Analysis in ME 11
EML 4930/5061

Homework

Dr. Leon van Dommelen

Spring 2014
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1 01/17F

Use vector analysis wherever possible.

1. 1st Ed: pl13, g3la-f,h-j, 2nd Ed: pl7, q3la-i. if they can be vectors, count them as
such.

2. 1st Ed: pl3, q32, 2nd Ed: pl7, q32. Do it both graphically and analytically. Give
length and angle.

3. 1st Ed: p14, q48, 2nd Ed: p19, q46. Use vector calculus only, no trig.
4. 1st Ed: p32, q66, 2nd Ed: p38, q66.

5. 1st Ed: p32, q82, 2nd Ed: p40, q82a, where B should be corrected to (1, —3,4). Vector
calculus only, no trig. Do it without finding the actual sides of the parallelogram. In
particular, show that the area is half of A x B. Also give a unit vector normal to the
plane of the parallelogram.

6. 1st Ed: p33, q90, 2nd Ed: p41, q90a.
7. 1st Ed: pb3, q32, 2nd Ed: p64, q32. Draw the curve neatly.

8. 1st Ed: p54, q47, 2nd Ed: p65, q47. (30 points)

2 01/24 F

1. 1st Ed: p78, q46, 2nd Ed: p91, q46. r = /a2 + y2 + 22

2. 1st Ed: p78, g54, 2nd Ed: p92, gb4. You may want to refresh your memory on total
derivatives.

3. 1st Ed: p78, q60, 2nd Ed: p92, q60. (20 points) Also find two scalar equations that
describe the line through P that crosses the surface normally at P.

Find the unit normal 77 to the surface at P. Now assume that the surface is reflective,
satisfying Snell’s law. An incoming light beam parallel to the z-axis hits the surface
at P. Find a vector equation that describes the path of the reflected beam.

Hint: let ¢ be a vector along the light ray. The component of ¥ in the direction of 7
is 7 - 0. The component vector in the direction of 7 is defined as ¥, = 7i(7 - ¥). Sketch
this vector along with vector 77. In which direction is the remainder v = v — v;7 Now

figure out what happens to v and v, during the reflection. Take it from there.
4. 1st Ed: p79, q64, 2nd Ed: p92, q64.
5. 1st Ed: p80, q87, 2nd Ed: p93, q87. (20 points) Compare with a point sink in which
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Assume these are incompressible flows, in which the fluid density is constant. For
each flow, compute the divergence, draw streamlines, and figure out how much fluid
passes through a circle of arbitrary radius . (Since the velocity is radial, the fluid flow
through a circle is the magnitude of the velocity times the circumference of the circle.)
Now look at a ring between two slightly different radii, and compare the fluid that goes
in at one radius with the fluid that goes out at the other radius. Based on the results,
argue that the divergence of the velocity is a measure of the “source strength,” the
amount of fluid created out of nothing. (A sink being a negative source, where fluid
disappears into nothing.) So, what do you think of the value of the divergence of the
point sink at the origin (assuming that you smooth out the singularity a bit)? Note:
if the fluid is not incompressible, it is really volume flows you are comparing, not mass
flows, and the divergence is a measure of the relative rate of specific volume expansion.
Additional volume is created out of nothing, not mass.

. 1st Ed: p80, q102, 2nd Ed: p94, q102. Make sure that you find ¢ in a mathematically
sound way, as discussed in class. No messing around and guessing a solution!

01/31 F

. Ist Ed: p81, q107, 2nd Ed: p94, q107. (20 points). You need to show that any solution
E, H of Maxwell’s equations is given by scalar and vector potentials ¢, A as shown.

Procedure to follow:

1. Recall that if the divergence of a vector is zero, the vector is the curl of
some other vector Ag. Apply that to the appropriate physical vector (like
the electric or magnetic field, say).

2. Next define a vector E¢ by setting
104, =

o L0 g
c Ot + B

3. Prove that the E¢ defined this way is minus the gradient of some scalar
function ¢q.

4. Unfortunately, /YO and ¢ are not unique and do not normally satisfy (1)
in the book. The potentials you need are of the form

P 10
A=At Vo p=g— 20
c Ot
Show that in those terms,
E:—l%—w H=VxA
c Ot

regardless of what you take for 1. That is the famous “gauge property” of
the electromagnetic field. It is central to quantum field theory.

