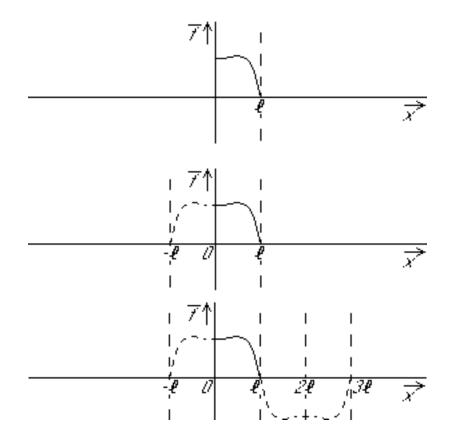
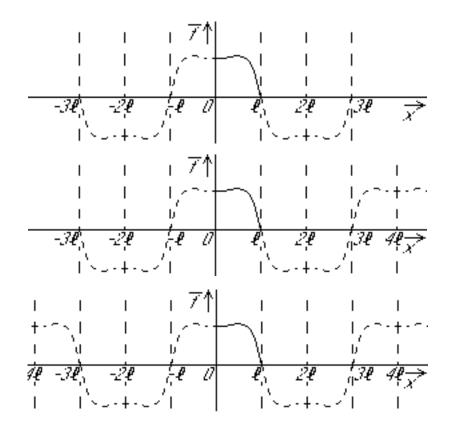

1 7.28, §1 Asked

Asked: Find the pressure for sound wave propagation in a tube with one end closed and one end open.

2 7.28, §2 P.D.E. Model

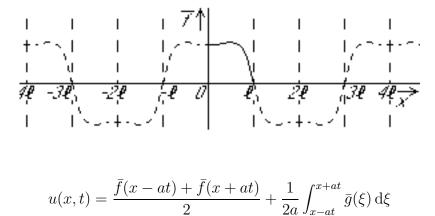
- Finite domain $\bar{\Omega}: 0 \le x \le \ell$
- Unknown pressure u = u(x, t)
- Hyperbolic
- Two initial conditions

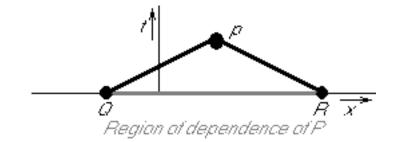

- One homogeneous Neumann boundary condition at x = 0 and a homogeneous Dirichlet condition at $x = \ell$.
- Constant speed of sound *a* and much smaller flow velocities.


Try D'Alembert

3 7.28, §3 Boundaries

- Get rid of the boundaries by imagining that the pipe extends from $-\infty < x < \infty$
- To do so, we must extend the initial conditions f(x) and g(x) to all x. Call the extended functions $\bar{f}(x)$ (or F) and $\bar{g}(x)$ (or G).
- The extended functions should make the given boundary conditions automatic.


To make the boundary condition $u_x = 0$ at x = 0 automatic, create symmetry around x = 0 To make the boundary condition u = 0 at $x = \ell$ automatic, create antisymmetry (odd symmetry) around $x = \ell$.


Create the extended function $\bar{g}(x)$ or G the same way.

4 7.28, §4 Solution

$$2 \qquad 2a J_x$$

Probably pretty easy to evaluate.

In the range $0 \le x \le \ell$, the found solution is exactly the same as for the finite pipe!

Note that if f and/or g does not satisfy the given boundary conditions, \overline{f} and \overline{g} may have kinks or jumps.