
7.20m

1 7.20m, §1 Asked

Asked: Find the unsteady temperature distribution in the bar below for arbitrary position
and time if the initial temperature distribution f at time zero, the heat flux g0 out of the left
end, the temperature g1 of the right end, and the added heat q are given.

Figure 1: Heat conduction in a bar.

2 7.20m, §2 P.D.E. Model

Figure 2: Heat conduction in a bar.

• Finite domain Ω̄: 0 ≤ x ≤ `

• Unknown temperature u = u(x, t)

• Constant κ, so a linear constant coefficient PDE.



• Parabolic

• Inhomogeneous

• One initial condition

• One Neumann boundary condition

• One Dirichlet boundary condition

• All of f , g0, g1, and q are given functions.

We would like to use separation of variables to write the solution in a form that looks roughly
like:

u(x, t) =
∑

n

un(t)Xn(x)

Here the Xn would be the eigenfunctions. The un cannot be eigenfunctions since the time axis
is semi-infinite. Also, Sturm-Liouville problems require boundary conditions at both ends, not
initial conditions.

However, eigenfunctions must have homogeneous boundary conditions, so if u was written as
a sum of eigenfunctions, it could not satisfy the given inhomogeneous boundary conditions.
Fortunately, we can apply a trick to get around this problem.

3 7.20m, §3 Boundary Condition Fix

To get rid of the inhomogeneous boundary conditions at x = 0 and x = `, use the following
trick:

Trick: Find any function u0 that satisfies the inhomogeneous boundary conditions at x = 0
and x = ` and substract it from u. The remainder, call it v, will have homogeneous boundary

conditions.

So, we try to find a u0(x, t) that satisfies the same boundary conditions as u(x, t):

u0x(0, t) = g0(t) u0(`, t) = g1(t)

This u0 does not have to satisfy the PDE nor IC, which allows us to take something simple
for it.

A linear function of x works:
u0(x, t) = A(t) + B(t)x

If we require this to satisfy the two boundary conditions for u above, we get

B(t) = g0(t) A(t) + B(t)` = g1(t)



The solution is B(t) = g0(t) and A(t) = g1(t) − B(t)`. So our u0 is

u0(x, t) = g1(t) + g0(t)(x − `)

Please keep in mind what we know, and what we do not know. Since we (supposedly) have
been given functions g0(t) and g1(t), function u0 is from now on a known quantity, as above.
I put a box around it so that we can later find it back.

You could use something more complicated than a linear function if you like to make things
difficult for yourself. Go ahead and use A(t)erf(x) + B(t)J0(x) if you really love to integrate
error functions and Bessel functions. It will work. I prefer a linear function myself, though.
(For some problems, you may need a quadratic instead of a linear function.)

Under certain conditions, there may be a better choice than a low order polynomial in x.
If the problem has steady boundary conditions and a simple steady solution, go ahead and
take u0 to be that steady solution. It will work great. However, in this case the boundary
conditions are not steady; we are assuming that g0 and g1 are arbitrary given functions of
time.

Having found u0, define a new unknown v as the remainder when u0 is substracted from u:

v ≡ u − u0

We now solve the problem by finding v. When we have found v, we simply add u0, already
known, back in to get u.

To do so, first, of course, we need the problem for v to solve. We get it from the problem for
u by everywhere replacing u by u0 + v. Let’s take the picture of the problem for u in front of
us and start converting.

Figure 3: Heat conduction in a bar.



First take the boundary conditions at x = 0 and x = `:

ux(0, t) = g0(t) u(`, t) = g1(t)

Replacing u by u0 + v:

u0x(0, t) + vx(0, t) = g0(t) u0(`, t) + v(`, t) = g1(t)

But since by construction u0x(0, t) = g0 and u0(`, t) = g1,

vx(0, t) = 0 v(`, t) = 0

Note the big thing: while the boundary conditions for v are similar to those for u, they are
homogeneous. We will get a Sturm-Liouville problem in the x-direction for v where we did
not for u. That is what u0 does for us.

We continue finding the rest of the problem for v. We replace u by u0 + v into the PDE
ut = κuxx + q,

u0t + vt = κ(u0xx + vxx) + q

and take all u0 terms to the right hand side:

vt = κvxx + q̄

where q̄ = κu0xx + q − u0t, or, written out

q̄(x, t) = q(x, t) − g′

1(t) − g′

0(t)(x − `)

Hence q̄ is now a known function, just like q.

The final part of the problem for u that we have not converted yet is the initial condition. We
replace u by u0 + v in u(x, 0) = f(x),

u0(x, 0) + v(x, 0) = f(x)

and take u0 to the other side:
v(x, 0) = f̄(x)

where f̄(x) is f(x) − u0(x, 0), or written out:

f̄(x) = f(x) − g1(0) − g0(0)(x − `)

Again, f̄ is now a known function.

