
Lesson 0 TEST

This is a test exercise set that will be done in class as part of “homework 0”. Do not try to hand
this in. But if you want to get a running start on Matlab, by all means read the first half of lesson
1 and then try to do these exercises all by yourself first! (If you get lost, note that the solution is
already posted on the top course web page.)

Note for Octave users: put file setup.tex in the folder with your script files. You can get better
looking results with Octave than Matlab. (But, warning!, Octave is buggier.)

1. Use Matlab to evaluate:

(a)
2 + 3

4
. Use a code comment line before the Matlab code to say whether you need

parentheses or not.

(b) sin(30◦). Do this both using the Matlab sind function and the sin function. Show each
result immediately behind the Matlab command that creates it.

Bare solution script

2. Store in variable averageGrade the value of average exam grade, if the two exam grades were
45 and 90. Print the value in averageGrade out separately from storing the number in it.

To show that indeed nothing is printed in the assignment statement, follow it by a double-
precent line immediately followed by some mark-up comment.

Bare solution script

3. Matlab has a function sqrt that returns the square root of its argument. But Matlab does
not have a function that returns the square of its argument. Fix this by defining your own
function sqr that returns the square of its argument. Test it on the values 3 and 4, and on a
variable called myVar that contains the value 5.

Use double percent lines to show each test separately.

Remember that function sqr must be in a function file called sqr.m.

After all works well, add comments to function file sqr.m that explain what the function does
and what its input argument must be. Then add a test that the command “help sqr” does
give proper information on how to use the function.

Bare solution script

1

BARE/setup.tex
BARE/l0_Test_x1.m
BARE/l0_Test_x2.m
BARE/l0_Test_x3.m

Lesson 1 INTRODUCTION

Before doing the below exercises, you should first read and try to understand the relevant parts of
posted lesson 1. If you did not, neither the instructor nor any TA will help you with problems until
you do.

1. Use Matlab to evaluate:

(a) 2 + 6
4 .

(b) 2+6
4 .

(c) 65 F in degrees Centigrade.

(d) The circumference of a circle of radius 3.

(e) The number of molecules in a mole, using exponential form.

(f) cos(102π), and explain whether the answer is correct.

(g) cos(1020π), and explain whether the answer is correct.

(h) The tan of 45 degrees, and explain whether the answer is correct.

(i) arccos(-1), and explain whether the answer is correct. If this is unsure, say why.

(j) Euler’s number e, but do not print out the value.

(k) Only now print out the value of e, twice. Use a “%%” line between the two printouts
to show the result of the first print-out command before the second print-out command.
State whether the answer is correct.

Be sure to start the subexercises with “%% a)”, “%% b)”, . . . lines in your script so that they
are shown separately and found in the contents of your pdf.

Bare solution script

2. Define a function Circle Area so that Circle Area(r) returns the area of a circle of radius
r. Use the function with arguments 1, 2, r, and x, where r is a variable whose value is 1 and
x is a variable whose value is 2. Use “%%” lines to separate the four evaluations from each
other. Check in each case that you get the correct area.

Remember that function Circle Area must be in a function file called Circle Area.m. Use
“New,” “Function” in Matlab and save appropriately.

Bare solution script

3. Define a function Cone Volume so that Cone Volume(r,h) returns the volume of a cone whose
base is a circle of radius r and whose height is h. Use the function with arguments (1,3),
(3,1), and (2,7). Check that in each case, you get the correct volume. Store the three values
in variables V1, V2, and V3 before printing them.

Bare solution script

· · · · · · ·

2

BARE/l1_Introduction_x1.m
BARE/l1_Introduction_x2.m
BARE/l1_Introduction_x3.m

4. Use Matlab to evaluate the following quantities. Use a separate subsection for each subexer-
cise. Also, for each answer, use a double-percent line followed by mark up text to comment
on why you think the answer should be like this (or not).

(a) 1/Inf

(b) Inf/Inf

(c) Inf-Inf

(d) ((1010)10)10

(e) 1 + (3 ∗ (50.5)) in the order shown using the minimal number of parentheses needed.

(f) ((1 + 3) ∗ 5)0.5 in the order shown using the minimal number of parentheses needed.

(g) Evaluate Bessel function J0(x) at x = 1. (Hint: Probably you do not know this function.
To figure it out, use the help command. Note that Matlab uses lowercase for function
names. Then try Tab completion. The correct value of J0(x) at x = 1 starts as 0.7. . .)

Bare solution script

5. Assign the values 1, 2, and 3 to variables A, B, and C, respectively. Then move the original
value of B to C, of A to B, and of C to A (without using the values explicitly). Generalize
the procedure used in the lesson to do this. Use only one additional variable. Use double
percent lines and mark-up text as appropriate.

Bare solution script

6. Reconsider your function Cone Volume(r,h) from exercise 3. Copy it into a function named
ConeVolume(r,h), (no underscore), then fix ConeVolume so that it works correctly even if
radius r and height h are arrays, call them rVals and hVals. Try it out with arrays rVals

= [1,3,2] and hVals = [3,1,7] and show that you get the same three volumes in the resulting
array VVals as in exercise 3. Also try it out with rVals = [2,3,4,5,6] and hVals = [11,9,7,5,3],
each written as concisely as possible (i.e. with the minimum number of characters possible,
using the Matlab colon notation). Use double percent lines where appropriate.

Also solidly comment your function, fully explaining purpose, input arguments and output
argument. Demonstrate that

help ConeVolume

produces full information on your function to anyone who enters that command. As an
example, see function Cone Volume in the posted solution of exercise 3.

Bare solution script

3

BARE/l1_Introduction_x4.m
BARE/l1_Introduction_x5.m
BARE/l1_Introduction_x6.m

Lesson 2 ZEROS OF FUNCTIONS

Before doing the below exercises, you should first read and try to understand the relevant parts of
posted lesson 2. If you did not, neither the instructor nor any TA will help you with problems until
you do.

Homework Motivation: Consider a drum whose membrane is flexibly attached to the drum rim.
If you hit such a drum in the center of the membrane, the nondimensionalized frequencies (tones)
ω that are produced satisfy the equation

J0(ω) = kωJ1(ω)

where J0 and J1 are Bessel functions of the first kind and the given constant k is a nondimension-
alized flexibility of the membrane attachment.

(No, you do not need to know how to derive the above equation. All you are asked to do is
solve it. And no, you do not need to know what Bessel functions are either. The only thing you
need to know, from homework 1, is that Matlab can evaluate it for you.)

1. Since you probably do not know how the two Bessel functions in the motivation above look,
plot both J0(ω) and J1(ω) in a single graph. In particular, plot the values of these two
functions at 201 equally spaced ω plot values between 0 and 3.5π. (See help on the Matlab
linspace command on a simpler way to create the ω values than by defining an array using
START:STEP:END.) Make J0 blue and J1 red. Use a suitable title, suitable axes labels,
a legend to distinguish J0 from J1, and a grid. The horizontal axis length should be 3.5π,
starting from 0. The tick marks on the horizontal axis should correspond to whole multiples
of 0.5π and labeled as such (instead of with raw numbers). (See “how about the other
frequencies?” in the posted lesson2 for how to select tick marks and labels.) Let Matlab
decide the size of, and labels on, the vertical axis (specify the vertical limits as ‘-Inf Inf’).

Bare solution script

2. Next create a function DrumFreqEqError0pt5 that gives the error in the equation in the
motivation above. To keep it simple, in this function assume that k = 0.5. Make sure that
this function multiplies correctly even if its input argument is an array. And that the function
does not print out any values while it is doing its thing (use appropriate semicolons). The
function must be in a separate function file named DrumFreqEq0pt5.m. Note that when you
save the function file the first time, Matlab will add the .m if you do not specify it yourself.

Plot this function in your homework script file l2 Zeros x2.m. The plot should satisfy the
same requirements as the previous one (except for the legend). So use cut and paste where
appropriate.

Function DrumFreqEq0pt5.m should be included in your homework script so that the grader
can find it in the published print-out that you hand in. The provided template script l2-

Zeros x2.m already has the needed include in it. Just don’t mess it up. And avoid typos
in the function name.

Bare solution script

4

BARE/l2_Zeros_x1.m
BARE/l2_Zeros_x2.m

3. By looking at your graph, ballpark a very close value omega1Approx for the first frequency
ω1. Take the ballpark to be some suitable integer multiple of 0.5π.

(a) Use this ballpark to let fzero find the correct frequency ω1 (omega1 in Matlab) to about
16 digits accuracy.

(b) As a better approach, ballpark a frequency range in which the first frequency, and no
other, is located. Take the end points of this range to be integer multiples of π.

You must now first check that the errors at the end points are of different sign. That is
to ensure that a zero crossing must be in your range. To do so, put the chosen frequency
range into DrumFreqEq0pt5.m and check whether the two numbers are of opposite sign.

Then let fzero again find the root, now by searching in the range.

(c) Check that you get the same answer as before. In particular, print the difference between
the two values of ω1 and comment whether it is small enough. Note that the range
method always works, if used correctly. The initial point method can fail (and readily
does so in Octave).

Bare solution script

4. We no longer want to assume a priori that k = 0.5. So, create a function DrumFreqEqError

with input arguments ω and k. It must return the error in the frequency equation for any ω
and k.

(a) To check, show that for k = 0.5 and the same ω range as before, you get the same errors
at the end points of the range as with DrumFreqEqError0pt5.

(b) Your function should be very well commented; compare the posted lecture notes of lesson
1 and the listing of FreqEqError in lesson 2. Show to the grader that

help DrumFreqEqError

gives clear and complete information on your function to any user.

(c) Next change k to 2 and remake the plot of the error versus ω now using DrumFreqEqError

with k equal to 2.