3



5. Since you can take 1 whatever you like, you can choose it to simplify the
mathematics. The way that you want to take v here is so that equation
(1), the famous “Lorenz condition,” in the book is satisfied. (No, there is
no t in Lorenz. That is another Lorentz.) Show that this leads to a partial
differential equation for . (This equation is called an inhomogeneous wave
equation. The properties of this equation will be discussed in the second
part of the class.)

6. Now substitute what you got so far into the four Maxwell equations and so
find the requirements that A and ¢ must satisfy. (L.e. get rid of the electric
and magnetic fields in favor of the vector and scalar potentials A and ¢.)

7. How come only one vector equation and one scalar equation are left?
8. Clean up! You should have decoupled equations for the two potentials.

9. Show directly from Maxwell’s first and last equation that the charge density
must not vary in time. (That is because the current density in the last
equation was left out. There should be a 47r]7 c in the last equation, as well
as in (3). That would give the full Maxwell equations.)

2. 1st Ed: p103, q44, 2nd Ed: p123, q44. Do it without using Stokes. Then redo it using
Stokes.

3. 1st Ed: p104, q62, 2nd Ed: p124, q62. Do the surface integrals both directly and using
the divergence theorem. Make sure to include the base of the cone. Note: in doing the
surface integrals directly, you are required to write them down in Cartesian coordinates
using the expression for 7 dS given in class. After that, switch to polar coordinates to
actually do the integration.

4. 1st Ed: p132, q50, 2nd Ed: p154, g50 MODIFIED. Given

(_y7 ﬂf)
x? + y?

U=

1. Evaluate V x v.

2. Also evaluate, presumably using polar coordinates,

fﬁ.df ?{ﬁ-df
1 1T

where path I is the semi circle of radius r going clockwise from (7,0) to
(—r,0), and path II is the semi circle of radius r going counter-clockwise
from (r,0) to (—7,0).

3. Explain why the integral over II minus the integral over I is the integral
over the closed circle.

4. Explain why Stokes implies that the closed contour integral should be the
integral of the z-component of V x ¢ over the inside of the circle.



5. Then explain why you would then normally expect the contour integral to
be zero. That means that the two integrals I and II should be equal, but
they are not.

6. Explain what the problem is.

7. Do you expect integrals over closed circles of different radii to be equal?
Why?
8. Are they actually equal?
Now assume that you allow singular functions to be OK, like Heaviside step functions
and Dirac delta functions say. Then figure out in what part of the interior of the circle,

[[V x @ kdzdy is not zero. So how would you describe V x @ for this vector field in
terms of singular functions?

. 1st Ed: p133, g56, 2nd Ed: p155, g56.

02/07 F

. Derive 77dS in terms of df and d¢, where (r,6, ¢) are spherical coordinates. Assume
that the surface is given by some relationship F(r, 0, ¢) = constant. Use the formulae
given earlier in class for 7 dS in terms of two parameters v and v. The formula requires
you to differentiate 7 with respect to the parameters. Now in spherical,

¥ =7l
From class, the derivatives of 7, are
0y i . X 0
= =1 — =sinf?
ar a0 " 9 ¢

To get the dervatives of r, note that certainly, on the surface, r will be some function
r(0,¢). To get formulae for its derivatives, differentiate the constant function F":

OFor OF _ 0For oF
or o0 00 or 0y 00

Write the obtained expression for 77 dS in terms of the gradient of F. (The expression for
the gradient of F in spherical coordinates can be found in mathematical handbooks.)
Compare with the Eulerian expression,

VF
F,

ndS = dxdy

as derived in class. Here dzdy can be denoted symbolically as dS,: it is the area of a
surface of constant z of dimensions dz x dy. (In other words, it is the projection of
surface element dS on a surface of constant z.) What is the equivalent to d.S, in your
spherical coordinates expression?



. Ist Ed: p160, 38, 2nd Ed: pl183, ¢38. Simplify as much as possible. Sketch each
surface, taking the z-axis upwards.

