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1 09/04 F

Use vector analysis wherever possible.

1. 1st Ed: p13, q31a-f,h-j, 2nd Ed: p17, q31a-i. if they can be vectors, count them as
such.

2. 1st Ed: p13, q32, 2nd Ed: p17, q32. Do it both graphically and analytically. Give
length and angle.

3. 1st Ed: p14, q48, 2nd Ed: p19, q46. Use vector calculus only, no trig. No scalar
equations at all. That includes cosine or sine rule.

4. 1st Ed: p32, q66, 2nd Ed: p38, q66. Use vector only, except when working out the
final numbers.

5. 1st Ed: p32, q82, 2nd Ed: p40, q82a, where B should be corrected to (1,−3, 4). Vector
calculus only, no trig. Do it without finding the actual sides of the parallelogram. In
particular, show that the area is half of ~A× ~B. Also give a unit vector normal to the
plane of the parallelogram.

6. 1st Ed: p33, q90, 2nd Ed: p41, q90a. Also give the area of the parallelogram with
sides ~B and ~C.

7. 1st Ed: p53, q32, 2nd Ed: p64, q32. Draw the curve neatly.

8. Find the components of the acceleration in polar coordinates by differentiating the
expression for the velocity in these coordinates. Identify the components ar and aθ.
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2 09/11 F

1. 1st Ed: p54, q47, 2nd Ed: p65, q47. (9 points)

2. 1st Ed: p78, q46, 2nd Ed: p91, q46. r =
√
x2 + y2 + z2

3. 1st Ed: p78, q54, 2nd Ed: p92, q54. You may want to refresh your memory on total
derivatives.

4. The height of the ground above sea level is sin(x) sin(2y).

(a) Draw the contour lines.

(b) Consider the point x = 0.5 and y = 1.5. Find the gradient of height at that point
and draw it in the graph.

(c) If I want to climb to the nearest peak in the shortest possible distance, in which
direction should I move at that point? In particular, what is dy/dx?

(d) If I am traveling along the line y = 3x with speed 60, how rapidly am I changing
height?
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3 09/18 F

1. (6 points). 1st Ed: p78, q60, 2nd Ed: p92, q60. Also find two scalar equations that
describe the line through P that crosses the surface normally at P.

Find the unit normal ~n to the surface at P. Now assume that the surface is reflective,
satisfying Snell’s law. An incoming light beam parallel to the x-axis hits the surface
at P. Find a vector equation that describes the path of the reflected beam.

Hint: let ~v be a vector along the light ray. The component of ~v in the direction of ~n
is ~n · ~v. The component vector in the direction of ~n is defined as ~v1 = ~n(~n · ~v). Sketch
this vector along with vector ~n. In which direction is the remainder ~v2 = ~v − ~v1? Now
figure out what happens to ~v1 and ~v2 during the reflection. Take it from there.

2. 1st Ed: p78, q62, 2nd Ed: p92, q62.

3. 1st Ed: p79, q64, 2nd Ed: p92, q64.

4. 1st Ed: p79, q70, 2nd Ed: p92, q70.

5. 1st Ed: p80, q84, 2nd Ed: p93, q84.

6. 1st Ed: p80, q87, 2nd Ed: p93, q87. (6 points) Compare with a point sink in which

~v = − xı̂+ yı̂

x2 + y2

Assume these are incompressible flows, in which the fluid density is constant. For
each flow, compute the divergence, draw streamlines, and figure out how much fluid
passes through a circle of arbitrary radius r. (Since the velocity is radial, the fluid flow
through a circle is the magnitude of the velocity times the circumference of the circle.)
Now look at a ring between two slightly different radii, and compare the fluid that goes
in at one radius with the fluid that goes out at the other radius. Based on the results,
argue that the divergence of the velocity is a measure of the “source strength,” the
amount of fluid created out of nothing. (A sink being a negative source, where fluid
disappears into nothing.) So, what do you think of the value of the divergence of the
point sink at the origin (assuming that you smooth out the singularity a bit)? Note:
if the fluid is not incompressible, it is really volume flows you are comparing, not mass
flows, and the divergence is a measure of the relative rate of specific volume expansion.
Additional volume is created out of nothing, not mass.

