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Preface

To the Student

This is a collection of notes on calculus.

Sections marked with “[NC]” in their title are not part of the material covered
in “Analysis in Mechanical Engineering.” Read them if you are interested.

The usual “Why this book?” blah-blah will eventually be found in a note at
the back of this book, {N.1} A version history is in note {N.2}.

This is a living document. At this stage it is a rough initial concept. That is
reflected in the version number. Maybe at some later time it becomes something
useful for a general audience to read.
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The same for sections that cannot be understood without delving back into
earlier material. All within reason of course. If you pick a random starting word
somewhere in the book and start reading from there, you most likely will be

xiii



xiv PREFACE

completely lost. But sections are intended to be fairly self-contained, and you
should be able read one without backing up through all of the text.

General editorial comments are also welcome.



Chapter 1

Graphs

1.1 Introduction

Graphs are important for engineers for a number of reasons:

• Understanding relationships between variables.

• Summarizing data.

• Representing data (like in a Moody diagram).

• Interpolating data.

• Understanding the overal nature of data. See warming.jpg1 for an example
that you simply could not appreciate by looking at a list of numbers.

• ...

Look for:
• Intercepts. Intercepts with the x-axis satisfy y = 0. Intercepts with
the y-axis satisfy x = 0.

• A symmetry line exists if the curve is the same at both sides of the
line. More precisely, a symmetry line acts as a mirror that mirrors
the curve into itself. The y-axis is a symmetry line if the sign of x
does not make a difference. The x-axis is one if the sign of y does
not make a difference. The 45◦ line y = x is one if swapping x and
y does not make a difference.

• Symmetry points. Every point on the curve must have match at the
exact opposite side of a symmetry point. Mathematically, if ~r1 is on
the curve, then so must be ~rS − (~r1 − ~rS). The origin is a symmetry
point if y(−x) = −y(x), i.e. if function y(x) is antisymmetric.

1http://www.eng.fsu.edu/~dommelen/calculus/warming.jpg

1
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• Singular points:

• corners where the direction of the curve changes by an
angle less than 180◦,

• cusps where it changes 180◦,

• crossings where the curve crosses itself,

• positions of infinite curvature,

• . . .

If y or any of its derivatives is infinite or not uniquely defined, the
curve has a singularity at that point.

• A vertical asymptote xva = A exists if y → ±∞ for x → A.

• A horizontal asymptote y = A exists if A = limx→±∞ y exists.

• Behavior for x → ±∞ (e.g. y ∼ |x|p for some p).

• An oblique asymptote yoa = Ax + B exists if A = limx→±∞ y′ and
b = limx→±∞ y−Ax exist. (Or more simply if limx→±∞ y−Ax−B =
0.)

• Extent in x (the range of x-values of the curve) and extent in y (the
range of y-values of the curve). If y is a given function of x, then
the x-extent is the x-values for which y can be computed, but the y
extent may not be so simple.

• Minima and maxima. A global maximum/minimum is the high-
est/lowest value of y that can be found anywhere. You should find
both the value of the maximum/minimum and its location(s). A
local maximum/minimum is the highest/lowest value that can be
found in a small vicinity around the localtion of the local maxi-
mum/minimum. Normally, you first find the local maxima/minima,
and then, based on consideration of the entire graph, decide whether
they are also global ones. The derivative changes sign at a maxi-
mum/minimum if defined at both sides of the maximum/minimum.
So look for both zero derrivatives and singular points.

• Concavity is upward if y′′ > 0, downward if y′′ < 0.

• Inflection points are points where the concavity changes sign.

