Analysis in ME II
 EML 4930/5061
 Homework

Dr. Leon van Dommelen

Spring 2014

Do not print out all pages. Keep checking for changes. Complete assignment will normally be available the day after the last lecture whose material is included in the assignment (Monday, normally).

Contents

$1 \quad 01 / 17 \mathrm{~F}$ 2
2 01/24 F 2
3 01/31 F 3
$4 \quad 02 / 07$ F 5
$5 \quad 02 / 14 \mathrm{~F}$ 6
6 02/21 F 6
7 02/28 F 7
$8 \quad 03 / 07$ F 7
9 03/21 F 8
10 03/28 F 8
11 04/04 F 8
12 04/11 F 9
13 04/18 F 9
$1404 / 25$ F 10

$1 \quad 01 / 17 \mathrm{~F}$

Use vector analysis wherever possible.

1. 1st Ed: p13, q31a-f,h-j, 2nd Ed: p17, q31a-i. if they can be vectors, count them as such.
2. 1st Ed: p13, q32, 2nd Ed: p17, q32. Do it both graphically and analytically. Give length and angle.
3. 1st Ed: p14, q48, 2nd Ed: p19, q46. Use vector calculus only, no trig.
4. 1st Ed: p32, q66, 2nd Ed: p38, q66.
5. 1st Ed: p32, q82, 2nd Ed: p40, q82a, where B should be corrected to $(1,-3,4)$. Vector calculus only, no trig. Do it without finding the actual sides of the parallelogram. In particular, show that the area is half of $\vec{A} \times \vec{B}$. Also give a unit vector normal to the plane of the parallelogram.
6. 1st Ed: p33, q90, 2nd Ed: p41, q90a.
7. 1st Ed: p53, q32, 2nd Ed: p64, q32. Draw the curve neatly.
8. 1st Ed: p54, q47, 2nd Ed: p65, q47. (30 points)

$2 \quad 01 / 24 \mathrm{~F}$

1. 1st Ed: p78, q46, 2nd Ed: p91, q46. $r=\sqrt{x^{2}+y^{2}+z^{2}}$
2. 1st Ed: p78, q54, 2nd Ed: p92, q54. You may want to refresh your memory on total derivatives.
3. 1st Ed: p78, q60, 2nd Ed: p92, q60. (20 points) Also find two scalar equations that describe the line through P that crosses the surface normally at P .
Find the unit normal \vec{n} to the surface at P . Now assume that the surface is reflective, satisfying Snell's law. An incoming light beam parallel to the x-axis hits the surface at P. Find a vector equation that describes the path of the reflected beam.
Hint: let \vec{v} be a vector along the light ray. The component of \vec{v} in the direction of \vec{n} is $\vec{n} \cdot \vec{v}$. The component vector in the direction of \vec{n} is defined as $\vec{v}_{1}=\vec{n}(\vec{n} \cdot \vec{v})$. Sketch this vector along with vector \vec{n}. In which direction is the remainder $\vec{v}_{2}=\vec{v}-\vec{v}_{1}$? Now figure out what happens to \vec{v}_{1} and \vec{v}_{2} during the reflection. Take it from there.
4. 1st Ed: p79, q64, 2nd Ed: p92, q64.
5. 1st Ed: p80, q87, 2nd Ed: p93, q87. (20 points) Compare with a point sink in which

$$
\vec{v}=-\frac{x \hat{\imath}+y \hat{\imath}}{x^{2}+y^{2}}
$$

Assume these are incompressible flows, in which the fluid density is constant. For each flow, compute the divergence, draw streamlines, and figure out how much fluid passes through a circle of arbitrary radius r. (Since the velocity is radial, the fluid flow through a circle is the magnitude of the velocity times the circumference of the circle.) Now look at a ring between two slightly different radii, and compare the fluid that goes in at one radius with the fluid that goes out at the other radius. Based on the results, argue that the divergence of the velocity is a measure of the "source strength," the amount of fluid created out of nothing. (A sink being a negative source, where fluid disappears into nothing.) So, what do you think of the value of the divergence of the point sink at the origin (assuming that you smooth out the singularity a bit)? Note: if the fluid is not incompressible, it is really volume flows you are comparing, not mass flows, and the divergence is a measure of the relative rate of specific volume expansion. Additional volume is created out of nothing, not mass.
6. 1st Ed: p80, q102, 2nd Ed: p94, q102. Make sure that you find ϕ in a mathematically sound way, as discussed in class. No messing around and guessing a solution!