The problem for v is now the same as the one for u, except that the boundary conditions are
homogeneous and functions f and q have changed into known functions f̄ and q̄.

Using separation of variables, we can find the solution for v in the form:

v(x, t) =
∑

n

vn(t)Xn(x).

We already know how to do that! (Don’t worry, we will go over the steps anyway.) Having
found v, we will simply add u0 to find the asked temperature u.



4 7.20m, §4 Eigenfunctions

To find the eigenfunctions Xn, substitute a trial solution v = T (t)X(x) into the homogeneous

part of the PDE, vt = κvxx + q̄. Remember: ignore the inhomogeneous part q̄ when finding
the eigenfunctions. Putting v = T (t)X(x) into vt = κvxx produces:

T ′X = κTX ′′

Separate variables:
T ′

κT
=

X ′′

X
= constant = −λ

As always, λ cannot depend on x since the left hand side does not. Also, λ cannot depend on
t since the middle does not. So λ must be a constant.

We then get the following Sturm-Liouville problem for any eigenfunctions X(x):

−X ′′ = λX X ′(0) = 0 X(`) = 0

The last two equations are the boundary conditions on v which we made homogeneous.

This is the exact same eigenvalue problem that we had in problem 7.28b, so I can just take
the solution from there. The eigenfunctions are:

λn =
(2n − 1)2π2

4`2
Xn = cos

(

(2n − 1)πx

2`

)

(n = 1, 2, 3, . . .)

5 7.20m, §5 Solve the Problem

We again expand everything in the problem for v in a Fourier series:

Figure 4: Heat conduction in a bar.



We write

v =
∞
∑

n=1

vn(t)Xn(x) f̄ =
∞
∑

n=1

f̄nXn(x) q̄ =
∞
∑

n=1

qn(t)Xn(x)

Since q̄(x) and f̄(x) are known functions, we can find their Fourier coefficients from orthogo-
nality:

f̄n =

∫ `
0 f̄(x)Xn(x) dx

∫ `
0 X2

n(x) dx

q̄n(t) =

∫ `
0 q̄(x, t)Xn(x) dx

∫ `
0 X2

n(x) dx

or with the eigenfunctions written out

f̄n =

∫ `
0 f̄(x) cos((2n − 1)πx/2`) dx
∫ `
0 cos2((2n − 1)πx/2`) dx

q̄n(t) =

∫ `
0 q̄(x, t) cos((2n − 1)πx/2`) dx

∫ `
0 cos2((2n − 1)πx/2`) dx

The integrals in the bottom equal 1
2
`.

So the Fourier coefficients f̄n are now known constants, and the q̄n(t) are now known functions
of t. Though in actual application, numerical integration may be needed to find them. During
finals, I usually make the functions f , g0 and g1 simple enough that you can do the integrals
analytically.

Now write the PDE vt = κvxx + q̄ using the Fourier series:

∞
∑

n=1

v̇n(t)Xn(x) = κ
∞
∑

n=1

vn(t)X ′′

n(x) +
∞
∑

n=1

qn(t)Xn(x)

Looking in the previous section, the Sturm-Liouville ODE was −X ′′ = λX, so the PDE
simplifies to:

∞
∑

n=1

v̇n(t)Xn(x) = −κ
∞
∑

n=1

λnvn(t)Xn(x) +
∞
∑

n=1

qn(t)Xn(x)

It will always simplify or you made a mistake.

For the sums to be equal for any x, the coefficients of every individual eigenfunction must
balance. So we get

v̇n(t) + κλnvn(t) = qn(t)

We have obtained an ODE for each vn. It is again constant coefficient, but inhomogeneous.

Solve the homogeneous equation first. The characteristic polynomial is

k + κλn = 0



so the homogeneous solution is
vnh = Ane

−κλnt

For the inhomogeneous equation, since we do not know the actual form of the functions q,
undetermined constants is not a possibility. So we use variation of parameter:

vn = An(t)e−κλnt

Plugging into the ODE produces

A′

ne−κλnt + 0 = qn(t) =⇒ A′

n = qn(t)eκλnt

We integrate this equation to find An. I could write the solution using an indefinite integral:

An(t) =
∫

qn(t)eκλnt dt

But that has the problem that the integration constant is not explicitly shown, which makes
it impossible to apply the initial condition. It is better to write the anti-derivative using an
integral with limits plus an explicit integration constant as:

An(t) =
∫ t

τ=0
qn(τ)eκλnτ dτ + An0

You can check using the Leibnitz rule for differentiation of integrals (or really, just the fun-
damental theorem of calculus,) that the derivative is exactly what it should be. (Also, the
lower limit does not really have to be zero; you could start the integration from 1, if it would
be simpler. The important thing is that the upper limit is the independent variable t.)