Bare solution script

5. Finally, use DrumFreqEqError to find the first four frequencies ωn for n = 1 to 4 and k = 2.
Print these out neatly.

(a) First do it from initial ballparks. As initial ballpark use some suitable odd multiple of
π/4 for each case. Your ballpark should be very accurate if n is high enough.

Display the results in a neat table using fprintf as

For k = 1.1, omega1 is: 12.1234567 (12.123 approximate).

where 12.1234567 means 2 digits in front of the decimal point and 7 behind it, and
similarly for 1.1 and 12.123. The print out must be achieved using the correct format
specifiers inside the fprintf FORMATSTRING. (Actual data numbers inside FOR-
MATSTRING are never allowed!)

Warning: the format %1.1f does not mean 1 digit before the decimal point and
1 behind it, as some students think. The first 1 should be the total number of print
positions, including leading spaces, digits before the decimal point, the decimal point
itself, and the single digit behind it. So %1.1f is not just wrong, but impossible.

5

BARE/l2_Zeros_x3.m
BARE/l2_Zeros_x4.m

(b) Next do it by having fzero search in a range. As end points of the ranges use integer
multiples of π.

In this case, print the results out as

For k = 1.1, omega1 is: 12.1234567 (in [*.123 12.123]).

using similar requirements as before. Here *.123 means as many digits in front of the
decimal point as fprintf needs, and 3 behind it. The range you selected must be in the
square brackets.

If you do it correctly, the decimal points of the frequencies should align in the tables, for a
neat appearance.

Bare solution script

6

BARE/l2_Zeros_x5.m

Lesson 3 INTERPOLATION

Before doing the below exercises, you should first read and try to understand the relevant parts of
posted lesson 3. If you did not, neither the instructor nor any TA will help you with problems until
you do.

1. You measured a function f that, “unknown to you,” is exactly equal to

fexact(t) =
1

2
+ sin

(
t

2

)
+

1

3
et/3

Create a handle fExactFun to an anonymous function that evaluates f at a given time t as
above. Check that at time t = 1, your function gives you 1.44 as it should.

Now assume you did 8 measurements of function f at equally spaced times from −3 to 3. Put
the measured times in an array tMeasured. Determine what the measured f -values should
have been according to fExactFun and put them in array fMeasured.

Now, using linear and spline interpolation of these “measured” data, evaluate f at times −3.5,
−1.5, 0, 1.5, and 3.5.

To get the errors in these values, take the absolute value of the difference between interpolated
and exact f -values at that time.

(Note: Do each of these times separately, −3.5 first. After you have done −3.5, use cut, paste,
and modify to do the other times.)

Print the obtained values and their errors out in the format

At t = 12.1:

the linear interpolate is 12.123, with error *.12E*;

the spline interpolate is 12.123, with error *.12E*;

the error in the spline is *.1 times smaller.

using an fprintf with suitable FORMATSTRING format specifiers for each line. (Actual
data numbers inside FORMATSTRING are never allowed!) Here 1 means 1 digit, 12 means
2 digits (or a sign or space and a digit), etcetera, and * means whatever number of digits
fprintf wants.

For the linear interpolation, do not forget that the times −3.5 and 3.5 are extrapolations,
not interpolations. Modify the interp1 call appropriately for these two times. And in the
print-outs for these two times, change interpolate into extrapolate.

Bare solution script

2. Continuing the previous exercise:

(a) Create a plot of the interpolations. In particular, plot the exact solution as a black
dashed line. Use 241 plot points from −4.5 to 4.5 to plot it. Also plot the measured
data as black circles in the plot. And also plot the linear and spline interpolates at the
241 plot points in the plot. Use blue for the linear interpolate and red for the spline one.

Your horizontal axis should go from −4.5 to 4.5 and your vertical axis from −1 to
3. Use title “Comparison of Interpolations”, and axis labels “t” and “f”. Include legend

7

BARE/l3_Interpolation_x1.m

entries “Exact”, “Measured”, “Linear” and “Spline.” (Use help legend to figure out
how to put the legend in a better position in the graph than on top of the curve.) On the
horizontal axis, use tickmarks only at t = −3 and t = 3; this will make the interpolated
range stand out from the extrapolated parts.

Use mark-up text to comment on your observations from the plot.

(b) Next evaluate the maximum error in the each of the two interpolation methods in the
complete plot range. Use the interpolated values at the plot points to do so.

Also evaluate the maximum error in the each of the two interpolation methods in just
the interpolation range. The easiest way for you to do this at your current knowledge is
to create 161 “Test” points from −3 to 3, and evaluate the interpolations and then their
errors at these points.

Use suitable fprintf commands to print out the errors neatly. Use mark-up text to
compare the errors in the two ranges and comment on that.

Bare solution script

3. Continuing the previous exercises, now assume that we have done measurements at 64 equally-
spaced points from −3 to 3, instead of just 8. But also assume that the measured f -values
at these points have random errors that are on average 0.1 large (so about 3% of the total
range of f)

In particular, Matlab users should create the new measured f -values as follows:

rng(’default’)

fMeasured=fExactFun(tMeasured)+0.1*randn(size(tMeasured));

Octave users should use instead:

randn("seed",4)

fMeasured=fExactFun(tMeasured)+0.1*randn(size(tMeasured));

You should also increase the number of plot points from 241 to 721 and the number of test
points from 161 to 481.

Now repeat the previous exercise. Use cut and paste and then make appropriate changes,
including in your conclusions.

Bare solution script

· · · · · · ·

4. Repeat the previous exercise, but instead of interpolating the measured data, fit a straight
line, a cubic, and a quintic to the data.

Plot the fitted line in green, the cubic in cyan, and the quintic in magenta (all in the same
graph). Return to using 241 plot points and 161 test points.

Comment appropriately.

Bare solution script

8

BARE/l3_Interpolation_x2.m
BARE/l3_Interpolation_x3.m
BARE/l3_Interpolation_x4.m

5. Continuing the previous exercises, integrate the linear and spline interpolates of the 8 exact
data points from a starting point t1 = −1 to an end point t2 = 3. Compare with the exact
result ∫ t2

t1
fexact(t) dt =

1

2
(t2 − t1)− 2 cos

(
t2
2

)
+ 2 cos

(
t1
2

)
+ et2/3 − et1/3

Print out the results as

For the integral with exact value 1.12345678

linear interpolation gives 1.123, with error 1.12E*;

spline interpolation gives 1.123, with error 1.12E*;

the straight line fit gives 1.123, with error 1.12E*;

the cubic curve fit gives 1.123, with error 1.12E*;

the quintic curve fit gives 1.123, with error 1.12E*.

Comment on the results.

Note: in Octave integration of the linear interpolate is slow.

Repeat for the three polynomials fitted to the 64 noisy data. Use format

For the integral with exact value 1.12345678

the straight line fit gives 1.123, with error 1.12E*;

the cubic curve fit gives 1.123, with error 1.12E*;

the quintic curve fit gives 1.123, with error 1.12E*.

Bare solution script

6. Continuing the previous exercises, for the case with the 64 noisy data, find the derivatives of
the three fitted polynomials and plot them all three together, with the same colors as before
(green, cyan, magenta). Also plot the exact derivative as a black broken line. Comment on
the quality of the approximations. Similar plot requirements as before. The vertical axis
range should be a bit bigger than the vertical range of the exact derivative; take it from −0.4
to 0.8.

Bare solution script

9

BARE/l3_Interpolation_x5.m
BARE/l3_Interpolation_x6.m

Lesson 4 ORDINARY DIFFERENTIAL EQUATIONS

Before doing the below exercises, you should first read and try to understand the relevant parts of
posted lesson 4. If you did not, neither the instructor nor any TA will help you with problems until
you do.

1. Your city is being attacked by a ship. You want to shoot cannon balls at it, but the ship
may be too far away. To answer that exercise, first you need to create a system of ordinary
differential equations that describes the motion of the cannon ball in air.

To do so, the first step is identify the equations of motion of a cannon ball in air, but without
significant spin. They are:

dx

dt
= u (1)

dy

dt
= v (2)

du

dt
= (−Fairu/V)/m (3)

dv

dt
= (−Fgravity − Fairv/V)/m (4)

where x is the horizontal distance traveled from the cannon, y the height above the cannon,
u the horizontal velocity component in the x-direction and v the vertical velocity component
in the y-direction.

Also m is the mass of the cannon ball, which has radius r and is made of iron with a density
ρiron equal to 7,272 kg/m3.

Also
V =

√
u2 + v2 Fgravity = mg Fair = CDπr

2 1
2ρairV

2

where the acceleration of gravity g at your particular city is 9.81 m/s2, the drag coefficient
CD can be taken to be 0.5, and the density of air ρair at your city to be 1.225 kg/m3.

Write a well-documented Matlab function CannonBall that takes as inputs (a) the time t
from firing the cannon, (b) a vector consisting of values of the four unknowns (x, y, u, v), and
(c) the cannon ball radius r. Your function should output the corresponding values of the
derivatives of the unknowns, as above, in a column vector.

Warning: The provided script l4 ODE x1.m already contains code to test your function. Do
not modify that script. Just run it to make sure that your function works properly. If it does
not, fix the problems before attempting the next exercise.

Bare solution script

2. Continuing the previous exercise, the next step is to figure out how far your cannon can really
shoot. Assume that your cannon can shoot the cannon ball out at an initial total speed V0 of
100 m/s. Also assume that you shoot the cannon ball out at an angle α from the horizontal.
In that case the initial velocity components are equal to

u0 = V0 cos(α) v0 = V0 sin(α)

10

BARE/l4_ODE_x1.m

Ignoring air resistance, the subsequent motion of the cannon ball is described in typical basic
physics classes. These basic physics classes show that without air resistance, your cannon
ball will travel farthest when the initial angle α is equal to 45 degrees. The cannon ball will
then travel 1,019 m in 14.42 seconds to a ship at the same height as the cannon.