7. 1st Ed: p80, q102, 2nd Ed: p94, q102. Make sure that you find φ in a mathematically
sound way, as discussed in class. No messing around and guessing a solution!
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4 09/25 F

1. (9 points). Modified version of a question in the book. Maxwell’s equations in vacuum
are

∇× ~H =
1

c

∂ ~E

∂t
+

4π

c
~ (a) ∇× ~E = −1

c

∂ ~H

∂t
(b)

∇ · ~H = 0 (c) ∇ · ~E = 4πρ (d)

Here ~E is the electric field, ~H the magnetic field, ρ the charge density (the electric
charge per unit volume), ~ the current density (the current flowing per unit cross
sectional area), and c the speed of light, a constant. Consider ρ and ~ to be given

functions of position and time. You need to show that any solution ~E, ~H of the above
equations is given by scalar and vector potentials φ, ~A as described below.

Procedure to follow:

1. Explain why there must be a “vector potential” ~A0 so that

~H = ∇× ~A0

2. Next define a vector ~Eφ by setting

~E = −1

c

∂ ~A0

∂t
+ ~Eφ

3. Prove that the ~Eφ defined this way is minus the gradient of some “scalar
potential” φ0. Then the above equation becomes:

~E = −1

c

∂ ~A0

∂t
−∇φ0

4. Unfortunately, ~A0 and φ0 are not unique. We now want, given potentials
~A0 and φ0, find modified potentials ~A and φ. These must still give

~H = ∇× ~A (e) ~E = −1

c

∂ ~A

∂t
−∇φ (f)

However, in addition they must satisfy the famous “Lorenz condition”

∇ · ~A+
1

c

∂φ

∂t
= 0 (1)

(No, there is no t in Lorenz. That is another Lorentz. The Lorenz condition
is critical, because it is the only condition that all observers can agree on.)
The potentials you need are of the form

~A = ~A0 +∇ψ φ = φ0 −
1

c

∂ψ

∂t
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Prove that in those terms, (e) and (f) above are true regardless of what you
take for ψ. That is the famous “gauge property” of the electromagnetic
field. It is central to quantum field theory. It defines the electromagnetic
field in modern quantum theories, all the rest is derived.

5. Since you can take ψ whatever you like, you can choose it so that the Lorenz
condition (1) is satisfied. Show that this leads to a partial differential
equation for ψ. (This equation is called an inhomogeneous wave equation.
The properties of this equation will be discussed in the second part of the
class.)

6. Now substitute what you got so far into the four Maxwell equations and so
find the requirements that ~A and φ must satisfy. (I.e. get rid of the electric

and magnetic fields in favor of the vector and scalar potentials ~A and φ.)

7. How come only one vector equation and one scalar equation are left?

8. Clean up! You must obtain decoupled equations for the scalar and vector
potentials.

9. Finally, combine (a) and (d) to get a relation between the charge and
current densities. (This equation is similar to the continuity equation in
incompressible flow and expresses that no charge can be created out of
nothing.)

2. 1st Ed: p102, q32, 2nd Ed: p122, q32. Use vector integration only.

3. 1st Ed: p103, q44, 2nd Ed: p123, q44. Use vector line integrations only.

4. 1st Ed: p103, q44, 2nd Ed: p123, q44. Do it using Stokes.

5. 1st Ed: p104, q62, 2nd Ed: p124, q62. Do the surface integrals both directly and using
the divergence theorem. Make sure to include the flat circle of the cone. Note: in
doing the surface integrals directly, you are required to write them down in Cartesian
coordinates using the expression for ~n dS given in class when F (x, y, z) = 0. After
that, switch to polar coordinates to actually do the integration.

6. MODIFIED version of 1st Ed: p132, q50, 2nd Ed: p154, q50. Given

~v =
(−y, x)
x2 + y2

1. Evaluate ∇× ~v.

2. Also evaluate, presumably using polar coordinates,
∫

I

~v · d~r
∫

II

~v · d~r

where path I is the semi circle of radius r going clockwise from (r, 0) to
(−r, 0), and path II is the semi circle of radius r going counter-clockwise
from (r, 0) to (−r, 0).
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3. Explain why the integral over II minus the integral over I is the integral
over the closed circle.

4. Explain why Stokes implies that the closed contour integral should be the
integral of the z-component of ∇× ~v over the inside of the circle.

5. Then explain why you would then normally expect the contour integral to
be zero. That means that the two integrals I and II should be equal, but
they are not.

6. Explain what the problem is.

7. Do you expect integrals over closed circles of different radii to be equal?
Why?

8. Are they actually equal?

Now assume that you allow singular functions to be OK, like Heaviside step functions
and Dirac delta functions say. Then figure out in what part of the interior of the circle,∫ ∫

∇× ~v · k̂ dxdy is not zero. So how would you describe ∇× ~v for this vector field in
terms of singular functions?