$3 \quad 01 / 31 \mathrm{~F}$

1. 1st Ed: p81, q107, 2nd Ed: p94, q107. (20 points). You need to show that any solution \vec{E}, \vec{H} of Maxwell's equations is given by scalar and vector potentials ϕ, \vec{A} as shown.
Procedure to follow:
2. Recall that if the divergence of a vector is zero, the vector is the curl of some other vector \vec{A}_{0}. Apply that to the appropriate physical vector (like the electric or magnetic field, say).
3. Next define a vector \vec{E}_{ϕ} by setting

$$
\vec{E}=-\frac{1}{c} \frac{\partial \vec{A}_{0}}{\partial t}+\vec{E}_{\phi}
$$

3. Prove that the \vec{E}_{ϕ} defined this way is minus the gradient of some scalar function ϕ_{0}.
4. Unfortunately, \vec{A}_{0} and ϕ_{0} are not unique and do not normally satisfy (1) in the book. The potentials you need are of the form

$$
\vec{A}=\vec{A}_{0}+\nabla \psi \quad \phi=\phi_{0}-\frac{1}{c} \frac{\partial \psi}{\partial t}
$$

Show that in those terms,

$$
\vec{E}=-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}-\nabla \phi \quad \vec{H}=\nabla \times \vec{A}
$$

regardless of what you take for ψ. That is the famous "gauge property" of the electromagnetic field. It is central to quantum field theory.
5. Since you can take ψ whatever you like, you can choose it to simplify the mathematics. The way that you want to take ψ here is so that equation (1), the famous "Lorenz condition," in the book is satisfied. (No, there is no t in Lorenz. That is another Lorentz.) Show that this leads to a partial differential equation for ψ. (This equation is called an inhomogeneous wave equation. The properties of this equation will be discussed in the second part of the class.)
6. Now substitute what you got so far into the four Maxwell equations and so find the requirements that \vec{A} and ϕ must satisfy. (I.e. get rid of the electric and magnetic fields in favor of the vector and scalar potentials \vec{A} and ϕ.)
7. How come only one vector equation and one scalar equation are left?
8. Clean up! You should have decoupled equations for the two potentials.
9. Show directly from Maxwell's first and last equation that the charge density must not vary in time. (That is because the current density in the last equation was left out. There should be a $4 \pi \vec{j} / c$ in the last equation, as well as in (3). That would give the full Maxwell equations.)
2. 1st Ed: p103, q44, 2nd Ed: p123, q44. Do it without using Stokes. Then redo it using Stokes.
3. 1st Ed: p104, q62, 2nd Ed: p124, q62. Do the surface integrals both directly and using the divergence theorem. Make sure to include the base of the cone. Note: in doing the surface integrals directly, you are required to write them down in Cartesian coordinates using the expression for $\vec{n} \mathrm{~d} S$ given in class. After that, switch to polar coordinates to actually do the integration.
4. 1st Ed: p132, q50, 2nd Ed: p154, q50 MODIFIED. Given

$$
\vec{v}=\frac{(-y, x)}{x^{2}+y^{2}}
$$

1. Evaluate $\nabla \times \vec{v}$.
2. Also evaluate, presumably using polar coordinates,

$$
\oint_{\mathrm{I}} \vec{v} \cdot \mathrm{~d} \vec{r} \quad \oint_{\mathrm{II}} \vec{v} \cdot \mathrm{~d} \vec{r}
$$

where path I is the semi circle of radius r going clockwise from $(r, 0)$ to $(-r, 0)$, and path II is the semi circle of radius r going counter-clockwise from $(r, 0)$ to $(-r, 0)$.
3. Explain why the integral over II minus the integral over I is the integral over the closed circle.
4. Explain why Stokes implies that the closed contour integral should be the integral of the z-component of $\nabla \times \vec{v}$ over the inside of the circle.
5. Then explain why you would then normally expect the contour integral to be zero. That means that the two integrals I and II should be equal, but they are not.
6. Explain what the problem is.
7. Do you expect integrals over closed circles of different radii to be equal? Why?
8. Are they actually equal?

Now assume that you allow singular functions to be OK, like Heaviside step functions and Dirac delta functions say. Then figure out in what part of the interior of the circle, $\iint \nabla \times \vec{v} \cdot \hat{k} \mathrm{~d} x \mathrm{~d} y$ is not zero. So how would you describe $\nabla \times \vec{v}$ for this vector field in terms of singular functions?
5. 1st Ed: p133, q56, 2nd Ed: p155, q56.