But that ignores air resistance. So you need to know how the distance travelled changes due
to air resistance.

To find out, use the function CannonBall of the previous exercise to find the motion of a
cannon ball of 10 cm radius in 14.42 seconds using the initial data as described above. Let
ode45 produce the solution at 100 equally spaced times in that time range.

Plot the found path of the cannon ball as y versus x (not against time), in red. To do so
neatly, you will want to take the x and y values out of unknownValues.

Also put the solution without air resistance in the graph,

xnodrag = V0 cos(α)t

ynodrag = V0 sin(α)t− 1
2gt

2

as a broken black line. Evaluate this at the same 100 equally spaced times as described above.

Add an appropriate title, axis labels, and legend of course. Put the x-axis location at the
origin.

Bare solution script

11

BARE/l4_ODE_x2.m

Lesson 5 LINEAR ALGEBRA

Before doing the below exercises, you should first read and try to understand the relevant parts of
posted lesson 5. If you did not, neither the instructor nor any TA will help you with problems until
you do.

1. Consider a power line between two poles. It sags down under its own weight. Let h be the
height of the power line above the ground. The heights h1, h1, . . .h6 at 6 points equally
distributed along the first half of the power line satisfy the approximate equations

h1 = H

h1 − 2h2 + h3 = ρ/25

h2 − 2h3 + h4 = ρ/25

h3 − 2h4 + h5 = ρ/25

h4 − 2h5 + h6 = ρ/25

2h5 − 2h6 = ρ/25

Here H is the scaled height of the power line at the pole; assume it to be 1 (that is how it
was scaled). Also ρ, rho, is the scaled mass of the power line per unit length; take this to be
1 too.

Write this system of 6 equations in 6 unknown heights in matrix-vector form as M~h = ~r.
Here ~h is the vector containing the unknown heights h1, h2, . . .h6, as a column.

The vector ~r must contain the right hand sides of the equations given above, as a column.
Create this vector in Matlab and name it rhv.

Also create the matrix M in Matlab, naming it Mat. To create the matrix, note that each row
in A contains the coefficients in the left hand side of the corresponding equation shown above.
The first coefficient in each row in A is the coefficient multiplying the first unknown, h1, or
is zero if h1 does not appear. Similarly, the second coefficient is the coefficient multiplying h2
or zero if h2 does not appear, etcetera.

Check whether the equations have a meaningful solution; use mark up text to discuss this.
In particular, estimate the relative error in the solution that will be caused by the fact that
floating point numbers in Matlab are stored to only about 16 significant digits. State how
many significant digits in the solution that error does about correspond to. The grader should
see the final matrix Mat, the right hand side vector rhv, and the estimated relative error due
to errors in Matlab processing relErrMatlab. Do not throw large amounts of junky other
info at the grader; use semicolons where appropriate.

If you conclude that a reasonably or highly accurate solution ~h to the above equations will be
found, (and you should, but explain clearly why), find it. Call the solution ~h heightValues

in Matlab.

Then plot these heights against the horizontal position of the points. (The points are located
at 6 equally spaced x-positions from 0 to 50% of the distance between the poles. Call the
array of these x-values xValues) Plot the points as black circles connected by straight black
lines. Provide appropriate axes labels and title, and extend the horizontal axis for no more

12

than the 50%. For horizontal axis label, use “position, percent”. For vertical axis label use
“height.” Does it look roughly like half a sagging power line? It should.

As a final twist, replace the first equation h1 = H by the equation h1 − h2 = 0, which
requires that h1 and h2 are the same (which they are by approximation). Do not create a
new matrix and right-hand side vector from scratch. Just change the few coefficients in the
existing matrix and right hand side vector that are no longer the same. If you find that the
new system has no longer a meaningful solution, (and you should), say so. However try to
solve anyway and comment on what you get using disp. If you get some numbers but they
are no good, explain why. If you get no numbers, say so. Do not try to plot this.

Bare solution script

2. Suppose you know the values of some function f at n x-values x1, x2, . . . , xn. Then you can
interpolate a single polynomial in x of degree n − 1 through the known values f(x1), f(x2),
. . . , f(xn). This polynomial will take the general form

pint = C1x
n−1 + C2x

n−2 + . . . Cn−1x+ Cn

From that you can see that the coefficients of the polynomial C1, C2, . . . , Cn need to satisfy
the following n equations:

xn−11 xn−21 . . . x31 x21 x1 1

xn−12 xn−22 . . . x32 x22 x2 1

xn−13 xn−23 . . . x33 x23 x3 1
...

... . . .
...

...
...

...
xn−1n xn−2n . . . x3n x2n xn 1




C1

C2

C3
...
Cn

 =


f(x1)
f(x2)
f(x3)

...
f(xn)


We will be looking at solving this system of equation. Along the way, we will pick up some
clues on why we did not cover this in the lesson on interpolation, instead of, say, spline
interpolation.

First some notations. The set of x-values will be called ~x, or xValues in Matlab. The
corresponding known values of function f will be called ~f , or fValues in Matlab. Note that
~f is the right hand side vector in the system of equations above. The set of still unknown
coefficients C1, C2, . . . , Cn of the polynomial will be called ~C, or Coefs in Matlab. Note that ~C
is the vector of unknowns in the system of equations above. Finally the matrix in the left hand
side of the above system of equations, consisting of the various powers of the various x values,
is called a “Vandermonde” matrix. (Or rather, it is an horizontally flipped Vandermonde
matrix, because of the stupid way Matlab orders the coefficients of polynomials.) This matrix
will be called V for Vandermonde, or VDM in Matlab. So in vector-matrix notation, we want
to solve the system

V ~C = ~f

To solve this system so will require evaluating vector ~f and matrix V and then using left
division to get ~C as usual.

(a) Take n = 10 and take the n corresponding x-values equally spaced from 0 to 1. Make
sure ~x is a column vector. For testing purposes, we will take function f equal to

f = 1− cosx

13

BARE/l5_LinearAlgebra_x1.m

so you can use that with the given x values to find the f values in vector ~f . From the
given x values, you can also evaluate the Vandermonde matrix V as shown above. Note
that if you do not want to write out the 100 individual coefficients in Matlab one by one
without making any typos, you can write it more concisely as

V =
(
~xn−1 ~xn−2 . . . ~x2 ~x~1

)
where ~1 is a column vector of n ones, ones(n,1) in Matlab. The above does assume
that the powers of ~x are evaluated elementwise. So make sure Matlab does that.

Next solve the system of equations for the set of coefficients ~C using the appropriate
Matlab procedures as taught in the lesson. Observe that the found coefficients Coefs

are quite accurately equal to the Taylor series coefficients. Then evaluate the found
polynomial at 100 equally spaced plot points xPlot between 0 and 1. Do that using
polyval. Call the corresponding values of the polynomial pIntPlot. Also evaluate the
given exact function f at the plot points, call it fPlot. Plot fPlot as a black broken
line, the 10 interpolated f -values fValues as black circles, and pIntPlot as a blue solid
line. Use an appropriate legend, labels, title, etcetera, of course. Use a horizontal axis
from 0 to 1 and a vertical axis from −0.1 to 0.5.

The interpolated polynomial will be right on top of the exact curve. So far so good,
but even the fourth degree Taylor series would do that; the challenge is very minor here.

(b) Next repeat the above, but with some small errors added to the 10 f -values. The
perturbed f -values will be called ~f2 or fValues2 in Matlab. In particular, in Matlab
take

fValues2=fValues+0.005*[-0.1 0.5 -1 1 -0.6 0.2 0 0 0 0]’;

Find the precise relative error in ~f that we introduced here as follows:

εf ≡
|~f2 − ~f |
|~f |

Here | . . . | means the length of the vector in between the bars. In Matlab, the length of
a vector can be found using the norm function (among other methods). You should find
that the introduced relative error is only about 1%.

Based on this relative error, and the properties of matrix V , predict what the maxi-
mum relative error in the corresponding coefficients ~C2 can be. Use fprintf to print it
out as

Predicted error in the coefficients: *

where * means all digits before the decimal point but none behind it. Can these very
small errors in the f -values really make a noticeable difference in the coefficients??

To see that, solve for the coefficients ~C2, Coefs2, and evaluate their relative error by
comparing with ~C. Use fprint to print it out as

Actual error in the coefficients: *

Use mark up text to compare this result with the maximum error that you predicted
based on the relative error in the f values. Also observe that the found coefficients are
now nowhere close to the Taylor series coefficients.

14

Next plot fPlot again as a black broken line, the exact 10 fValues again as black cir-
cles, the perturbed 10 fValues2 as red circles, and the perturbed polynomial interpolate
pIntPlot2 as a red solid line. Other requirements as before.

You should find that the perturbed polynomial provides a very bad approximation to
the exact function; far, far, worse than you would get from linear or spline interpolation
of the same perturbed data.

Do note however that the interpolate does approximate the 10 exact f -values, the
black circles, well. In terms of linear algebra the 10 equations are still satisfied well, even
if the solution for the coefficients of the polynomial is no good at all. This again tells
you that just because your found solution satisfies the equations well, it does not mean
that all is well. You must look at the condition number for that.

Note that the problem we gave polynomial interpolation here was almost trivial. If
you go to still higher degree, and/or functions that vary a bit less trivially over the range,
you will get errors like the above, and in fact, far, far worse, even if you do not perturb
the f -values. This is called the “Runge Phenomenon.” The bottom line is to stick to
your cubic spline or curve fit from the lesson on interpolation. Polynomial interpolation
of high degree is bad news.