7. 1st Ed: p133, q56, 2nd Ed: p155, q56.

8. Derive ~n dS in terms of dθ and dφ, where (r, θ, φ) are spherical coordinates. Assume
that the surface is described as r = f(θ, φ) for some given function f . Use the formulae
given earlier in class for ~n dS in terms of two parameters u and v. The formula requires
you to differentiate ~r with respect to the parameters. Now in spherical,

~r = rı̂r

From class, the derivatives of ı̂r are

∂ ı̂r
∂r

= 0
∂ ı̂r
∂θ

= ı̂θ
∂ ı̂r
∂φ

= sin θ ı̂φ

So you can now write ~n dS in terms of r and the derivatives fθ and fφ of function f .

Next assume that the surface is not given as r = f(θ, φ), but as F (r, θ, φ) = constant.
Rewrite your expression for ~n dS in terms of F instead of f . Hint: To get the derivatives
of f in terms of those of F , look at the total differential of F at a point on the surface:

dF ≡ ∂F

∂r
dr +

∂F

∂θ
dθ +

∂F

∂φ
dφ

Now if you take dr = fθdθ + fφdφ, you stay on the surface, so dF will then be zero:

0 =
∂F

∂r
(fθdθ + fφdφ) +

∂F

∂θ
dθ +

∂F

∂φ
dφ

From this you can find fθ and fφ in terms of the derivatives of F , by taking dφ,
respectively dθ zero. Plug that into the earlier expression for ~n dS in terms of f and
you have ~n dS in terms of F . Write this expression in terms of the gradient of F in
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spherical coordinates, as given by the expression in your notes, or in any mathematical
handbook. Compare with the Eulerian expression

~n dS =
∇F
Fz

dxdy

as derived in class. Here dxdy can be denoted symbolically as dSz: it is the area of a
surface of constant z of dimensions dx × dy. (In other words, it is the projection of
surface element dS on a surface of constant z.) What is the equivalent to dSz in your
spherical coordinates expression?

9. 1st Ed: p160, q38, 2nd Ed: p183, q38. Simplify as much as possible. Sketch each
surface, taking the z-axis upwards.
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5 10/02 F

1. Finish finding the derivatives of the unit vectors of the spherical coordinate system
using the class formulae. Then finish 1st Ed p160 q47, 2nd Ed p183 q47, as started in
class, by finding the acceleration. As noted in class,

∂ı̂i
∂ui

=
1

hi

∂hi
∂ui

ı̂i −
3∑

k=1

1

hk

∂hi
∂uk

ı̂k
∂ı̂i
∂uj

=
1

hi

∂hj
∂ui

ı̂j

2. Express the acceleration in terms of the spherical velocity components vr, vθ, vφ and
their first time derivatives, instead of time derivatives of position coordinates. Like ar =
v̇r+ . . ., etc. This is how you do it in fluid mechanics, where time-derivatives of particle
position coordinates are normally not used. (So, get rid of all position coordinates with
dots on them in favor of the velocity components and position coordinates without
dots.) Hint: you may want to differentiate the expressions for the velocity components
with respect to time to get expressions for the second order derivatives of the position
coordinates. Then get rid of the second order derivatives first.

3. Notes 18.2.1.1 Show all details.

4. Notes 18.2.1.2 Show all details.

5. Notes 18.2.2.1 Show all details.

6. Notes 18.2.3.1 Show all details.
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6 10/09 F

1. Notes 18.2.1.3 and 18.2.1.4

2. Notes 18.2.1.6

3. Notes 18.2.1.7

4. Notes 18.2.1.8

5. Notes 18.3.1.1

6. Notes 18.3.1.2

7. Notes 18.2.3.3

8. Notes 18.2.3.5

9. Notes 18.3.3.3

10. Notes 18.3.3.5

11. Notes 18.3.4.2 Use the described procedure for T = π to find an n so that nπ is within
a distance of no more than 1/116 from an integer.
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7 10/16 F

1. 2.19 b, d, h. (DuChateau & Zachmann). In each case,

• Show a picture of the different regions in the x, y-plane.

• State in what regions would you have boundary value problems, and in what
regions you would have initial value problems.

• State in what regions singularities would be smoothed, and in what regions they
would be propagated.

2. 2.20.