See [1, Chapters 13-15]

1.2 Example

From [1, p. 128, 13a]

Asked: Draw the graph of

xy =
(

x2 − 9
)2
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1.2.1 Using reasoning

xy =
(

x2 − 9
)2

Instead of starting to crunch numbers, look at the pieces first:
Factor x2 − 9 = (x− 3)(x+ 3) is a parabola with zeros at x = ±3:

Squaring gives a quartic with double zeros at x = ±3:

Dividing by x will produce a simple pole at x = 0 and also a sign change at
negative x:

Function y(x):
• has an x-extent x 6= 0 and a y-extend −∞ < y < ∞;
• is odd (symmetric with respect to the origin);
• has a relative maximum at -3 of finite curvature: y ∝ (x+ 3)2;
• has a relative minimum at 3 of finite curvature: y ∝ (x− 3)2;
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• has a vertical asymptote at x = 0 with asymptotic behavior: y ∼
81/x for |x| → 0;

• behaves asymptotically as y ∼ x3 for x → ±∞;
• is concave up for x > 0, down for x < 0. (Should really prove this, I
guess.)

1.2.2 Using brute force

y =
(x2 − 9)

2

x

Hence
• intercepts with x-axis are at x = ±3;
• no intercepts with the y axis;
• y is an odd function of x (symmetric about the origin);
• for x ↓ 0, y → ∞ (vertical asymptote);
• for x ↑ 0, y → −∞ (singularity is an odd, simple pole);
• for x → ±∞, y ∼ x3 → ±∞.

y′ ≡ dy

dx
=

(x2 − 9) (3x2 + 9)

x2

Hence,
• y′ > 0 for −∞ < x < −3 (y increases from −∞);
• y′ = 0 for x = −3 (local maximum, y = 0);
• y′ < 0 for −3 < x < 0 (y decreases towards −∞);
• y′ = −∞ for x = 0 (singular point, vertical asymptote);
• y′ < 0 for 0 < x < −3 (decreases from ∞);
• y′ = 0 for x = 3 (local minimum, y = 0);
• y′ > 0 for 3 < x < ∞ (increases to ∞).
Also,
• y′ → ∞ when x → ±∞ (no horizontal or oblique asymptotes);
• all derivatives exist, except at x = 0, which has no point on the curve
(no corners, cusps, infinite curvature, or other singular points);

• probably no inflection points.

y′′ =
6x4 + 162

x3

Hence
• really no inflection points (since there is no point at x = 0);
• cocave downward for x < 0, upward for x > 0.
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Hence the x- and y-extends are as before.

1.3 Example

From [1, p. 128, 13g]
Asked: Graph

y = x
√
x− 1

1.3.1 Solution

y = x
√
x− 1

Factor
√
x− 1 is

√
x shifted one unit towards the right.

Multiplying by x magnifies it by a factor ranging from 1 to ∞:

Function y(x):
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• has an x-extent x ≥ 1 and a y-extent y ≥ 0;
• behaves asymptotically as y ∼ x3/2 for x → ∞;
• is monotonous:

y′ =
dy

dx
=

√
x− 1 +

x

2
√
x− 1

=
2x− 2 + x

2
√
x− 1

=
3x− 2

2
√
x− 1

> 0;

• has vertical slope at x = 1;
• is concave down for smaller x, concave up for larger x;
• the inflection point is at

y′′ =
3x− 4

4(x− 1)3/2
= 0

giving x = 4/3.



Chapter 2

Optimization

2.1 Introduction

Optimization is important for engineers for a number of reasons:

• A best design finds the maximum of some benefit function.

• Drag reduction minimizes drag.

• Potential energy minimization finds the stationary state of a system. That
is the basis for true finite element methods.

• Much of economics is based on finding the extrema of cost or benefi func-
tions.

• ...

Key ideas:

• zero partial derivatives at an interior extremum

• Lagrangian multipliers can account for constraints

2.2 Example

From [1, p. 116, 30]

7
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Given: A free standing wall, located 33
8
ft from the side of a house.

Asked: What is the length ℓ of the shortest ladder that can reach the house
(over the free standing wall).

2.2.1 Definition

Two degrees of freedom: say h and d

One inequality constraint: the ladder must be above the free standing wall.

2.2.2 Reduction

The shortest ladder hits the free standing wall:
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One degree of freedom left: ϕ.

2.2.3 Further reduction

At the minimum:

dℓ

dϕ
= 0
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2.2.4 Finding the length

First find a:

a =
8

tanϕ
.