(c) One additional problem with the way we did things here is that Vandermonde matrices
can easily become very ill-conditioned. As an example, simply change your vector ~x to
10 equally spaced x-values between 4 and 5, rather than between 0 and 1.

Recompute the Vandermonde matrix and comment on whether Matlab can still find
meaningful coefficients for interpolating polynomials with these x-values.

Bare solution script

3. Given the matrices

A =


−2 2

0 1
14 2
6 8

 B =


3 4
2 1

14 16
1 25


find, if it exists (else note that it does not using mark up text),

(a) −5A+ 3B;

(b) AT;

(c) AB, BA, ATB, and BAT (note that the latter two are not equal);

(d) the non-matrix (elementwise) products AB, BA, ATB, and BAT;

Bare solution script

· · · · · · ·

4. Given the matrix

A =


−2 2
0 1
14 2
6 8


find,

15

BARE/l5_LinearAlgebra_x2.m
BARE/l5_LinearAlgebra_x3.m

(a) the unit matrix that A can be pre-multiplied by (i.e. as IA). Demonstrate that this does
not change A.

(b) the unit matrix that A can be post-multiplied by (i.e. as AI). Demonstrate that this
does not change A.

(c) the zero matrix that can be added to A. Demonstrate that this does not change A.

(d) the square zero matrix that A can be pre-multiplied by. Demonstrate that this produces
a zero matrix the size of A.

(e) the square zero matrix that A can be post-multiplied by. Demonstrate that this produces
a zero matrix the size of A.

(f) a zero row vector that A can be pre-multiplied with. Demonstrate that this produces a
zero row vector with the same number of columns as A.

(g) a zero column vector that A can be post-multiplied with. Demonstrate that this produces
a zero column vector with the same number of rows as A.

Bare solution script

5. Reconsider the power line between two poles. In addition to sagging down under its own
weight, it can vibrate like a string. In this case we will use 8 points along the entire line from
pole to pole, and number them from 0 to 7. Each point has an amplitude of vibration of
the cable ai where i is the number of the point. But since the line is attached to the poles
at points 0 and 7, the amplitudes of vibration a0 and a7 of these points are zero and can
be eliminated. That leaves n = 6 unknown amplitudes of vibration a1, a2, . . . , a6 for the six
interior points. These amplitudes can be shown to satisfy the equations:

2a1 − a2 =
ω2

49
a1

−a1 + 2a2 − a3 =
ω2

49
a2

−a2 + 2a3 − a4 =
ω2

49
a3

−a3 + 2a4 − a5 =
ω2

49
a4

−a4 + 2a5 − a6 =
ω2

49
a5

−a5 + 2a6 =
ω2

49
a6

where ω is the (scaled) frequency of the vibration.

Formulate this as an eigenvalue problem

K~e = λ~e

for an appropriate “stiffness” matrixK, eigenvector ~e equal to (a1, a2, . . . , a6)
T, and eigenvalue

λ. What would matrix K be? And what would the eigenvalue be, in terms of the quantities
above? To figure that out, note that the eigenvalue problem K~e = λ~e can be written out as

k11e1 + k12e2 + k13e2 + . . . = λe1

k21e1 + k22e2 + k23e2 + . . . = λe2

k31e1 + k32e2 + k33e2 + . . . = λe3
... =

...

16

BARE/l5_LinearAlgebra_x4.m

Here the kij are the components of the matrix K. Compare this system of equations with
the previous one, noting that e1 = a1, e2 = a2, e3 = a3,

From the comparison of the left hand sides of the two systems of equations above, it should
be obvious what λ is equal to. And you can see what the matrix components kij of K are by
comparing right hand sides, noting that row number i is the equation number, and column
number j is the number of the eigenvector component.

Matrix K should be symmetric; check that it is. Note further that the eigenvalues better be
positive real numbers! Or you would get imaginary frequencies. A symmetric matrix that
has all eigenvalues positive is called positive definite.

Now let Matlab solve the eigenvalue problem to find the 6 eigenvalues, as an array called
lambda

From the smallest (first) three eigenvalues in lambda, compute and print out the corresponding
frequencies omega1, omega2, and omega3, in the generic format

Frequency I: *.123

where I ranges from 1 to 3. No data numbers in FORMATSTRING allowed.

Note: the frequencies for larger values of I than 3 will be very inaccurate. To get these more
accurate, you would need more than 6 interior points along the cable.

Bare solution script

6. This continues the previous exercise

(a) For the same stiffness matrix as in the previous exercise, now find both the eigenvectors,
as the columns of a matrix E (E in Matlab), and the corresponding eigenvalues, on
the main diagonal of a matrix Λ (Lambda in Matlab). So eigenvector number j, ~ej is in
column j of matrix E and the corresponding eigenvalue number j, λj , is at Λj,j . Compute
again the frequencies of the first three eigenvalues, this time getting the eigenvalues from
matrix Λ.

(b) The eigenvectors describe the “mode shapes.” In other words, for each eigenvalue, the
corresponding eigenvector gives the amplitudes of vibration of the 6 interior points when
the cable is vibrating at that frequency. Eventually, we would like to plot them.

Plotting the values of each of the mode shapes against the position of the points
along the cable (in percent) will show the mode shape of vibration at that frequency
graphically. In other words, it shows you how the power line looks (except for sag) when
it is vibrating at that single frequency alone.

However, it is ugly that the eigenvectors do not include the two end points. While
the end points have zero amplitude, still to get a complete picture of the mode shapes,
you should include the end points. So take the first 3 eigenvectors out of the matrix of
eigenvectors and put them into a matrix modes that includes the zero end point values.

To do so, first create an 8 row by 3 column matrix modes of zeros using the appropriate
Matlab function. Then replace the middle 6 rows of that zero matrix with the first three
eigenvectors that Matlab gave you. To do so use START:END specifications that specify
the center-left 6 by 3 part of the matrix modes, and the first three eigenvectors of the
matrix E. Leave out START and END where possible.

Next take the three individual mode shapes out of modes, calling them mode1Vals,
mode2Vals, and mode3Vals.

17

BARE/l5_LinearAlgebra_x5.m

(c) Next check whether mode1Vals, mode2Vals, and mode3Vals, considered as 8-dimensional
vectors, are really length 1 and mutually orthogonal as they should be. To check the
length, try both the Matlab norm function and matrix multiplication and check that they
produce the same answer. To check that any two different modes are orthogonal, try
both the Matlab dot function and matrix multiplication and check that they produce
the same answer.

(d) After that, first multiply each of the three mode shapes by 7. This corrects for Matlab
scaling the eigenvectors to length one, which is not really desired here. (When you
increase the number of points along the power line for greater accuracy, you would
instead like the amplitudes to be still about the same.)

Then plot these three mode shapes versus the x-values of the 8 points, where x ranges
from 0 to 100% along the length of the power line. (In other words, the array of x-values
xVals consists of 8 equally spaced percent values from 0 to 100. It should be a column
vector, not a row vector, as the modes are.)

Provide appropriate title, labels, and legend. Format the legend entries as

legend([’omega1 = ’ num2str(omega1,3)],...

[’omega2 = ’ num2str(omega2,3)],...

[’omega3 = ’ num2str(omega3,3)],...

’location’,’southeast’)

where you may have to modify the location depending on the sign of the mode shapes.
The above works on Octave. (Note that Matlab considers a combination [STRING1
STRING2] to be simply a bigger combined string.)

Bare solution script

18

BARE/l5_LinearAlgebra_x6.m

Lesson 6 FOR, IF, WHILE

Before doing the below exercises, you should first read and try to understand the relevant parts of
posted lesson 6. If you did not, neither the instructor nor any TA will help you with problems until
you do.

Note: there are a lot of homework exercises in this lesson, but most only require relatively minor
modifications of earlier exercises, many with solutions that should already have been posted.

1. In Lesson 2, Zeros, exercise 5, you printed out the roots ω1, ω2, ω3, and ω4, of the following
equation:

J0(ω)− kωJ1(ω) = 0

where J0 and J1 were Bessel functions of the first kind and the given constant k was a
nondimensionalized flexibility of the membrane attachment.

You did the above for both the guessed root method, where you provided fzero a guessed
approximate root near which to search for the exact one, and using the range method, where
you provided fzero with a range to search in for the root.

Repeat printing out the first few roots, using both methods, but now no longer use separate
code for each frequency that you print out. Instead for each method, use a for loop over
counter n, going from 1 to value nmax = 9 (instead of 4), to find and print the first 9 roots
ωn. (So you must use one piece of code, not 9, for the 9 frequencies in each method.) Take
k = 2 again.

The correct old solution should already be posted as file l2 Zeros x5.pdf. Just copy the
“SOLUTION:” part into your solution script for the current exercise and modify it as re-
quested.

Of course, this exercise does require you to write the guessed frequency and the frequency
range in terms of the frequency number n. Look what it is for n = 1 and then see what you
need to add to get it to work for larger values of n. Also, you will need to make a small
change in the format of the range method to keep the decimal points aligned.

Note: This exercise requires a working copy of the function file DrumFreqEqError.m. The
correct file contents can also be found in the mentioned solution file.

Bare solution script

2. In Lesson 5, Linear Algebra, exercise 1 (whose correct solution should already be posted)
examined the system of equations

h1 = H
h1 − 2h2 + h3 = ρ/(n− 1)2

h2 − 2h3 + h4 = ρ/(n− 1)2

h3 − 2h4 + h5 = ρ/(n− 1)2

... =
...

hn−2 − 2hn−1 + hn = ρ/(n− 1)2

2hn−1 − 2hn = ρ/(n− 1)2

i =



1
2
3
4
...

n− 1
n

19

BARE/l6_ForIfWhile_x1.m

for the unknown heights h1, h2, . . . , hn of n points along half a sagging power line. Here
H = 1 was the scaled height of the power line at the pole, and ρ = 1 the scaled mass of the
power line per unit length. Finally, n, the number of points along the half power line, was
taken to be 6 in that exercise.