3. Notes 18.6.2.1

4. 2.24. Show the complete transformed equation, fully converted to the new coordinates
(ξ1, ξ2, ξ3). (No remaining x, y, or z allowed.)
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8 10/23 F

1. 2.24 continued. Take the result of the previous homework question, as posted, and
convert the principal part to the Laplacian. Then get rid of the first order derivatives
to get a Helmholtz equation (with an imaginary k).

2. 2.22b,g. Draw the characteristics very neatly in the xy-plane,

3. 2.28d expanded. First find a particular solution. Try a quadratic

up = Ax2 + Bxy + Cy2 +Dx+ Ey + F

But obviously you do not need F , nor do you need B to create the x and y terms, so take
these zero. Next convert the remaining homogeneous problem for uh to characteristic
coordinates. Show that the homogeneous solution satisfies

2uh,ξη = uh,η

Put, say, v = uh,η. Solve this ODE to find v = uh,η, then integrate uh,η with respect to
η to find uh. Finally find the complete u, in terms of x and y. Watch any integration
constants; they might not be constants.

4. 2.28f expanded. In this case, leave the inhomogeneous term in there, don’t try to find
a particular solution for the original PDE. Transform the full problem to characteristic
coordinates. (I think it is easiest to leave the logarithms in the coordinates, but you
can try it either way.) Show that the solution satisfies

4uξη − 2uξ ± eη = 0

where ± indicates the sign of xy, or

4ξηuξη − 2ξuξ + η = 0

or

4ξηuξη + 2ξuξ −
1

η
= 0

or equivalent, depending on exactly how you define the characteristic coordinates. Solve
this ODE for v = uξ, then integrate with respect to ξ to find u. Write the solution in
terms of x and y. Watch any integration constants; they might not be constants.

5. 2.28c. Use the 2D procedure. Show that the equation may be simplified to

uξξ = 0

Solve this equation and write the solution in terms of x and y. Watch any integration
constants; they might not be constants.
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6. 2.28k. Reduce the PDE to the form

uη =

(
e−ξ +

1

η

)
uξξ

Now discuss the properly posedness for the initial value problem, recalling from the
class notes that the backward heat equation is not properly posed. In particular, given
an interval ξ1 ≤ ξ ≤ ξ2, with an initial condition at some value of η0 and boundary
conditions at ξ1 and ξ2, can the PDE be numerically solved to find u at large η? If η0
is positive? If η0 is a small negative number? If η0 is a large negative number?

7. 2.28b. Describe a typical properly posed problem for the original equation.
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9 10/30 F to 11/06 F

1. 3.44. This is mostly the uniqueness proof given in class, which can also be found in the
notes and more generally in solved problems 3.14-3.16. However, here you will want to
write out the two parts of the surface integral separately since the boundary conditions
are a mixture of the two cases 3.14 and 3.15 (with c = 0).

2. Notes 18.4.1.1

3. Notes 18.4.1.2

4. Notes 19.1.1.1

5. Notes 19.1.1.2
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10 11/06 F

1. 3.40. Use the Poisson integral formula as given in class.
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11 11/13 F

FOLLOW CLASS PROCEDURE IN ALL QUESTIONS.

1. 5.25. Also: (c) Assume that
f(x) = e−|x−2|

In a single very neat plot, draw u(x, 1), u(x, 2), and u(x, 3) versus x. Make sure you
draw a complete covering of characteristics in the x, y-plane. And show the path of
the singularity as a fattened characteristic in the x, y-plane.

2. 5.26b. IGNORE THE HINT. Include a very neat sketch of the complete set of char-
acteristic lines. Fatten the asked characteristic in the x, y-plane. Simplify your answer
as much as possible.

3. 5.27(a). Include a very neat sketch of the complete set of characteristic lines. Is the
solution you get valid everywhere?

4. 5.27(b). Do not try to use an initial condition written in terms of two different, related,
variables. Get rid of either x or y in the condition. Then call the argument of your
undetermined function s and rewrite its expression in terms of s. Include a sketch of
the complete set of characteristic lines and the initial condition line.

5. 5.29 Explain why there is no solution.

6. In 7.27, acoustics in a pipe with closed ends, assume ℓ = 1, a = 1, f(x) = x, and
g(x) = 1. Graphically identify the extensions F (x) and G(x) of the given f(x) and
g(x) to all x that allow the solution u to be written in terms of the infinite pipe
D’Alembert solution.

