7.36

1 7.36, §1 Asked

Asked: Find the horizontal perturbation velocity in a supersonic flow above a membrane overlaying a compressible variable medium.

2 7.36, §2 PDE Model

- Domain $\bar{\Omega}: 0 \leq x<\infty, 0 \leq y<\infty$
- Unknown horizontal perturbation velocity $u=u(x, y)$
- Hyperbolic
- Two homogeneous initial conditions
- One mixed boundary condition at $y=0$ and a regularity constraint at $y=\infty$
- Constant $a=\tan \mu$, where μ is the Mach angle.

Try a Laplace transform. The physics and the fact that Laplace transforms like only initial conditions suggest that x is the one to be transformed. Variable x is our "time-like" coordinate.

3 7.36, §3 Transform

Transform the PDE:

$$
u_{x x}=a^{2} u_{y y} \quad \stackrel{\text { Table 6.3,\#3 }}{ } \quad s^{2} \hat{u}-s u(0, y)-u_{x}(0, y)=a^{2} \hat{u}_{y y}
$$

Transform the BC:

$$
u_{y}-p u=f(x) \quad \Longrightarrow \quad \hat{u}_{y}-p \hat{u}=\hat{f}(s)
$$

4 7.36, §4 Solve

Solve the PDE, again effectively a constant coefficient ODE:

$$
\begin{gathered}
s^{2} \hat{u}=a^{2} \hat{u}_{y y} \\
s^{2}=a^{2} k^{2} \Longrightarrow \quad \Longrightarrow= \pm s / a \\
\hat{u}=A e^{s y / a}+B e^{-s y / a}
\end{gathered}
$$

Apply the BC at $y=\infty$:

$$
A=0
$$

Apply the BC at $y=0$:

$$
\hat{u}_{y}-p \hat{u}=\hat{f} \quad \Longrightarrow \quad-\frac{s}{a} B-p B=\hat{f}
$$

Solving for B and plugging it into the expression for \hat{u} gives:

$$
\hat{u}=-\frac{a \hat{f}}{s+a p} e^{-s y / a}
$$

5 7.36, §5 Back

We need to find the original to

$$
\hat{u}=-\frac{a}{s+a p} \hat{f} e^{-s y / a}
$$

Looking in the tables:

$$
\frac{1}{s+a p} \stackrel{\text { Table 6.4, \#3 }}{\Longrightarrow} e^{-a p x}
$$

The other factor is a shifted function f, restricted to the interval that its argument is positive:

$$
e^{-s y / a} \hat{f} \xrightarrow{\text { Table 6.3, \#6 }} \bar{f}\left(x-\frac{y}{a}\right)
$$

With the bar, I indicate that I only want the part of the function for which the argument is positive. This could be written instead as

$$
f\left(x-\frac{y}{a}\right) H\left(x-\frac{y}{a}\right)
$$

where the Heaviside step function $H(x)=0$ if x is negative and 1 if it is positive.

Use convolution, Table 6.3, \# 7. again to get the product.

$$
u(x, y)=-\int_{0}^{x} a \bar{f}\left(\xi-\frac{y}{a}\right) e^{-a p(x-\xi)} \mathrm{d} \xi
$$

This must be cleaned up. I do not want bars or step functions in my answer.
I can do that by restricting the range of integration to only those values for which \bar{f} is nonzero. (Or H is nonzero, if you prefer) Two cases now exist:

$$
\begin{gathered}
u(x, y)=-\int_{y / a}^{x} a f\left(\xi-\frac{y}{a}\right) e^{-a p(x-\xi)} \mathrm{d} \xi \quad\left(x>\frac{y}{a}\right) \\
u(x, y)=0 \quad\left(x<\frac{y}{a}\right)
\end{gathered}
$$

It is neater if the integration variable is the argument of f. So, define $\phi=\xi-y / a$ and convert:

$$
\begin{gathered}
u(x, y)=-\int_{0}^{x-y / a} a f(\phi) e^{-a p x+p y+a p \phi} \mathrm{~d} \phi \quad\left(x>\frac{y}{a}\right) \\
u(x, y)=0 \quad\left(x<\frac{y}{a}\right)
\end{gathered}
$$

This allows me to see which physical f values I actually integrate over when finding the flow at an arbitrary point:

6 7.36, §6 Alternate

An alternate solution procedure is to define a new unknown:

$$
v \equiv u_{y}-p u
$$

You must derive the problem for v :
The boundary condition is simply:

$$
v(x, 0)=f(x)
$$

To get the PDE for v, use

$$
\frac{\partial[P D E]}{\partial y}-p[P D E] \quad \Longrightarrow \quad v_{t t}=a^{2} v_{x x}
$$

Similarly, for the initial conditions:

$$
\frac{\partial[I C s]}{\partial y}-p[I C s] \quad \Longrightarrow \quad v(0, y)=v_{x}(0, y)=0
$$

After finding v, I still need to find u from the definition of v :

$$
v \equiv u_{y}-p u
$$

Where do you get the integration constant??

Figure 1: Supersonic flow over a membrane.

Figure 2: Supersonic flow over a membrane.

Figure 3: Function \bar{f}.

Figure 4: Function \bar{f}.

Figure 5: Supersonic flow over a membrane.

Figure 6: Problem for v.