Copy the solution part from that original exercise into the solution file of the current exercise.
However, leave out the “final twist” part of the original exercise, since we are not interested
in that anymore.

What you are asked to do now is change the solution so that it works correctly for any value
of n, not just n = 6. That will require, of course, that various numbers (in particular ones
close to 6) are re-expressed in terms of n.

But more significantly, it requires that the matrix M , or Mat, of the system, and the right
hand side vector ~r, or rhv, of the system are created completely differently. Simply writing
the matrix out as before only works for a single value of n, which is not acceptable anymore.

To get the matrix M for general n, first think about how it looks. The matrix has one row
for each equation in the system of equations above, and there are n equations, so the matrix
has n rows. It also has n columns, because there must be a column for each unknown height
h1, h2, . . . , hn. So it is an n× n matrix.

Also the matrix is mostly zeros. So after setting a desired value of n, (n in Matlab; give
it value 6 initially), initialize M to an n × n matrix of zeros using the appropriate Matlab
function. This ensures that matrix M has the correct size, and it gets all zero coefficients
right already. Similarly initialize the vector of right hand sides ~r to a single column of n zeros
to make it a column of the right size.

That leaves the task to fix up the nonzero coefficients. To do so, note that the equations
with equation numbers (or matrix row numbers) i from 2 to n−1 all have a similar structure.
Therefore these can be set in an appropriate for loop on i. In particular on the “main
diagonal” of M , where the unknown number (or matrix column number) j is the same as i,
the equations above show that the coefficient is always −2. When the column number j is
one more or one less, the coefficient is always 1. And the right hand side is always ρ/(n−1)2.

After you have put most nonzero coefficients in using this for loop, the only thing left is to
put the nonzero coefficients of the first and last equation in matrix M , and the right hand
sides of these equations into ~r. These values can simply be set explicitly by writing them out.
It is neatest to put in the coefficients of the first equation before the for loop and those of
the last equation behind it, so that all equations are processed in their normal order.

First run the program with n equal to 6 to check that you get the same results as before.
Then change n into 11 without changing anything else and rerun the program. If all is right,
you should get a similar sagging power cable as before, but much better looking. Publish and
hand in the n = 11 version.

Bare solution script

3. In Lesson 5, Linear Algebra, exercise 2 examined a flipped Vandermonde matrix. That is a

20

BARE/l6_ForIfWhile_x2.m

matrix V of the general form

V =


xn−11 xn−21 . . . x31 x21 x1 1

xn−12 xn−22 . . . x32 x22 x2 1

xn−13 xn−23 . . . x33 x23 x3 1
...

... . . .
...

...
...

...
xn−1n xn−2n . . . x3n x2n xn 1


In this exercise we want to write a function (using “New,” “Function”) MakeVDM, with header

function VDM = MakeVDM(xValues)

...

that, given an input array ~x (xValues in Matlab) containing n (n in Matlab) x-values
x1, x2, . . . xn, returns the n×n flipped Vandermonde matrix V (VDM in Matlab) corresponding
to these x-values.

Function MakeVDM must first find the value of n; this can be done by applying the size

function on xValues. Since size returns not simply n, but the array [n 1], (or [1 n] in case a
user puts in xValues as a row vector), you will want to apply the max function on the result
of the size function to get just n.

Then function MakeVDM must initialize the Vandermonde matrix V as an n×n matrix of ones.
This gives the Vandermonde matrix the correct size and as an additional benefit, it gets the
final column of ones correct already.

After that, function MakeVDM must put in the correct coefficients Vi.j (VDM(i,j)) in the other
columns. It must do that for every row number i from 1 to n, so you will want to use a
for loop on i with those limits. But for a given row i, MakeVDM will still need to put in the
coefficients Vi,j (VDM(i,j)) for all the column numbers j in the row except the last. So you
will need a for loop on j “nested” inside the one on i.

The most straightforward way to evaluate the coefficients is now to use the formula:

Vi,j = xn−ji

Check this expression by putting in some i and j values to compare with the general form of
the Vandermonde matrix given above.

Note however that if xi happens to be zero, and j = n (corresponding to the final column),
you get 00 and that is undefined. So Matlab will crash. The solution is simple: since the final
column already has the correct values in it, just leave it as is. Simply make sure to terminate
your loop on column number j at j = n− 1 instead of at j = n.

Be sure to include complete documentation on your function in its comment statements.
Then run the script of this exercise: this script already contains a test whether your function
gives the right Vandermonde matrix for the same case as in exercise 2 in the Linear Algebra
homework. It also tests whether help MakeVDM works.

After you get this to work correctly, you are asked to make one additional improvement.
Raising xi-values to powers is not a very efficient thing to do for Matlab. Matlab would much
rather multiply than raise to a high power. And the following formula allows you to compute
a coefficient Vi,j from the one in the next column j+1:

Vi,j = Vi,j+1 × xi

21

Note that this only requires a multiplication. You should check that this formula is also
correct according to the general form of the Vandermonde matrix given above.

Of course, you can only compute Vi,j this way if the coefficient in the next column is already
known. And initially only the last column, of ones, in the matrix is correct. So initially you
can only compute the second-last column this way. But if you have the second-last column,
then you can compute the third last column, and so on. The bottom line is that you need to
compute starting at the second last column and going backwards. So you need to reverse the
for loop on j so that it starts at j = n− 1 and ends at j = 1. You may want to refresh your
memory about arrays at the end of lesson 1.

(Honesty compels me to admit that there is a still more efficient way to compute this particular
type of matrix. You can use elementwise operations to do an entire column at a time. In
particular, if ~vj is a column in V and ~vj+1 the next column, then elementwise

~vj = ~vj+1 × ~x

or in Matlab VDM(:,j)=VDM(:,j+1).*xValues. Matlab can probably use advanced features
of the computer hardware to evaluate this without actually having to use a for loop on i
at all, and in parallel, i.e. compute more than one coefficient at the same time. At the very
least, Matlab would do the for loop on i internally, rather than using its code interpreter.
However, I want you to practice nested for loops, and this way there would not be a loop on
i anymore. So do not do this.)

After you have successfully modified your function MakeVDM, and the exercise script finds no
problem with it anymore, it is time to have some fun with Vandermonde matrices! Use func-
tion MakeVDM to explore the ill conditioning of Vandermonde matrices further. In particular,
using the command window, check that for 10 equally spaced x-values from −1 to 1, instead
of from 0 to 1, you get a much better condition number than 1.5 107. Since all it takes is just
a shift and rescaling of the original x-values, this improvement in condition number comes
essentially for “free.” Then, still using the command line, check that if you use 10 x-values
from approximately −1 to 1 as given by the “Chebyshev nodes”

xValues=cos(linspace(-pi+pi/(2*n),-pi/(2*n),n));

you get a condition number that is much better still.

Then add this at the end of your solution script l6 ForIfWhile x3.m. In particular, put in
code that for a given value of n, computes the Vandermonde matrix and its condition number
for n equally spaced x values from 0 to 1, and also for n equally spaced x values from -1 to
1, and also for n x-values spaced as Chebyshev nodes as above.

Enclose the above code in a for loop on n in which n gets the values 10, 20, and 40. So you
should be able to see how each of the described three x-value distributions works for these
values of n.

Behind the for loop, use mark up text to comment on which of the three distributions of
points produces the best Vandermonde matrices. Is even the best without problems?

Bare solution script

4. Some mathematician claims that the sum

nmax∑
n=1

1

n

22

BARE/l6_ForIfWhile_x3.m

in other words
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ . . .+

1

nmax

becomes infinite when nmax becomes infinite. Let’s check that out.

In your work space, give nmax (nMax in Matlab) the initial value 2. Next create a new script
(using “New”, “Script”). In it, put Matlab code that performs the sum above up to a given
value of nmax.

Note: call the sum total in Matlab. Do not use the name sum as that name is already used
for something else really important in Matlab.

Note: Do not give a value to nmax in the script, just assume that some value has already
been set, like you did in the workspace.

At the end of the script use an fprintf command to print out the number of terms summed
and the obtained sum as

For nMax = *, the sum is *.123

Here * means whatever digits of the number before the decimal point fprintf wants to print
and the .123 means 3 digits behind the decimal point.

Save the script as Sum1.m (the .m will be inserted by Matlab if you leave it away).

Now in the command window, where you already set nMax to 2, run the script. To do so, just
type Sum1 without the .m and hit Enter. The script should, of course, say that the sum is 1.5
(the first term is 1 and the second term is 1/2, making 1.5 total). If not, fix the script and
try again. Next set nMax to 10 in the command window and run the script again; now you
should get 2.929. If not, fix so that both nMax = 2 and 10 work correctly.

Next edit the solution script l6 ForIfWhile x4.m itself. Put in a for loop in which you give
nMax the successive values [10, 100, 1000, 10000, 100000]. Inside the for loop, call the script
Sum1 to print out the sum for the current value of nMax.

After studying the values you get for the sum using these five nmax values, use mark up text
behind the for loop to comment on whether it looks like the sum converges to a definite value
when nmax becomes bigger and bigger, or whether it looks like the value of the sum seems to
keep getting bigger and bigger without ever settling down on a definite value.

In arguing this, it is helpful to initialize variable total to 1 before the for loop on nmax (1
is the value of the sum for nmax = 1). Then inside the loop you can save the current value
of total as totalOld before you run Sum1. After Sum1 you can then fprintf the difference
between the current sum total and the previous one totalOld, as

The increase in value is *.123

This shows you how much the sum has changed with the increase in nMax. And of course, the
difference between successive sums must eventually become smaller and smaller, and finally
zero, if the sum converges to a finite limit.