. Finish finding the derivatives of the unit vectors of the spherical coordinate system

using the class formulae. Then finish 1st Ed p160 47, 2nd Ed p183 q47, as started

in class, by finding the acceleration. Note that the metric indices h; for spherical

coordinates are in mathematical handbooks. Also,

iy 10h;. <1 Oh;, Qi 10h;,
=1

E%Zj 8Uj N E 8ul Y

Jui ~ hiOu;'

J

. Express the acceleration in terms of the spherical velocity components v,, vy, v4 and
their first time derivatives, instead of time derivatives of position coordinates. Like
a, = v, + ..., etc. This is how you do it in fluid mechanics, where time-derivatives
of particle position coordinates are normally not used. (So, get rid of the position
coordinates with dots on them in favor of the velocity components.)

02/14 F

. Notes 1.2.1.1
. Notes 1.2.1.2
. Notes 1.2.1.3 and 1.2.1.4
. Notes 1.2.1.7
. Notes 1.2.1.8
. Notes 1.2.3.1
. Notes 1.2.3.3

02/21 F

. Notes 1.6.1.1

. Notes 1.6.1.2

. Notes 1.6.3.3

. Notes 1.6.3.5

. 2.19 b, h. (DuChateau & Zachmann) Show a picture of the different regions.
. 2.20.

. Notes 1.3.2.1 Note: in the first equation, the second order time derivative should be a
first order one.



02/28 F

1. Notes 1.2.3.5
2. 2.26. Also show the transformation formulae from and to the new coordinates.
3. Notes 1.4.3.1

4. Notes 1.4.4.1

03/07 F

1. 2.22b,g. Draw the characteristics very neatly in the xy-plane,

2. 2.28d. (20 pt) First find a particular solution. Next convert the remaining homogeneous
problem to characteristic coordinates. Show that the homogeneous solution satisfies

2up,en = Uny

Put, say, v = up,. Solve this ODE to find v = u,,, then integrate wy,, with respect to
1 to find uy. Finally find the complete u, in terms of z and y. Watch any integration
constants; they might not be constants.

3. 2.28f. (20 pt) In this case, leave the inhomogeneous term in there, don’t try to find a
particular solution for the original PDE. Transform the full problem to characteristic
coordinates. Show that the solution satisfies

dug, —2ue £e" =0
where + indicates the sign of xy, or
dEnue, — 28ue +n =0

or .
4Enue, + 28ue — 5 =0

or equivalent, depending on exactly how you define the characteristic coordinates. Solve
this ODE for v = ug, then integrate with respect to £ to find w. Write the solution in
terms of z and y. Watch any integration constants; they might not be constants.

4. 2.28¢c. (20 pt) Use the 2D procedure. Show that the equation may be simplified to
Ugg =0

Solve this equation and write the solution in terms of z and y. Watch any integration
constants; they might not be constants.

5. Notes 1.5.3.1



6.

11

2.28k. Reduce the PDE to the form

Uy = <6_5+ 1) U
n " 139

Now discuss the properly posedness for the initial value problem, recalling from the
class notes that the backward heat equation is not properly posed. In particular, given
an interval £ < & < &, with an initial condition at some value of 7y, and boundary
conditions at & and &, can the PDE be numerically solved to find u at large n? If n
is positive? If 7, is a small negative number? If 7, is a large negative number?

03/21 F

3.44. This is mostly the uniqueness proof given in class, which can also be found in the
notes and more generally in solved problems 3.14-3.16. However, here you will want to
write out the two parts of the surface integral separately since the boundary conditions
are a mixture of the two cases 3.14 and 3.15 (with ¢ = 0).

Notes 1.7.1.1

Notes 1.7.1.2

03/28 F

Notes 2.1.1.1
Notes 2.1.1.2
Notes 2.2.2.1

Notes 2.3.3.1 In doing the integral over the big circle, assume that u., on it can be
approximated as Cy 4+ C1/p + ..., where Cy and C} are constants.

04/04 F

5.25. Also: (c¢) Assume that
fla) = e

In a single very neat plot, draw u(zx, 1), u(z,2), and u(x,3) versus x. Make sure you
draw a complete covering of characteristics in the z,y-plane. And show the path of
the singularity as a fattened characteristic in the x, y-plane.

5.26b. Ignore the hint. Include a very neat sketch of the complete set of characteristic
lines. Fatten the asked characteristic in the z, y-plane. Simplify your answer as much
as possible.



12

13

5.27(a). Include a very neat sketch of the complete set of characteristic lines. Is the
solution you get valid everywhere?