Putting the found solution for An(t) into

vn = An(t)e−κλnt

we get, cleaned up:

vn(t) =
∫ t

τ=0
qn(τ)e−κλn(t−τ) dτ + An0e

−κλnt

We still need to find the integration constant An0. To do so, write the IC v(x, 0) = f̄(x) using
Fourier series:

∞
∑

n=0

vn(0)Xn(x) =
∞
∑

n=0

f̄nXn(x)

This gives us initial conditions for the vn:

vn(0) = f̄n = An0

the latter from above, and hence

vn(t) =
∫ t

τ=0
qn(τ)e−κλn(t−τ) dτ + f̄ne

−κλnt

or writing out the eigenvalue:

vn(t) =
∫ t

τ=0
qn(τ)e−κ(2n−1)2π2(t−τ)/4`2 dτ + f̄ne

−κ(2n−1)2π2t/4`2

We have vn in terms of known quantities, so we are done.



6 7.20m, §6 Total

Collecting all the boxed formulae together, the solution is found by first computing the coef-
ficients f̄n from:

f̄n =
2

`

∫ `

0
f̄(x) cos((2n − 1)πx/2`) dx (n = 1, 2, 3, . . .)

where
f̄(x) = f(x) − g1(0) − g0(0)(x − `)

Also compute the functions q̄n(t) from:

q̄n(t) =
2

`

∫ `

0
q̄(x, t) cos((2n − 1)πx/2`) dx (n = 1, 2, 3, . . .)

where
q̄(x, t) = q(x, t) − g′

1(t) − g′

0(t)(x − `)

Then the temperature is:

u(x, t) = g1(t) + g0(t)(x − `)

+
∞
∑

n=1

[
∫ t

τ=0
qn(τ)e−κ(2n−1)2π2(t−τ)/4`2 dτ + f̄ne−κ(2n−1)2π2t/4`2

]

cos((2n − 1)πx/2`)

7 7.20m, §7 More Fun

We can, if we want, write the solution for v in other ways that may be more efficient numer-
ically. The solution was, rewritten more concisely in terms of the eigenvalues and eigenfunc-
tions:

v(x, t) =
∑

n

[
∫ t

τ=0
q̄n(τ)e−κλn(t−τ) dτ + f̄ne

−κλnt
]

Xn(x).

The first part is due to the inhomogeneous term q̄ in the PDE, the second due to the initial
condition v(x, 0) = f̄(x)

Look at the second term first, let’s call it vf ,

vf ≡
∑

n

f̄ne−κλntXn(x).

We can substitute in the orthogonality relationship for f̄(x):

vf =
∑

n

∫ `
0 f̄(ξ)Xn(ξ) dξ
∫ `
0 X2

n(ζ) dζ
e−κλntXn(x)



and change the order of the terms to get:

vf =
∫ `

0

[

∑

n

Xn(ξ)Xn(x)
∫ `
0 X2

n(ζ) dζ
e−κλnt

]

f̄(ξ)dξ

We define a shorthand symbol for the term within the square brackets:

G(x, t, ξ) ≡
∑

n

Xn(ξ)Xn(x)
∫ `
0 X2

n(ζ) dζ
e−κλnt

Since this does not depend on what function f̄(x) is, we can evaluate G once and for all. For
any f̄(x), the corresponding temperature is then simply found by integration:

vf (x, t) =
∫ `

0
G(x, t, ξ)f̄(ξ)dξ

Function G(x, t, ξ) by itself is the temperature v(x, t) if f̄ is a single spike of heat initially
located at x = ξ. Mathematically, G is the solution for v if f̄(x) is the “delta function”
δ(x − ξ).

Now look at the first term in v, due to q̄, let’s call it vq:

vq ≡
∑

n

∫ t

τ=0
q̄n(τ)e−κλn(t−τ) dτXn(x)

We plug in the orthogonality expression for q̄n(τ):

vq =
∞
∑

n=0

∫ t

τ=0

∫ `
0 q̄(ξ, τ)Xn(ξ) dξ

∫ `
0 X2

n(ζ) dζ
e−κλn(t−τ) dτXn(x)

and rewrite

vq =
∫ t

τ=0

∫ `

0

[

∑

n

Xn(ξ)Xn(x)
∫ `
0 X2

n(ζ) dζ
e−κλn(t−τ)

]

q̄(ξ, τ) dξ dτ

We see that

vq(x, t) =
∫ t

τ=0

∫ `

0
G(x, t − τ, ξ)q̄(ξ, τ) dξ dτ

where the function G is exactly the same as it was before. However, G(x, t − τ, ξ) describes
the temperature due to a spike of heat added to the bar at a time τ and position ξ; it is called
the Green’s function.

The fact that solving the initial value problem (f̄), also solves the inhomogeneous PDE prob-
lem (q̄) is known as the Duhamel principle. The idea behind this principle is that fuction
q̄(x, t) can be “sliced up” as a cake. The contribution of each slice τ ≤ t ≤ τ + dτ of the
cake to the solution v can be found as an initial value problem with q̄(x, τ) dτ as the initial
condition at time τ .