Warning: Summing 100,000 terms may be a bit slow on some computers. You may want to
wait with that one until everything works OK. Initially just do [10, 100, 1000, 10000] then.

Bare solution script

23

BARE/l6_ForIfWhile_x4.m

5. The following important function, the “sine integral”,

Si(x) =

∫ x

0

sin ξ

ξ
dξ

cannot be expressed in terms of simpler functions. You cannot find the needed antiderivative
in terms of normal functions, even though the integrand seems so simple.

However, the Taylor series of the Si function is easy to find. (Just write the Taylor series for
sin ξ, divide by ξ, and integrate.) The result is

Si(x) =
x

1! 1
− x3

3! 3
+

x5

5! 5
− x7

7! 7
+ . . .

which can be written as

Si(x) =
∞∑
n=1
n odd

tn tn = (−1)(n−1)/2
xn

n!n

In Matlab (using “New”, “Script,”), create a script that, assuming that x (x in Matlab) and
nmax (nMax) have already been set, sums the Si sum above to a last term number nmax. Call
the sum total, as the name sum is already used for something else in Matlab. Do not use
the seemingly logical name Si for the sum either; we want to use that name for something
else later. Just stick to total.

Hint: You can skip the even values of n in the for loop using a START:STEP:END construct
in the for command for a suitable value of STEP. (STEP is the difference between successive
n-values.)

Initialize the sum not to zero, but to the first term t1 = x/(1! 1) = x, then start the for loop
at n = 3 to add the other terms t3, t5, t7, . . . , tnmax . Doing the first term outside the for loop
is slightly more efficient. More importantly, it simplifies meeting later follow-up requirements.

At the end of the script, print the obtained sum out as

x = *.123 and nMax = * gives Si = *.123456

where * means as many digits as fprintf want to print and .123 means 3 digits behind the
decimal point and similar for .123456.

On saving, name the summation script SiScript.m.

Next in your command window, set x to 5π. The correct value of Si(5π) is about 1.633965
according to my table book. Set nmax to say 10, call the script SiScript by invoking its name
(without .m), and see whether you get the correct value from the table. If not, increase nmax

a bit, like maybe double it, and try again. Find the very smallest value of nmax for which the
result agrees with all digits of the table value above.

Now you want to make one more improvement to your script SiScript.m. Instead of evalu-
ating the terms tn straightforwardly in the form shown above, note that for n at least 3, you
can compute term tn from the previous one tn−2 using

tn = − (n− 2)x2

(n− 1)n2
tn−2

24

Check that this is correct based on the formula for tn given above. Then use this formula
instead of the straightforward one to evaluate tn for n equal to 3 and higher. (There is no
previous term for n = 1.) This formula does not overflow like n! and xn for x > 1 will readily
do for larger n, nor underflow, as xn for x < 1 will readily do for larger n. It is also much more
easy to evaluate for Matlab than factorials and powers at high n. Check that the modified
script still works OK.

Next in your solution script l6 ForIfWhile x5.m first make sure to set the value 5π for x,
and put the value 1.633965 from my table in a variable Table. Also set the value you got for
nMax using the command window. Then invoke your summation script SiScript to compute
the sum. Compare with the table value so that it looks like

x = *.123 and nMax = * gives Si = *.123456

Table Si = *.123456

Note: Si is actually a quite important function, and Matlab provides this function as sinint.
(It is apparently within the symbolic logic package; at least Octave says that it is.) Octave
does not have the function, and numerical evaluation of sinint in Matlab seems to have
limited accuracy.

Actually, it is quite difficult to find a really good numerical evaluation of the sine integral.
However, it turns out that in 2015 Barnaby Rowe et al needed an accurate sine integral
for their galaxy simulation software “GalSim”, noticed that there was none, and wrote their
own; see ArXiv:1407.7676. To find Si(x) for |x| values up to 4, they used an adulterated
Taylor series. For larger values of |x|, there are round-off issues in the Taylor series (as we
will explore in later exercises) and you want to do something else. (We will also explore a
simplified version of what they did for large x in a later exercise.)

Bare solution script

· · · · · · ·

6. In exercise 1 (whose correct solution should already be posted), you printed out the frequencies
ω1 through ω9 that were roots of the equation:

J0(ω)− kωJ1(ω) = 0

We want to do this again, using the initial guess method, but now stop printing frequencies
as soon as the initial guess has become within some tolerable error tol of the exact value.

In your solution script, first set k again to 2, and ensure that under no circumstance the for

loop will print out more than 7 frequencies. Then:

(a) In your section “a),” first set tol to 0.01 and print it out as

Requested accuracy: *.1E*

Then copy the part from exercise 1 that prints the frequencies using the initial guess
method into the current script. Change the formats so that all frequencies in the table
are printed with only 3 digits behind the decimal point. Also modify it using if and
break statements so that it prints the message

25

BARE/l6_ForIfWhile_x5.m

The approximate value is good enough.

as soon as the difference of the initial guess from the exact frequency is no more than
tol, and then stops printing further frequencies. Also use an if command to print the
error message

*** The requested accuracy was not achieved!

if the printing of frequencies terminated without ever achieving the requested accuracy
tol. Use the error command, not fprintf to print this error message.

(b) After the above works OK, copy your your section “a)” into a section “b)” (make sure
that they are separate sections for publishing purposes). Then change tol to 0.001 in
section “b)”. This tolerance will not be achieved, so this time the error message should
be printed.

If the script works OK from the command line, publish it and check that the output is
acceptable. In particular, Octave users will find that they want a double-percent line before
the if statement that prints out the error message.

Bare solution script

7. In exercise 2 (whose correct solution should already be posted), you solved a system of
equations for the heights of a sagging power line. See the posted solution l6 ForIfWhile-

x2.pdf for more.

Copy over the solution part of that exercise into the script of this exercise. Then make the
following improvements using appropriate if statements:

• Add a variable rhoRelerr at the start that contains the expected relative error in the
scaled mass per unit length of the power line. Give it a value of 2%.

• If the number of points n is greater than 11, printing out the complete matrix Mat

becomes a mess. So change the code so that it only prints out the full matrix and right
hand side vector if n is no more than 11. Otherwise, the program should only print out
the 5 × 5 top left corner and the 5 × 5 bottom right corner of the matrix Mat, and the
first 5 and last 5 coefficients of the right hand side vector rhv. Do not use two separate
if statements to handle the two ways of printing, that is bad programming. Use the
proper single compound if statement to handle both n up to 11 and n greater than 11.

• Remove the mark-up text commenting on the condition number of the matrix. This
comment might not apply for a different value of n, which would produce a different
condition number.

Instead add a compound if statement that (1) if the estimated relative error in the
heights due to the fact that numbers are only accurate to about 16 digits in Matlab is
100% or more throws the error message

*** Bad matrix! There is no meaningful solution!

(using the error function instead of fprintf so that execution is terminated), or else (2)
if this estimated relative error is greater than 0.1% throws the warning (using fprintf)

** Estimated solution error in the heights *.1%!

After all, certainly you would want to know if the solution process on Matlab introduces
significant errors. And large condition numbers are inaccurate; I would hardly trust

26

BARE/l6_ForIfWhile_x6.m

the results blindly if the estimated error was over say a percent (or even a tenth of
a percent). Note that to print an actual percent in fprintf, you must double it in
FORMATSTRING.

If neither of the two above problems applies, there is still the matter of (3) what
the relative error in the density does. Very pessimistically, you can estimate the relative
error in the heights that it causes by multiplying the relative error in the density by the
condition number. If this relative error is more than 5%, your lawyer will demand that
you put in a warning to that effect. Use the format

** Variations in density might theoretically cause an

error in the heights of up to *%.

(But in real life the error should be no bigger

than about *.1%).

where the second cited error is the same as the relative error in the density.

Make sure that at most one of the three possible messages can ever appear.

Octave users should put a double percent line in front of the above compound if

statement to prevent earlier output being lost due to the error function aborting exe-
cution.

There is no reasonable way to get the matrix to be singular to machine precision, so
the grader will just have to look at your source code for that.

• If n is at least 41, do not show the individual computed heights as circles in the graph,
do that only for lower values of n.

Check that your program still works as before for n = 11. Then change n into 41 for the
version you publish and hand in.

Bare solution script

8. Some mathematician claims that the sum

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ . . .

or in other words ∞∑
n=1

tn tn =
1

n

is infinite. This was already explored in exercise 4, whose solution should already have been
posted, using a clever experiment.

However, in this exercise we want to try a more straightforward approach to see whether the
mathematician is right: we will try to sum the sum to some reasonably small estimated error
ε, (tol in Matlab), and fail.

So copy your script Sum1.m of exercise 4 into a script Sum1Tol.m and make appropriate
changes into it. First of all, make the script stop summing when the appropriate estimated
error in the sum is no more than some tolerable error tol. Take the formula for the estimated
error to be the one appropriate for a non-alternating series (see the posted lesson). Do not
set a value for tol in the script; assume that that has already been set before the script is
run.

Then behind the summation loop, if the tolerable estimated error was achieved print out the
message

27

BARE/l6_ForIfWhile_x7.m

At n = *, the sum is: *.123

The estimated error is: *.1E*

Otherwise print the message

*** The tolerated error *.1E* was not achieved,

even after summing * terms!

Estimated remaining error: *.1E*

Since you do not have infinite time to complete this exercise, do make sure that even if the
requested tolerance is never achieved, the script will eventually stop summing after some large
number of terms nMax rather than continue summing to the end of the semester or to the next
power failure. Again do not set a value for nMax in the script, it is to be set before running
the script.