7. Continuing the previous problem, in four separate graphs, draw u(x, 0), u(x, 0.25),
u(x, 0.5), and u(x, 1.25). For all but the first graph, also include the separate terms
1

2
F (x − at), 1

2
F (x + at), and

∫ x+at
x−at G(ξ) dξ. Use graph or raster paper or a plotting

package. Use the D’Alembert solution only to plot, do not use a separation of variables
solution in your software package. Comment on the boundary conditions. At which
times are they satisfied? At which times are they not meaningful? Consider all times
0 ≤ t <∞ and do not approximate.

Make sure to include your source code if any.

8. Using the D’Alembert solution of the previous problems, find u(0.1, 3). Be sure to
show the value of each term in the expression.
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12 11/20 F

1. Solve 7.26, by Laplace transforming the problem as given in time. This is a good way
to practice back transform methods. Note that one factor in û is a simpler function at
a shifted value of coordinate s.

2. Solve 7.35 by Laplace transform in time. Clean up completely; only the given function
may be in your answer, no Heaviside functions or other weird stuff. There is a minor
error in the book’s answer.
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13 11/30 F

1. Write the complete (Sturm-Liouville) eigenvalue problem for the eigenfunctions of 7.27.
Find the eigenfunctions of that problem. Make very sure you do not miss one. Write a
symbolic expression for the eigenfunctions in terms of an index, and identify the values
that that index takes. You may want, or not want, to write one eigenfunction explicitly
instead of as a term in the sum.

2. Continuing the previous homework, write f = x and g = 1 in terms of the eigenfunc-
tions you found for the case ℓ = 1. Be very careful with one particular eigenfunction.
Note that sometimes you need to write a term in a sum or sequence out separately
from the others.

3. Continuing the previous homework, substitute u(x, t) =
∑

n un(t)Xn(x) (plus the ad-
ditional term, if any) into the PDE to convert it into an ordinary differential for each
separate coefficient un(t). Solve the ODE. Be very careful with one particular case. By
writing the initial conditions in terms of the eigenfunctions, identify the integration
constants. Write out a complete summary of the solution. Make sure to identify the
values of your numbering index in each expression.

4. (6 pts) Reconsider the separation of variables solution you derived. Using some pro-
gramming language, evaluate the found solution at 101 equally spaced x-values from 0
to ℓ at times 0, 0.25, 0.5, and 1.25. Take ℓ = 1 and a = 1. Include at least 50 nonzero
terms in the summations. Plot the solution at these four times. Compare with the
D’Alembert solution of the previous homework, which must be the same. (Check your
D’Alembert solution first against the posted solution). Show also what happens if you
only include 10 terms in the summations.

To help you get started, a Matlab program that plots the solution to problem 7.28 is
provided as an example. You need both p7 28.m1 and p7 28u.m2. This program is
valid for the PDE and BC solved in class, with the additional data

a = 1

2
, ℓ = 1

2
π, f(x) = 1

2
π − x⇒ fn =

1

(2n− 1)2
, g(x) = 0 ⇒ gn = 0.

These may of course not apply for your problem.

To run the program, enter matlab and type in p7_28. If you do not have matlab, a free
replacement is octave. Or you can use some other programming and plotting facilities.

Include your code.

1../p7_28.m
2../p7_28u.m
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14 12/04 F

1. Refer to problem 7.19. Find a function u0(x, t) that satisfies the inhomogeneous bound-
ary conditions. Define v = u− u0. Find the PDE, BC and IC satisfied by v.

2. Find suitable eigenfunctions in terms of which v may be written, and that satisfy the
homogeneous boundary conditions. Write the relevant known functions in terms of
these eigenfunctions and give the expressions for their Fourier coefficients.

3. Continuing the previous question, solve for v using separation of variables in terms
of integrals of the known functions f(x), g0(t), and g1(t). Write the solution for u
completely.

4. Assume that f = 0, k = ℓ = 1, and that ux = t at both x = 0 and x = ℓ. Work out
the solution completely.

5. Plot the solution numerically at some relevant times. I suspect that for large times the
solution is approximately

u = (x− 1

2
)t+ 1

6
(x− 1

2
)3 − 1

8
(x− 1

2
)

Do your results agree?

6. Consider a simple problem of unsteady, axisymmetric, heat conduction in a ring (or
unsteady axial flow between concentric pipes) of radii a and b:

ut = κ
(
urr +

1

r
ur

)
u(r, 0) = f(r) u(a, t) = 0 u(b, t) = 0

Find the eigenvalue problem for the eigenfunctions R(r). Do not try to solve it (or
look under Bessell functions in our math handbook). Given an arbitrary function g(r),
figure out how to obtain the coefficients gn in

g(r) =
∑

all n

gnRn(r)
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