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1 Introduction

These formulae are not guaranteed to be complete and/or correct, though I tried to make them so. The student

has the final reponsibility for knowing all formulae covered in both class lectures and homework correctly. So,
if you see an error, or miss a formulae that you think was covered, (if you are mistaken about that, it could
get you in trouble!), let me know immediately.

This document can not be taken to the exams.

2 Units

Basic SI units are kilogram (kg), meter (m), and second (s). Many derived units exist (table A.1). The book
uses kPa, kJ, kW instead of the “normal” units Pa, J, W. Conversions may be needed (table A.1)

Definitions (table A.1): 1 bar = 105 Pa. 1 atm = 101,325 Pa.
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Absolute temperature (required in most formulae and some tables): add 273.15 to convert Centigrade into
Kelvin, substract 273.15 to convert Kelvin into Centigrade. However, temperature differences are the same in
Kelvin as in Centigrade; the two temperatures in the difference do not need to be converted.

3 Properties

The intensive specific properties are typically lowercase, the corresponding extensive properties are uppercase:

v =
V

m
u =

U

m
h =

H

m
V = mv U = mu H = mh

Definition of enthalpy:
h ≡ u + pv

Specific volume and density:

v =
1

ρ

Pressure and force:
F = pA

Static pressure differences versus height H (height also indicated by Z) differences:

pA − pB = −ρg (HA − HB)

Number of kilomoles:
n̄ =

m

M

where M is the molecular mass (table A.5.) Think of the molecular mass as having units of kg/kmol.

4 Formulae for substances

How you treat a substance depends on the type of substance.

4.1 Substances with B-tables

Tables of specific properties such as tables B.1.1-B.1.4 for water are available. Use requires normally drawing
pv- and Tv- or Ts-diagrams, which students must master, and which is covered elsewhere1.

In the two phase region:

v = vf + x (vg − vf ) u = uf + x (ug − uf ) h = hf + x (hg − hf )

where f stands for the saturated liquid (x = 0) value at the same pressure and same temperature, and g for
the saturated vapor (x = 1) value. These can be found in the Appendix B tables. The quality x is the ratio

1http://www.eng.fsu.edu/~dommelen/courses/eml3100/aids/tables
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of the vapor mass to the total mass of vapor and liquid. The quality x is undefined if the substance is not
two-phase or saturated.

For compressed liquids, often there are no suitable tables available. Fortunately, good approximate values for
v, u, and h can usually be taken from the saturated tables at the correct given temperature. The fact that
the given pressure is not the same as the saturated pressure must then be ignored. (For h, it is often more
accurate to write h = u + pv and then take u and v from the saturated tables, instead of h itself.)

4.2 Ideal Gases

Specific gas constant R in terms of the universal gas constant R̄ (table A.1):

R =
R̄

M

where M is the molecular mass (table A.5, but this table already includes R).

Forms of the ideal gas law:
pv = RT pv̄ = R̄T

pV = mRT pV = n̄R̄T

To correct for real gas effects, replace R (or R̄) by ZR (ZR̄), where Z is the compressibility factor (figure D1,
with Pr = p/pc, Tr = T/Tc.)

For an ideal gas, u, h, Cp, Cv, and k only depend on temperature. Also,

u2 − u1 =

∫ 2

1

Cv dT h2 − h1 =

∫ 2

1

Cp dT

(Using table A.6, these can actually be integrated.) Note that for ideal gasses we often do not have u or h
themselves, and we have to make do with differences. (For a mixing chamber you will need to replace ṁ3 with
ṁ1 + ṁ2 before you can use differences.)

Specific heat relation:
Cp − Cv = R

Hence if we know Cp (tables A.5 or A.6) we can compute Cv and vice-versa. Also, if Cp is constant, then so
is Cv and vice-versa,

Definition of specific heat ratio:

k =
Cp

Cv

If k is constant, then so are Cp and Cv, and vice-versa.

Note that isothermal ideal gasses are also polytropic with n = 1.

4.2.1 Ideal gasses in A.7.1 or A8

The internal energy u and enthalpy h can be read off in the table as a function of temperature. Or vice-versa,
for that matter.
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4.2.2 Ideal gasses with constant specific heats

If no A.7.1/A.8 table is available, you will have to assume that the specific heats Cp and Cv, as well as their
ratio k are constant. Specific heats that can be assumed to be approximately constant can be computed from
the average process temperature using table A.6. Less accurately, near room temperature they can be taken
from A.5. Use A.6 wherever possible unless you are very close to room temperature.