Now in the command window set tol to 0.01 (clearly a very non demanding value) and nMax

to say 1,000 and run the script. If it does not succeed, and it will not, try 10,000 terms,
then 100,000 or whatever you are quite comfortable waiting on. If you get too optimistic, use
Ctrl+c to stop the summing.

Put the value of tol and the largest number of terms nMax that you are comfortable waiting
for in your solution script l6 ForIfWhile x8.m, along with the Sum1Tol call. Behind it, put
an if statement that prints

The mathematician seems to be wrong

or

The mathematician seems to be right

depending on the result from the Sum1Tol script.

Note: It is true that the estimated error is not really accurate here, nor is it in general. But
accuracy is not the point. The purpose of the estimated error is to prevent you from thinking
you have found an accurate value for the sum when you are nowhere close. It does that quite
nicely here and in most cases.

Warning: Students who end up with frozen homework programs, or messages that Java or
Adobe are misbehaving, should severely reduce the maximum number of terms summed below
100,000, like to 10, then figure out what is wrong. Trying to publish 100,000 error messages
(or other junk output) is a sure recipe for crashing something.

Bare solution script

9. The same mathematician as in the previous exercise claims that the sum

1

1
− 1

2
+

1

3
− 1

4
+

1

5
− . . .

or in other words ∞∑
n=1

tn tn = (−1)n−1
1

n

28

BARE/l6_ForIfWhile_x8.m

is finite, and in fact equal to ln(2). To check this, copy script Sum1Tol.m over into Sum1Alt-

Tol.m. Then in Sum1AltTol.m make the following changes: (1) Change the estimated error
into the one appropriate for an alternating series like this. (2) Evaluating the sign as (−1)n−1

is not efficient, hard to read, and ugly. Therefore, before the for loop initialize a variable
sgn to −1. Then inside the loop, use a statement sgn=-sgn;. This ensures that sgn will
alternate between +1 and −1. That produces the (−1)n−1 in an efficient way. Then you only
need to divide sgn by n to get term tn.

You may want to check in the command window that in this case you can easily achieve an
estimated error of 0.01 and that the resulting sum is close to ln(2).

In your solution script l6 ForIfWhile x9.m, set the maximum number of terms to sum to
20,000, then use a for loop in which you try values of tol equal to 0.01, 0.0001, and 1.E-6.
Inside this for loop, print out tol, then run Sum1AltTol.

Compute the true error in the result (i.e. the absolute difference from ln 2). Print the sum,
ln 2, and the true error with fprintf, below each other so that it is easy to compare the
values.

Then run a couple of sanity checks. In particular: (1) You summed too many terms if the
number of terms summed n is greater than one and 1/(n − 1) is no greater than tol. (2)
You summed too few terms if n is less than nmax and 1/n exceeds tol. Check for each
possibility separately using a simple if statement, with a compound condition, that prints
an error message if the problem exists. Check the proper order of the parts of the compound
conditions; you do not want a possibility of dividing by zero. Use function error instead of
fprintf to print the error messages so that further program execution is aborted.

Next, if the requested tolerance was not achieved (which should only happen for the final
value of tol), print (with fprintf)

*** Too few terms for this tolerance.

and terminate the for loop with the appropriate command for terminating a loop.

Otherwise, if the true error is no more than the estimated error, print

The mathematician seems to be right:

The sum *.123456 differs from ln(2) by only *.1E*;

less than the estimated error *.1E* in the sum.

Otherwise there is something wrong, because (1) this is a monotonous alternating series so
the estimated error should overestimate the true error, (2) the sum is really ln(2) according
to Calculus, and (3) Matlab round-off errors are not significant here. So then print the error
message

*** Oops, something is wrong and I have no clue.

using function error.

(Octave students: do not try to use a double percent line in the middle of a for loop. It
won’t work. Instead, if an error call is triggered, run l6 ForIfWhile x9.m in the command
window to figure out what is wrong and fix it there. Of course, you should always do things
that way anyway.)

29

Warning: Students who end up with frozen homework programs, or messages that Java or
Adobe are misbehaving, should severely reduce the maximum number of terms summed below
20,000, then figure out what is wrong. Trying to publish 20,000 message lines is a sure recipe
for crashing something. Check that your break statement is there and correctly implemented.

Bare solution script

10. Continuing exercise 5, if you would actually want to use the sine integral, you would probably
want to have it in the form of a function. So create a function Si(x) (function file Si.m,
capitalized) that evaluates the sine integral using the general procedure of exercise 5.

However, unlike in the previous exercises, sum until the maximum possible accuracy, rather
than to a given tolerance. Not only does that give the best possible result, it also frees the
user from having to specify a tolerance.

Also, instead of using a break command to terminate the summation loop when the maximum
accuracy has been achieved, use a return command to finish the execution of the function
completely.

Also, just hard-code the maximum number of terms to ever sum as 1,000 inside the function.
Since the sum should never require anywhere near that number of terms, it is pretty useless
to have to specify a maximum number of terms explicitly when using the function. But to
be safe against programming and instructor errors, behind the summation loop, do use an
error command that throws an error

*** Si: Summation not converged!

if the loop has terminated, implying that the return command has never been executed even
after 1,000 terms.

Check in the command window that Si(5π) is still about 1.633965.

After that, there is one additional refinement you want to implement. If any term tn in the
summation becomes too big, it causes problems. This can happen if x is too big. The problem
is that numbers in Matlab have a maximum relative error ε which is about 10−16, or more
generally equal to eps. As a result, any term tn in the sum has a maximum absolute error
ε|tn|. So if a term tn in the sum has a magnitude of about 1/ε or more, such a term will
introduce an error in the sum of order 1. That would completely mess up the true value of
Si, which is about ±π/2 at large x.

The bottom line is that if you find a term in the sum whose magnitude is more than, let’s
say, 0.0005/eps, you should conclude that the result of the sum will probably have an error
of about 0.0005 or so. That is obviously becoming pretty bad. So if that happens, just set
the total sum equal to the following approximate value (from Wikipedia)

sign(x)
π

2
− cosx

x

(where sign(x) is ±1 depending on the sign of x) valid for large |x| and return. This formula
will have a maximum error of about 0.0008 in the range of x-values where it is used here.
And that then assures that the error in our function Si will never be more than about 0.001
(or less than 0.1%) however large x may be.

The script l6 ForIfWhile x10.m already has the needed tests in it to test whether your
function Si is working properly. But first you may want to test it yourself using the command

30

BARE/l6_ForIfWhile_x9.m

window. Try evaluating Si(5*pi) and compare with the “exact” value 1.633964846102835,
using format long. You should see that your value is not quite accurate, but pretty good.
Also try Si(100) with “exact” value 1.56222.

Then run script l6 ForIfWhile x10.m and examine the results. If you get error messages
starting with ***, investigate!

Bare solution script

11. Repeat the previous exercise. However, this time use a while loop instead of a for loop to
do the summation. Call the modified function SiWhile.m. It should produce the exact same
results as Si.m.

In case the while loop was not covered in class, you will have to look up how it is done at
the end of lesson 6 yourself.

Bare solution script

31

BARE/l6_ForIfWhile_x10.m
BARE/l6_ForIfWhile_x11.m

Lesson 7 SYMBOLIC MATHEMATICS

Before doing the below exercises, you should first read and try to understand the relevant parts of
posted lesson 7. If you did not, neither the instructor nor any TA will help you with problems until
you do.

Note for Octave users: To do symbolic math, you will first need to load the symbolic package
as

pkg load symbolic

syms initpython

sympref display flat

1. Answer using symbolic math:

(a) Consider the equation for the area of a cylindrical container:

A = 2πr2 + 2πr`

i. Solve this equation symbolically for the length ` in terms of A and r. Also show the
result with pretty.

ii. Test out the symbolic solution by verifying that if you take A = π and r = 2/3, you
get 1/12 exactly. Be sure to use sym(’...’) wherever Matlab would provide a 16
digit floating point number otherwise.

iii. Convert the symbolic solution into a handle to a standard Matlab anonymous func-
tion.

iv. Check that that function too returns 1/12 for the example data, but only to about
16 significant digits. Do so by using fprintf to print the result out to 30 digits
behind the point, as

Test length numeric: 1.123456789012345678901234567890

Test length from vpa: 1.123456789012345678901234567890

Here the second line should be the test length to 30 correct digits behind the decimal
point, as obtained from the symbolic solution using vpa. Make sure this number
is printed aligned with the above approximate one, so that you can easily compare
digits. To do so, use fprintf to print “Test length from vpa:” without a Newline,
then show the relevant vpa output using disp.

(b) Consider the cubic
x3 − 5x2 + 5x+ 3

i. Let Matlab find the exact roots of the expanded cubic. Also show the result with
pretty.

ii. Let Matlab factor the cubic. You should produce a product of factors here, not a
vector. Octave does that by default, but not Matlab. Also show the result with
pretty. (Note that the remaining quadratic with irrational roots is not factored.
In Matlab you could force it using ’factormode’, but not in Octave.)

32

iii. Let Matlab expand the factored expression again. This should restore the original
cubic. Also show the result with pretty.

Bare solution script

2. Answer using symbolic math:

(a) Let Matlab find the Taylor series of ln(1 + x) up to and including power x10. Also show
the result with pretty. Note that when x = 1, corresponding to ln(2), you get the first
few terms of a sum that you should have fond memories of. So substitute in x = 1 to
get ln2Partial. Next fprintf that, converted to a plain Matlab number, as well as
ln(2) in the form

ln(2) partial: *.123 ln(2): *.123

Note also that when x = −1, for ln(0), you get the first few terms of minus a sum
that you should have even more fond memories of. So substitute in x = −1 to get
ln0Partial. Print that out similarly as above in the form

ln(0) partial: *.123 ln(0): -Inf

(b) Let Matlab symbolically integrate ∫
ln(x) dx

and then differentiate the result again, twice. Check that all is OK, (except for the
integration constant, that is).

