and d_{2} to the specific volume at $g_{2}=50 \mathrm{kPa}\left(\right.$ and $100^{\circ} \mathrm{C}$,) so $d_{2}=3.41833 \mathrm{~m}^{3} / \mathrm{kg}$.

Our formula then gives the specific volume at 20 kPa and $100^{\circ} \mathrm{C}$ as:

$$
d=17.19561 \mathrm{~m}^{3} / \mathrm{kg}+\frac{20 \mathrm{kPa}-10 \mathrm{kPa}}{50 \mathrm{kPa}-10 \mathrm{kPa}}(3.41833-17.19561) \mathrm{m}^{3} / \mathrm{kg}=13.75129 \mathrm{~m}^{3} / \mathrm{kg}
$$

1.3 Other problems

You might ask what happens to the last example if neither the given pressure nor the given temperature is in the table. For example, to find the specific volume at 20 kPa and $110^{\circ} \mathrm{C}$, neither 20 kpa nor $110^{\circ} \mathrm{C}$ are in Table B.1.4. I do not think we would do this to you during the exam. But the answer would be to do three linear interpolations: first interpolate a specific volume at $110^{\circ} \mathrm{C}$ and 10 kPa (fill in the $110^{\circ} \mathrm{C}$ "hole" in the 10 kPa data), next interpolate a specific volume at $110^{\circ} \mathrm{C}$ and 50 kPa (fill in the $110^{\circ} \mathrm{C}$ "hole" in the 50 kPa data), and finally linear interpolate those $110^{\circ} \mathrm{C}$ values in the same way as we did for $100^{\circ} \mathrm{C}$ in the previous section.

Another problem arises if you try to interpolate the specific volume of steam at 11 kPa and $50^{\circ} \mathrm{C}$. You can use the B.1.3 entry for $50^{\circ} \mathrm{C}$ and $g_{1}=10 \mathrm{kPa}$, giving $d_{1}=14.86920 \mathrm{~m}^{3} / \mathrm{kg}$. But unfortunately, the 50 kPa data start at $81.33^{\circ} \mathrm{C}$; no $50^{\circ} \mathrm{C}$ steam at 50 kPa exists. The key to find a second table entry, to give you g_{2} and d_{2}, is to recognize that superheated steam ends at saturation, which is in table B.1.1. You can find the desired second table entry there; in particular, B.1.1 at $50^{\circ} \mathrm{C}$ gives a second pressure $g_{2}=12.350$ and specific volume $d_{2}=12.0318$. Which means that the formula

$$
d=d_{1}+\frac{g-g_{1}}{g_{2}-g_{1}}\left(d_{2}-d_{1}\right)
$$

gives the specific volume of steam at 11 kPa and $50^{\circ} \mathrm{C}$ as:

$$
d=14.86920 \mathrm{~m}^{3} / \mathrm{kg}+\frac{11 \mathrm{kPa}-10 \mathrm{kPa}}{12.350 \mathrm{kPa}-10 \mathrm{kPa}}(12.0318-14.86920) \mathrm{m}^{3} / \mathrm{kg}=13.6618 \mathrm{~m}^{3} / \mathrm{kg}
$$