5.27(b). Do not try to use an initial condition written in terms of two different, related,
variables. Get rid of either z or y in the condition. Then call the argument of your
undetermined function v and rewrite its expression in terms of 4. Include a sketch of
the complete set of characteristic lines.

5.29 Explain why there is no solution.

04/11 F

In 7.27, acoustics in a pipe with closed ends, assume ¢ = 1, a = 1, f(z) = z, and
g(xz) = 1. Graphically identify the extensions F'(z) and G(z) of the given f(z) and
g(x) to all x that allow the solution w to be written in terms of the infinite pipe
D’Alembert solution.

Continuing the previous problem, in three separate graphs, draw u(x,0), u(z, 0.25), and
u(x,0.5). For the latter two graphs, also include the separate terms 3 F(z —at), 1 F(z+
at), and [T G(€)d¢. Use raster paper or a plotting package. Use the D’Alembert
solution only to plot, do not use a separation of variables solution. Comment on the
boundary conditions. At which times are they satisfied? At which times are they not

meaningful? Consider all times 0 <t < oo and do not approximate.

Include your code if any.
Using the D’Alembert solution of the previous problems, find (0.1, 3).
Write the complete (Sturm-Liouville) eigenvalue problem for the eigenfunctions of 7.27.

Find the eigenfunctions of that problem. Make very sure you do not miss one. Write
a symbolic expression for the eigenfunctions in terms of an index, and identify all the
values that that index takes.

Continuing the previous homework, write f = x and g = 1 in terms of the eigenfunc-
tions you found for the case ¢ = 1. Be very careful with one particular eigenfunction.
Note that sometimes you need to write a term in a sum or sequence out separately
from the others.

04/18 F

Continuing the previous homework, substitute u(z,t) = Y, u,(t) X, (x) into the PDE
to convert it into an ordinary differential for each separate coeflicient u,(t). Solve the
ODE. Be very careful with one particular case.

By writing the initial conditions in terms of the eigenfunctions, identify the integration
constants. Write out a complete summary of the solution. Make sure to identify the
values of your numbering index in each expression.

9



14

Reconsider the separation of variables solution you derived. Using some programming
language, evaluate the found solution at 101 equally spaced z-values from 0 to ¢ at
time ¢ = 0.25 and so plot u versus x at that time. Repeat for ¢ = 0.5. Include at least
50 nonzero terms in the summations. Take £ = 1 and @ = 1. Compare with your (or
the instructor’s) D’Alembert solution. It should show good agreement. What happens
if you only include 10 terms in the summations?

To help you get started, a Matlab program that plots the solution to problem 7.28 is
provided as an example. You need both p728.m% and p7_28u.m?. This program is
valid for the PDE and BC solved in class, with the additional data

1

@n—12 g(x) =0= g, =0.

T, f(x)z%#—xifn:

These may of course not apply for your problem.

To run the program, enter matlab and type in p7_28. If you do not have matlab, a free
replacement is octave. Or you can use some other programming and plotting facilities.

Include your code.

Solve 7.26, by Laplace transforming the problem as given in time. This is a good way
to practice back transform methods. Note that one factor in u is a simpler function at
a shifted value of coordinate s.

Solve 7.35 by Laplace transform in time. Clean up completely; only the given function
may be in your answer, no Heaviside functions or other weird stuff. There is a minor
error in the book’s answer.

Refer to problem 7.19. Find a function wug(z, t) that satisfies the inhomogeneous bound-
ary conditions. Define v = u — ugy. Find the PDE, BC and IC satisfied by v.

Find suitable eigenfunctions in terms of which v may be written, and that satisfy the
homogeneous boundary conditions. Write the relevant known functions in terms of
these eigenfunctions and give the expressions for their Fourier coefficients.

04/25 F

. Continuing the previous homework, solve for v using separation of variables in terms

of integrals of the known functions f(z), go(t), and ¢;(t). Write the solution for u
completely.

. Assume that f =0, k = ¢ =1, and that u, =t at both x = 0 and = = /. Work out

the solution completely.

../p7_28.m
../p7_28u.m

10



3. Plot the solution numerically at some relevant times. I suspect that for large times the
solution is approximately

AR LIRS

Do your results agree?

11
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