$4 \quad 02 / 07$ F

1. Derive $\vec{n} \mathrm{~d} S$ in terms of $\mathrm{d} \theta$ and $\mathrm{d} \phi$, where (r, θ, ϕ) are spherical coordinates. Assume that the surface is given by some relationship $F(r, \theta, \phi)=$ constant. Use the formulae given earlier in class for $\vec{n} \mathrm{~d} S$ in terms of two parameters u and v. The formula requires you to differentiate \vec{r} with respect to the parameters. Now in spherical,

$$
\vec{r}=r \hat{\imath}_{r}
$$

From class, the derivatives of $\hat{\imath}_{r}$ are

$$
\frac{\partial \hat{\imath}_{r}}{\partial r}=0 \quad \frac{\partial \hat{\imath}_{r}}{\partial \theta}=\hat{\imath}_{\theta} \quad \frac{\partial \hat{\imath}_{r}}{\partial \phi}=\sin \theta \hat{\imath}_{\phi}
$$

To get the dervatives of r, note that certainly, on the surface, r will be some function $r(\theta, \phi)$. To get formulae for its derivatives, differentiate the constant function F :

$$
\frac{\partial F}{\partial r} \frac{\partial r}{\partial \theta}+\frac{\partial F}{\partial \theta}=0 \quad \frac{\partial F}{\partial r} \frac{\partial r}{\partial \phi}+\frac{\partial F}{\partial \theta}=0
$$

Write the obtained expression for $\vec{n} \mathrm{~d} S$ in terms of the gradient of F . (The expression for the gradient of F in spherical coordinates can be found in mathematical handbooks.) Compare with the Eulerian expression,

$$
\vec{n} \mathrm{~d} S=\frac{\nabla F}{F_{z}} \mathrm{~d} x \mathrm{~d} y
$$

as derived in class. Here $\mathrm{d} x \mathrm{~d} y$ can be denoted symbolically as $\mathrm{d} S_{z}$: it is the area of a surface of constant z of dimensions $\mathrm{d} x \times \mathrm{d} y$. (In other words, it is the projection of surface element $\mathrm{d} S$ on a surface of constant z.) What is the equivalent to $\mathrm{d} S_{z}$ in your spherical coordinates expression?
2. 1st Ed: p160, q38, 2nd Ed: p183, q38. Simplify as much as possible. Sketch each surface, taking the z-axis upwards.
3. Finish finding the derivatives of the unit vectors of the spherical coordinate system using the class formulae. Then finish 1st Ed p160 q47, 2nd Ed p183 q47, as started in class, by finding the acceleration. Note that the metric indices h_{i} for spherical coordinates are in mathematical handbooks. Also,

$$
\frac{\partial \hat{\imath}_{i}}{\partial u_{i}}=\frac{1}{h_{i}} \frac{\partial h_{i}}{\partial u_{i}} \hat{\imath}_{i}-\sum_{j=1}^{3} \frac{1}{h_{j}} \frac{\partial h_{i}}{\partial u_{j}} \hat{\imath}_{j} \quad \frac{\partial \hat{\imath}_{i}}{\partial u_{j}}=\frac{1}{h_{i}} \frac{\partial h_{j}}{\partial u_{i}} \hat{\imath}_{j}
$$

4. Express the acceleration in terms of the spherical velocity components $v_{r}, v_{\theta}, v_{\phi}$ and their first time derivatives, instead of time derivatives of position coordinates. Like $a_{r}=\dot{v}_{r}+\ldots$, etc. This is how you do it in fluid mechanics, where time-derivatives of particle position coordinates are normally not used. (So, get rid of the position coordinates with dots on them in favor of the velocity components.)

$5 \quad 02 / 14 \mathrm{~F}$

1. Notes 1.2.1.1
2. Notes 1.2.1.2
3. Notes 1.2.1.3 and 1.2.1.4
4. Notes 1.2.1.7
5. Notes 1.2.1.8
6. Notes 1.2.3.1
7. Notes 1.2.3.3

$6 \quad 02 / 21 \mathrm{~F}$

1. Notes 1.6.1.1
2. Notes 1.6.1.2
3. Notes 1.6.3.3
4. Notes 1.6.3.5
5. 2.19 b , h. (DuChateau \& Zachmann) Show a picture of the different regions.
6. 2.20 .
7. Notes 1.3.2.1 Note: in the first equation, the second order time derivative should be a first order one.