Then:

ℓ =
33
8
+ a

cosϕ
=

33
8

cosϕ
+

8

sinϕ
(2.1)

2.2.5 Finding the optimum angle

dℓ

dϕ
=

33
8

cos2 ϕ
sinϕ− 8

sin2 ϕ
cosϕ = 0.

27

8 cos2 ϕ
sinϕ =

8

sin2 ϕ
cosϕ

tan3 ϕ =
64

27
⇒ ϕmin = 0.9273 radians

2.2.6 Finding the optimum length

From (2.1)

ℓmin = 15.625 ft
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2.3 General Approach

If you do not know a priori that the ladder hits the wall, you can follow the
general approach.

There are now two degrees of freedom. They are conveniently taken to be h
and d.

Then the length of the ladder is, (from Pythagoras),

ℓ(h, d) =
√
h2 + d2

We now need to figure out what values of h and d produce the shortest
ladder.

2.3.1 Formulation

Note that by the definition of the problem, h > 8 and d > 33
8
. But these

constraints are not precise. For example, h = 8.001 and d = 33
8
+ 0.001 would

obviously have the ladder go through the wall.
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There is a precise constraint, that the ladder cannot pass through the wall.
If b is the height of the point on the ladder straight above the wall, then similar
triangles give:

b

d− 33
8

=
h

d
(= tanφ)

The constraint is that b ≥ 8, so:

h
d− 33

8

d
≥ 8 ⇒ h[d− 3

3

8
]− 8d ≥ 0

Note that this is in general an inequality constraint. Equality occurs when the
ladder hits the wall.

So the problem is to minimize

ℓ(h, d) =
√
h2 + d2

(from Pythagoras), subject to the inequality constraint

h[d− 33
8
]− 8d ≥ 0

To solve this, first plot the possible h and d values:

Plotting the curve where equality occurs in the constraint gives the bottom of
the grey region above. On that curve, the ladder hits the wall. If you go above
the curve, into the grey region, h becomes bigger and the ladder then moves
above the wall.

Now you must figure out whether the shortest ladder occurs in the strict
interior of the grey region or on its boundary. Try the interior first.



2.3. GENERAL APPROACH 13

2.3.2 Interior minima

For a minimum, at least locally, in the strict interior of the grey region, the
partial derivatives must be zero.

∂ℓ

∂d
= (h2 + d2)−1/2d = 0

∂ℓ

∂h
= (h2 + d2)−1/2h = 0

But these two requirements can only be true if d = h = 0, and that point is
not in the grey region. So there is no interior minimum (or maximum, for that
matter).

2.3.3 Boundary minima

Since the minimum is not in the interior, it must be on the boundary of
the grey region. Now obviously for infinite h or d or both you do not have the
shortest ladder. So the minimum cannot be on the boundary at infinity. It must
be on the curve where the ladder just hits the wall.
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But how do we find the minimum on this line? The partial derivatives of ℓ
are not zero at this point. (Just check that out in the previous subsection.)

The trick is to define an artificial third variable λ, called a “Lagrangian
multiplier,” corresponding to the constraint. (In the most general case, this
Lagrangian multiplier has no particular physical meaning.) Then define a new
function f to replace ℓ in the minimization:

f =
√
h2 + d2 + λ(h[d− 33

8
]− 8d).

Note that λ multiplies whatever is zero according to the constraint.
Now it turns out that you can find the desired minimum by finding an

unconstrained stationary point to this function f :

∂f/∂d = (h2 + d2)−1/2d+ λ(h− 8) = 0

∂f/∂h = (h2 + d2)−1/2h+ λ(d− 33
8
) = 0

∂f/∂λ = h[d− 33
8
]− 8d = 0

From the first two equations

(h2 + d2)−1/2d = −λ(h− 8) (h2 + d2)−1/2h = −λ(d− 33
8
)

or taking the ratio of these two equations,

d

h
=

h− 8

d− 33
8

Solving the constraint for h and putting it in the above gives after simplification:

(d− 33
8
)3 = 8× 27 ⇒ d = 75

8
⇒ h = 75

6
⇒ ℓ = 125

8

If you would have more than one constraint, there is one separate Lagrangian
multiplier for each one. For example, if you take care of the boundary conditions
in a finite element computation this way, you will get one for each boundary
condition at each boundary point.