(c) Let Matlab symbolically integrate∫ 1

0
ln(x) dx and

∫ 0

−3

x

x− b
dx

(Also show the second integral with pretty.) The exact answers are∫ 1

0
ln(x) dx = −1

∫ 0

−3

x

x− b
dx = 3 + b ln

(
b

b+ 3

)
(The second solution given by Matlab and Octave is not quite ideal; the two logarithms
should have been combined as above for at least real b. As is, the expression becomes
complex for positive real b. Matlab, but not Octave, will also blather about the singular
case that the pole x = b is in the domain of integration.)

(d) Show all results of this exercise also with pretty. Consider the ratio

s3 − 5s2 + 2s− 5

s4 − 4s3 + 5s2 − 4s+ 4

Let Matlab factor it; you should get a combination of factors, not a vector. Octave does
that by default, but in Matlab you need to fix it with prod. Also find the partial fraction
expansion of the ratio above. Simplify the partial fraction expansion and check that you
get the factored ratio back in Matlab, or the original ratio in Octave.

Bare solution script

33

BARE/l7_SymbolicMath_x1.m
BARE/l7_SymbolicMath_x2.m

Lesson 8 PLOTS

Before doing the below exercises, you should first read and try to understand the relevant parts of
posted lesson 8. If you did not, neither the instructor nor any TA will help you with problems until
you do.

1. Make the following plots using the ez... functions. Make sure to use subexercise headers
or each plot will overwrite the previous. (You could also avoid that using the figure(N)

function to number the figures.)

(a) Use ezplot to plot both J0(ω) and 1
2ωJ1(ω) in the same graph without actually defining

either function or any plot points. (Plot one function at a time, using hold on to
prevent the first curve from being lost. Turn hold off again after the second curve.) The
horizontal axis must extend from 0 to 3.5π, with tick marks at multiples of π/2 and
corresponding labels. Use title “Drum Frequency Functions” and legend “J0(ω)” and
“0.5ωJ1(ω)” where ω is omega in Matlab. Put the legend in an empty corner of the
graph. The intersection points of the curves give the valid frequencies.

(b) Plot the “lemniscate of Bernoulli,” given by the equation

(x2 + y2)2 − (x2 − y2) = 0

Use title “Lemniscate of Bernoulli” and hidden axes with sizes from −1 to 1, respectively
−0.5 to 0.5 with equal x and y scalings. Note: on Octave, I first have to set equal scaling
on the axis, and after that I have to separately restore the messed-up axis sizes. That
is a bug. Note: on Octave you may want to increase the resolution from the default 60
points along the axes to 240 to see that the curve crosses itself at the origin.

(c) Plot the curve
x = t y = t2 z = t3

from t = 0 to 2. Use title “Powers of Time”. Use equally scaled axes of the appropriate
size.

(d) Plot the “saddle” function
z = x2 − y2

as a mesh surface. Limit both x and y to the interval from −1 to 1, with equally scaled
axes. Note: using Octave on my Vista computer, the surfaces take forever to publish
(well, 5 minutes or so). Note: using Matlab, you might need a final view(3) to get a
3D view.

(e) Plot the saddle function as above, but now as a solid surface. Make sure that the color
shading is interpolated (not bad looking flat or facetted). Note: using Matlab, you might
need a final view(3) to get a 3D view.

(f) Plot the saddle function as above, but now as contour lines. Note: on Matlab you may
need to increase the resolution from the default 60 points along the axes to 240 to see
that the straight lines cross at the origin.

Bare solution script

34

BARE/l8_Plots_x1.m

2. We have the following measured data on masses of spheres versus their terminal velocities in
a liquid:

m: 12.9 16.6 21.5 27.8 35.9 46.4 59.9 77.4
v: 6.7 8.2 9.5 10.2 11.6 12.8 15.8 16.6

(a) Examine graphically whether the relationship between m and v seems to follow some
power law of the form v = Cmp. Use appropriate axis sizes and labels. Comment using
mark up text on why this may be a power relationship.

(b) Try to find approximate values for the constants C and p.

(c) Compare your found relationship to the measured data in a loglog plot. Plot the power
relationship from x = 10 to 100. Make the vertical axis range from 5 to 20. Add
appropriate title, axes labels, and a legend in the southeast corner. Comment using
mark up text on how well you think the agreement is.

Bare solution script

3. A rectangular plate has length 2 and height 1.5. The bottom edge of the plate (the x-
axis y = 0) is in contact with boiling water, so the temperature T there is 100 degrees
Centrigrade (in Tallahassee at least). The other three edges are in contact with ice water, so
their temperature T is 0 degrees Centrigrade. Your task is to find and plot the temperature
distribution in the interior of the plate under those conditions.

(a) First create a set of n x-values and m y-values covering the length and height of the
plate (xValues and yValues in Matlab). To get decent accuracy but not use excessive
resources, set variable n (n) to 29 and m (m) to 22 in the solution you hand in. Create
a full two-dimensional mesh using these x and y values, and plot these mesh points on
the plate as circles. Use appropriate title and labels, x-axis from 0 to 2 and y-axis from
0 to 1.5, scaled equally.

(b) The temperatures T at the mesh points may be found using function SimplePoisson.
You should already have obtained that function in the lecture. If not, you can find it in
the bare homework templates folder. Or try the link above.

In using this function, you will need to define an array forcing describing the prob-
lem “forcing.” In doing so note that in this problem, in the interior of the plate the
forcing is zero. (In this problem, forcing would correspond to heat radiated away from
the interior of the plate, and that can be ignored at 100◦C or less.) As already noted,
the boundary values are also all zero, except for the 100◦C bottom boundary y = 0, cor-
responding to row number i = 1 in array forcing. (This row is printed out at the top of
the array if you print out array forcing. Sorry about that.) So all the forcing(i,j)

values are zero except at i = 1. There is a slight problem with mesh points (1, 1) and
(1, n), as these points are both on the 100◦C boundary and on a 0◦C boundary. To fix
that, give those two special points the average temperature of 50◦C.

Now get the grid temperatures from SimplePoisson and plot them as stems. From
the plot, check that they seem generally sane. Use appropriate title and labels on all
three axes, x-axis from 0 to 2, y-axis from 0 to 1.5, and z-axis from 0 to 100.

(c) Next plot the temperature distribution as a three-dimensional surface above the plate.
Use appropriate title and labels on all three axes, x-axis from 0 to 2, y-axis from 0 to
1.5, and z-axis from 0 to 100.

35

BARE/l8_Plots_x2.m
BARE/SimplePoisson.m

(d) Next plot the isotherms (lines of constant temperature) 10◦C, 20◦C, . . . , and 90◦C within
the plate. Note that the top three boundaries together form the 0◦C isotherm and the
bottom boundary the 100◦C isotherm. Use appropriate title and labels on both axes,
x-axis from 0 to 2 and y-axis from 0 to 1.5, scaled equally.

If you did this exercise correctly, the temperatures are generally OK, except near the men-
tioned two special corner points where the temperature jumps from 0◦C to 100◦C. To make
this less noticeable, you could use much bigger values of m and n, but that would make the
computation very slow. Especially the surface shading.

“Mesh-stretching” to the rescue. Redefine your mesh point x and y values as follows:

xValues=1-cos(linspace(0,pi,n))

yValues=(1-cos(linspace(0,0.5*pi,m)))*1.5

This increases the point density near the problem points, as you will see in plotting the mesh.
Rerun the program. You should get much better results near the problem corners. Publish
and hand in this final version, the one with mesh stretching, only.

Bare solution script

4. The so-called “streamfunction” ψ for slow flow of superfluid liquid helium around a circular
cylinder, (or of Hele-Shaw flow around a circular cylinder, for that matter), is given in polar
coordinates r and θ by

ψ = U

(
r − a2

r

)
sin(θ)

where U is the incoming flow velocity far from the cylinder and a is the radius of the cylinder.
Take both to be one. Now contour lines of the streamfunction are “streamlines” that show
you in which direction the fluid flows. The purpose here is to plot them.

Because the flow is outside a cylinder (i.e. a circle when seen in the two-dimensional cross-
section), to get a decent plot you will need to use polar coordinates. So define a polar mesh
where r takes 201 values from a to 5a, and θ takes 201 values from 0 to 2π. Find the
streamfunction at those points from the expression given above.

But you want to plot the streamlines in Cartesian coordinates. So you will need to convert
your polar mesh to Cartesian coordinates. Then plot the contour lines of the streamfunction
in terms of these.

Note: to get the streamlines you really want to see, you need to specify their values of ψ in
function contour. To do so, use the following vector

[-5.0001:0.25:-0.0001 0.0001:0.25:5.0001]

(This somewhat weird way of writing [-5:0.25:5] is designed to be robust against round
off errors and such.) Use axis sizes from −3 to 3 in both directions, and make sure you use
square axes so that the cylinder looks like a circle and not like an ellipse. (On my version of
Octave, axis(’equal’) is buggy.) Add appropriate labels and title.

To make the cylinder look like a solid cylinder, instead of like a circular piece of flow field,
see the patch function.

Bare solution script

36

BARE/l8_Plots_x3.m
BARE/l8_Plots_x4.m

	TEST
	INTRODUCTION
	ZEROS OF FUNCTIONS
	INTERPOLATION
	ORDINARY DIFFERENTIAL EQUATIONS
	LINEAR ALGEBRA
	FOR, IF, WHILE
	SYMBOLIC MATHEMATICS
	PLOTS