$7 \quad 02 / 28$ F

1. Notes 1.2.3.5
2. 2.26. Also show the transformation formulae from and to the new coordinates.
3. Notes 1.4.3.1
4. Notes 1.4.4.1

$8 \quad 03 / 07$ F

1. $2.22 \mathrm{~b}, \mathrm{~g}$. Draw the characteristics very neatly in the $x y$-plane,
2. 2.28d. (20 pt) First find a particular solution. Next convert the remaining homogeneous problem to characteristic coordinates. Show that the homogeneous solution satisfies

$$
2 u_{h, \xi \eta}=u_{h, \eta}
$$

Put, say, $v=u_{h, \eta}$. Solve this ODE to find $v=u_{h, \eta}$, then integrate $u_{h, \eta}$ with respect to η to find u_{h}. Finally find the complete u, in terms of x and y. Watch any integration constants; they might not be constants.
3. 2.28 f . (20 pt) In this case, leave the inhomogeneous term in there, don't try to find a particular solution for the original PDE. Transform the full problem to characteristic coordinates. Show that the solution satisfies

$$
4 u_{\xi \eta}-2 u_{\xi} \pm e^{\eta}=0
$$

where \pm indicates the sign of $x y$, or

$$
4 \xi \eta u_{\xi \eta}-2 \xi u_{\xi}+\eta=0
$$

or

$$
4 \xi \eta u_{\xi \eta}+2 \xi u_{\xi}-\frac{1}{\eta}=0
$$

or equivalent, depending on exactly how you define the characteristic coordinates. Solve this ODE for $v=u_{\xi}$, then integrate with respect to ξ to find u. Write the solution in terms of x and y. Watch any integration constants; they might not be constants.
4. 2.28 c . (20 pt) Use the 2 D procedure. Show that the equation may be simplified to

$$
u_{\xi \xi}=0
$$

Solve this equation and write the solution in terms of x and y. Watch any integration constants; they might not be constants.
5. Notes 1.5.3.1
6. 2.28 k . Reduce the PDE to the form

$$
u_{\eta}=\left(e^{-\xi}+\frac{1}{\eta}\right) u_{\xi \xi}
$$

Now discuss the properly posedness for the initial value problem, recalling from the class notes that the backward heat equation is not properly posed. In particular, given an interval $\xi_{1} \leq \xi \leq \xi_{2}$, with an initial condition at some value of η_{0} and boundary conditions at ξ_{1} and ξ_{2}, can the PDE be numerically solved to find u at large η ? If η_{0} is positive? If η_{0} is a small negative number? If η_{0} is a large negative number?

$9 \quad 03 / 21 \mathrm{~F}$

1. 3.44. This is mostly the uniqueness proof given in class, which can also be found in the notes and more generally in solved problems 3.14-3.16. However, here you will want to write out the two parts of the surface integral separately since the boundary conditions are a mixture of the two cases 3.14 and 3.15 (with $c=0$).
2. Notes 1.7.1.1
3. Notes 1.7.1.2

$10 \quad 03 / 28$ F

1. Notes 2.1.1.1
2. Notes 2.1.1.2
3. Notes 2.2.2.1
4. Notes 2.3.3.1 In doing the integral over the big circle, assume that $u_{\text {out }}$ on it can be approximated as $C_{0}+C_{1} / \rho+\ldots$, where C_{0} and C_{1} are constants.

$11 \quad 04 / 04 \mathrm{~F}$

1. 5.25. Also: (c) Assume that

$$
f(x)=e^{-|x-2|}
$$

In a single very neat plot, draw $u(x, 1), u(x, 2)$, and $u(x, 3)$ versus x. Make sure you draw a complete covering of characteristics in the x, y-plane. And show the path of the singularity as a fattened characteristic in the x, y-plane.
2. 5.26 b . Ignore the hint. Include a very neat sketch of the complete set of characteristic lines. Fatten the asked characteristic in the x, y-plane. Simplify your answer as much as possible.
3. 5.27 (a). Include a very neat sketch of the complete set of characteristic lines. Is the solution you get valid everywhere?
4. $5.27(\mathrm{~b})$. Do not try to use an initial condition written in terms of two different, related, variables. Get rid of either x or y in the condition. Then call the argument of your undetermined function γ and rewrite its expression in terms of γ. Include a sketch of the complete set of characteristic lines.
5. 5.29 Explain why there is no solution.