Chapter 3

Approximations

3.1 Introduction

Why use approximation:

• Because it is needed. In fact everything you do in real life is an approxima-
tion. Real life is proably determined by some sort of quantum mechanics.
But we do not know what it is. And we would definitely not know how to
solve it even if we knew what it was.

• To reduce effort.

• To increase accuracy. You might be able to solve approximate equations
more accurately than more accurate equations, producing a better result.

• To get more insight in the problem. If you have computed say an incom-
pressible flow of interest, the only real thing you can say about it is that
indeed, it is free from singularities. You can wax about “vortices,” “fin-
gers,” “intestines,” etcetera, that you seem to see in the flow, but that
you can also see in the clouds in the sky. If you start computing the flow
for various parameters, you may start getting somewhere to an inkling
of insight. However, doing that is limited by what the computer can do.
And the interpretation will always have ambiguity. However, if you start
looking at limiting processes of your parameters, you are suddenly getting
somewhere. You can now define meaningful “boundary layers”, “vortex
layers”, “shocks.” etcetera that are not just arbitrary interpretations but
have rigorous mathematical definitions.

• ...

This chapter looks at simple approximations using Taylor series (which of
course always includes linearization.)

15
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3.2 Example

From [1, p. 402, 10b]
Asked: The Maclaurin series of sin2 x.

3.2.1 Identification

General Taylor series:

f(x) = f(a) + f ′(a)
x− a

1!
+ f ′′(a)

(x− a)2

2!
+ . . .

=
∞
∑

n=0

f (n)(a)
(x− a)n

n!

This is a power series (a is a given constant.) Maclaurin series: a = 0.
Approach:
• note that a = 0;
• identify the derivatives;
• evaluate them at a = 0;
• put in the formula;
• identify the terms for any value of n.

3.2.2 Results

f(x) = sin2 x f(0) = 0
f ′(x) = 2 sin x cos x f ′(0) = 0
f ′′(x) = 2 cos2 x− 2 sin2 x = 2− 4 sin2 x f ′′(0) = 2
f ′′′(x) = −8 sin x cos x = −4f ′(x) f ′′′(0) = 0
f ′′′′(x) = −4f ′′(x) f ′′′′(0) = −8
f (5)(x) = −4f ′′′(x) f (5)(0) = 0
f (6)(x) = −4f ′′′′(x) = (−4)2f ′′(x) f (6)(0) = 32
...

...

sin2 x = f(0) + f ′(0)
x− a

1!
+ f ′′(0)

(x− a)2

2!
+ . . .

= 2
x2

2!
− 8

x4

4!
+ 32

x6

6!
+ . . .

General expression:

When n = 2k with k ≥ 1: f (n) = 2(−4)ek−1 Otherwise: f (n)e = 0

sin2 x =
∞
∑

k=1

2(−4)k−1 x2k

(2k)!
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3.2.3 Other way

Write sin2 x = 1
2
− 1

2
cos(2x) and look up the Maclaurin series for the cosine.

(No fair.)

3.3 Example

From [1, p. 404, 30]
Asked: The area below y = sin x2 for 0 ≤ x ≤ 1.

3.3.1 Identification

∫ 1

0
sin x2 dx

Analytically? Actually, the integral is equivalent to
∫

(sin(x)/x) dx, which
cannot be written in terms of elementary functions.

But since the x range is not large, we will try approximating sin x2 using a
Taylor series.

3.3.2 Finish

The Taylor series of sin x2 is that of sin x with x replaced by x2. So:

∫ 1
0 sin x2 dx =

∫ 1

0

x2

1!
− x6

3!
+

x10

5!
+ . . .

