7.24

1 7.24, §1 Asked

Asked: Find the flow velocity in a viscous fluid being dragged along by an accelerating plate.

Figure 1: Viscous flow next to a moving plate

2 7.24, §2 PDE Model

Figure 2: Viscous flow next to a moving plate

- Semi-infinite domain $\bar{\Omega}: 0 \leq x<\infty$
- Unknown vertical velocity $u=u(x, t)$
- Parabolic
- One homogeneous initial condition
- One Neumann boundary condition at $x=0$ and a regularity constraint at $x=\infty$
- Constant kinematic viscosity κ

Try a Laplace transform in t.

3 7.24, §3 Transform

Transform the PDE:

$$
u_{t}=\kappa u_{x x} \xlongequal{\text { Table 6.3,\#3 }} s \hat{u}-u(x, 0)=\kappa \hat{u}_{x x}
$$

Transform the BC:

$$
u_{x}=g(t) \quad \Longrightarrow \quad \hat{u}_{x}=\hat{g}(s)
$$

4 7.24, §4 Solve

Solve the PDE:

$$
s \hat{u}=\kappa \hat{u}_{x x}
$$

This is a constant coefficient ODE in x, with s simply a parameter. Solve from the characteristic equation:

$$
\begin{gathered}
s=\kappa k^{2} \quad \Longrightarrow \quad k= \pm \sqrt{s / \kappa} \\
\hat{u}=A e^{\sqrt{s / \kappa} x}+B e^{-\sqrt{s / \kappa} x}
\end{gathered}
$$

Apply the BC at $x=\infty$ that u must be regular there:

$$
A=0
$$

Apply the given BC at $x=0$:

$$
\hat{u}_{x}=\hat{g}(s) \quad \Longrightarrow \quad-B \sqrt{\frac{s}{\kappa}}=\hat{g}
$$

Solving for B and plugging it into the solution of the ODE, \hat{u} has been found:

$$
\hat{u}=-\sqrt{\frac{\kappa}{s}} e^{-\sqrt{s / \kappa} x} \hat{g}
$$

5 7.24, §5 Back

We need to find the original function u corresponding to the transformed

$$
\hat{u}=-\sqrt{\frac{\kappa}{s}} e^{-\sqrt{s / \kappa} x} \hat{g}
$$

We do not really know what \hat{g} is, just that it transforms back to g. However, we can find the other part of \hat{u} in the tables.

$$
-\sqrt{\frac{\kappa}{s}} e^{-\sqrt{s / \kappa} x} \xlongequal{\text { Table 6.4,\#7 }}-\sqrt{\frac{\kappa}{\pi t}} e^{-x^{2} / 4 \kappa t}
$$

How does \hat{g} times this function transform back? The product of two functions, say $\hat{f}(s) \hat{g}(s)$, does not transform back to $f(t) g(t)$. The convolution theorem Table $6.3 \# 7$ is needed:

$$
u(x, t)=-\int_{0}^{t} \sqrt{\frac{\kappa}{\pi(t-\tau)}} e^{-x^{2} / 4 \kappa(t-\tau)} g(\tau) \mathrm{d} \tau
$$