$12 \quad 04 / 11 \mathrm{~F}$

1. In 7.27, acoustics in a pipe with closed ends, assume $\ell=1, a=1, f(x)=x$, and $g(x)=1$. Graphically identify the extensions $F(x)$ and $G(x)$ of the given $f(x)$ and $g(x)$ to all x that allow the solution u to be written in terms of the infinite pipe D'Alembert solution.
2. Continuing the previous problem, in three separate graphs, draw $u(x, 0), u(x, 0.25)$, and $u(x, 0.5)$. For the latter two graphs, also include the separate terms $\frac{1}{2} F(x-a t), \frac{1}{2} F(x+$ $a t$), and $\int_{x-a t}^{x+a t} G(\xi) \mathrm{d} \xi$. Use raster paper or a plotting package. Use the D'Alembert solution only to plot, do not use a separation of variables solution. Comment on the boundary conditions. At which times are they satisfied? At which times are they not meaningful? Consider all times $0 \leq t<\infty$ and do not approximate.
Include your code if any.
3. Using the D'Alembert solution of the previous problems, find $u(0.1,3)$.
4. Write the complete (Sturm-Liouville) eigenvalue problem for the eigenfunctions of 7.27.
5. Find the eigenfunctions of that problem. Make very sure you do not miss one. Write a symbolic expression for the eigenfunctions in terms of an index, and identify all the values that that index takes.
6. Continuing the previous homework, write $f=x$ and $g=1$ in terms of the eigenfunctions you found for the case $\ell=1$. Be very careful with one particular eigenfunction. Note that sometimes you need to write a term in a sum or sequence out separately from the others.

$13 \quad 04 / 18$ F

1. Continuing the previous homework, substitute $u(x, t)=\sum_{n} u_{n}(t) X_{n}(x)$ into the PDE to convert it into an ordinary differential for each separate coefficient $u_{n}(t)$. Solve the ODE. Be very careful with one particular case.
2. By writing the initial conditions in terms of the eigenfunctions, identify the integration constants. Write out a complete summary of the solution. Make sure to identify the values of your numbering index in each expression.
3. Reconsider the separation of variables solution you derived. Using some programming language, evaluate the found solution at 101 equally spaced x-values from 0 to ℓ at time $t=0.25$ and so plot u versus x at that time. Repeat for $t=0.5$. Include at least 50 nonzero terms in the summations. Take $\ell=1$ and $a=1$. Compare with your (or the instructor's) D'Alembert solution. It should show good agreement. What happens if you only include 10 terms in the summations?

To help you get started, a Matlab program that plots the solution to problem 7.28 is provided as an example. You need both $\mathrm{p} 7 _28 . \mathrm{m}^{1}$ and $\mathrm{p} 7 _28 \mathrm{u} . \mathrm{m}^{2}$. This program is valid for the PDE and BC solved in class, with the additional data

$$
a=\frac{1}{2}, \quad \ell=\frac{1}{2} \pi, \quad f(x)=\frac{1}{2} \pi-x \Rightarrow f_{n}=\frac{1}{(2 n-1)^{2}}, \quad g(x)=0 \Rightarrow g_{n}=0 .
$$

These may of course not apply for your problem.
To run the program, enter matlab and type in p7_28. If you do not have matlab, a free replacement is octave. Or you can use some other programming and plotting facilities.
Include your code.
4. Solve 7.26 , by Laplace transforming the problem as given in time. This is a good way to practice back transform methods. Note that one factor in \widehat{u} is a simpler function at a shifted value of coordinate s.
5. Solve 7.35 by Laplace transform in time. Clean up completely; only the given function may be in your answer, no Heaviside functions or other weird stuff. There is a minor error in the book's answer.
6. Refer to problem 7.19. Find a function $u_{0}(x, t)$ that satisfies the inhomogeneous boundary conditions. Define $v=u-u_{0}$. Find the PDE, BC and IC satisfied by v.
7. Find suitable eigenfunctions in terms of which v may be written, and that satisfy the homogeneous boundary conditions. Write the relevant known functions in terms of these eigenfunctions and give the expressions for their Fourier coefficients.

$14 \quad 04 / 25$ F

1. Continuing the previous homework, solve for v using separation of variables in terms of integrals of the known functions $f(x), g_{0}(t)$, and $g_{1}(t)$. Write the solution for u completely.
2. Assume that $f=0, k=\ell=1$, and that $u_{x}=t$ at both $x=0$ and $x=\ell$. Work out the solution completely.

[^0]3. Plot the solution numerically at some relevant times. I suspect that for large times the solution is approximately
$$
u=\left(x-\frac{1}{2}\right) t+\frac{1}{6}\left(x-\frac{1}{2}\right)^{3}-\frac{1}{8}\left(x-\frac{1}{2}\right)
$$

Do your results agree?

[^0]: 1../p7_28.m
 2../p7_28u.m