Internal energy:
u2 − u1 ≈ Cvave

(T2 − T1)

Enthalpy:
h2 − h1 ≈ Cpave

(T2 − T1)

4.3 Solids and Liquids without B-tables

Approximate formulae if no better tabulated values are available, or to simplify things.

Heat added:

1Q2 = m

∫ 2

1

C(p) dT ≈ mC(p)ave
(T2 − T1)

Enthalpy:
h2 − h1 ≈ C(p)ave

(T2 − T1) [+v (p2 − p1)]

The term in the square brackets can often be neglected.

5 Processes

5.1 Control Mass Processes

Specific heat and work:

1q2 =
1Q2

m
1w2 =

1W2

m
1Q2 = m 1q2 1W2 = m 1w2

Continuity (mass conservation):
m1 (+madded) = m2

The first law of thermo (energy conservation):

E2 − E1 = 1Q2 − 1W2 (E = U + m 1
2V

2? + mgZ?)
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Work:

1W2 =

∫ 2

1

p dV =



























































incompressible/constant volume (isochoric): 0

constant pressure (isobaric): p(V2 − V1)

pressure linear in V:
p1 + p2

2
(V2 − V1)

polytropic for n 6= 1 (pV n = constant):
p2V2 − p1V1

1 − n

polytropic for n = 1 (pV = constant): pV ln

(

V2

V1

)

In case of an ideal gas, note that pV can be replaced by mRT .

Heat added:

1Q2 =































Adiabatic: 0

reversible:

∫ 2

1

T dS

reversible isothermal: T (S2 − S1)

5.2 Rate Equations

The first law as a rate equation:

dE

dt
= Q̇ − Ẇ

(

dE

dt
= m

du

dt
+ m

d 1
2V

2

dt
? + mg

dZ

dt
?

)

Work as a rate equation:
Ẇ = pV̇

For an ideal gas:
du

dt
= Cv

dT

dt

For liquids and solids:

Q̇ = mC(p)
dT

dt

5.3 Steady State Control Volume Processes

The control volume is assumed to be steady state in all formulae below.

Specific work output and heat added (i.e., per unit mass flowing through):

w =
Ẇ

ṁ
q =

Q̇

ṁ
Ẇ = ṁw Q̇ = ṁq

In- and outflow velocities and pipe cross-sectional areas:

ṁ = V̇ /v = AV/v A =
π

4
D2
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Continuity (mass conservation):
∑

ṁi =
∑

ṁe

where
∑

means sum over all inflow/outflow points, if there is more than one.

The first law of thermo (energy conservation):

Q̇ +
∑

ṁi

(

hi +
1

2
V2

i + gZi

)

=
∑

ṁe

(

he +
1

2
V2

e + gZe

)

+ Ẇ

The kinetic energy and potential energy terms are often ignored. Devices without moving parts do not do
work, Ẇ = 0. Adiabatic devices have no heat transfer, Q̇ = 0.

6 Cycle Devices

For cycle devices, the normal sign conventions (heat in and work out are positive) are ignored. Instead, the
signs of heat and work are defined such that Q̇H , Q̇L and net work Ẇ are normally positive. The pictures
below show the directions of positive heat fluxes and work rates for a heat engine as compared to a heat pump
(or refrigeration cycle).

Heat Engine

High temperature TH
@@ ¡¡

∨ Q̇H

µ´
¶³

=⇒ Ẇ(net)

∨ Q̇L

¡¡ @@Low temperature TL

Heat Pump

High temperature TH
@@ ¡¡

∧ Q̇H

µ´
¶³

⇐= Ẇ(net)

∧ Q̇L

¡¡ @@Low temperature TL

The first law for a cycle:

Net work
out

in
= Net heat

in

out
: W(net) = QH − QL

The Kelvin-Planck Statement: Any working heat engine must dump some waste heat to a lower temperature
than the input heat is provided at.

The Clausius Statement: Any working heat pump must have positive work going in.

Thermal efficiency:

ηthermal ≡
Ẇnet

Q̇H

=
Q̇H − Q̇L

Q̇H

≤ ηthermal, Carnot =
TH − TL

TH

Refrigeration coefficient of performance:

β ≡
Q̇L

Ẇnet

=
Q̇L

Q̇H − Q̇L

≤ βCarnot =
TL

TH − TL
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Heating heat pump coefficient of performance β′ = 1 + β:

β′ ≡
Q̇H

Ẇnet

=
Q̇H

Q̇H − Q̇L

≤ β′

Carnot =
TH

TH − TL

Ideal gas Carnot cycle:

qH = 1q2 = RTH ln

(

v2

v1

)

qL = −3q4 = RTL ln

(

v3

v4

)

v2

v1
=

v3

v4
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