=
1

3
− 1

3!7
+

1

5!11
= .3103± 0.0008

The error estimate is rigorous since the series is an alternating one whose
terms get smaller monotoneously.
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Chapter 4

Limits

4.1 Introduction

Taylor series often do not work because the functions involved are not analytic
at the point of interest. For example, this is common if the behavior of interest
is at large time, or for large values of some other parameter, like the Reynolds
number Re of a flow. (In fact, for flows in infinite domains it normally also
occurs for small Reynolds numbers.

Finding nonanalytic limits is then needed. Applications are very similar to
those of Taylor series:

• Because it is needed.

• To reduce effort.

• To increase accuracy.

• For making estimates of how importants something is.

• To get more insight. For example, consider the laminar flow past a flat
plate if the plate is aligned with the incoming flow velocity U . For finite
Reynolds numbers, there is little more you can say than that the flow
velocity will be zero at the plate, and U far away from the plate. To get
more insight than that, you can ask: “What is the limit of the velocity
for infinite Reynolds number Re, assuming that you keep the streamwise
location x fixed, as well as keep the ratio η = y

√
Re/x fixed, where y the

distance from the wall?” The answer is Uf ′(η) where f ′ is the Blasius
function tabulated in any real book on fluid mechanics. (If you instead
keep y itself fixed at a nonzero value, the limit is U , which is not very
interesting.) Most of my theoretical research in fluids (as opposed to in
numerical methods) really simply finds limits like this.

• ...

19
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4.2 Example

From [1, p. 227, 10v]
Asked:

lim
x→−∞

x2ex

4.2.1 Observations

lim
x→−∞

x2ex

You must first look whether the limit is trivial:

x2 → ∞ ex → 0

Since the product of infinity times zero is unknown, this limit is nontrivial.

4.2.2 L’Hopital

L’Hopital can be used if you create a ratio of quantities that both become zero
or both become infinite. (For example, you would not want to apply L’Hopital
on limx→0 3/2.)

lim
x→−∞

x2

e−x
= lim

x→−∞

(x2)
′

(e−x)′

Now both top and bottom become infinite. So L’Hopital can be applied, by
differentiating top and bottom separately:

lim
x→−∞

(x2)
′

(e−x)′
= lim

x→−∞

2x

−e−x
=

Still infinity over infinity, so differentiate once more

lim
x→−∞

2x

−e−x
= lim

x→−∞

2

e−x
= 0

4.2.3 Better

Using some insight is always better than just crunching it out. First simplify
things for yourself by defining u = −x. Then u goes to plus infinity instead of
minus infinity like x. Then

lim
x→−∞

x2ex lim
u→∞

u2

eu
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and that is zero because eu is much greater than any power of u for large positive
u. (To see that, just look at the Taylor series:

eu = 1 +
u

1!
+

u2

2!
+

u3

3!
+ . . .

The u3 term is much larger than u2 for large u and the other terms make eu

larger still.)
So you could replace x2 by x100 and the limit would still be zero.

4.3 Example

From [1, p. 228, 10z]
Asked:

lim
x→0

(x− arcsin x) csc3 x

4.3.1 Grinding it out

In

lim
x→0

(x− arcsin x) csc3 x

x and arcsin x become zero, but csc x becomes infinite. The total is undefined.
The simplest way to make a ratio suitable for l’Hopital is to use that csc x ≡

1/ sin x:

lim
x→0

(x− arcsin x) csc3 x = lim
x→0

x− arcsin x

sin3 x

Differentiate top and bottom

lim
x→0

1− (1− x2)−1/2

3 sin2 x cos x

Still zero over zero, so differentiate again

lim
x→0

−x(1− x2)−3/2

6 sin x cos2 x− 3 sin3 x

Still zero over zero, so differentiate again

lim
x→0

−(1− x2)−3/2 − 3x2(1− x2)−3/2

6 cos3 x− 21 sin2 x cos x
= 1

6

If I did not make any mistakes, I guess.
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4.3.2 Using insight

Since sin x ≈ x for small x, sin3 x ≈ x3. Also looking at a mathematical hand-
book, arcsin x ≈ x+ 1

6
x3 + . . .. So:

lim
x→0

x− arcsin x

sin3 x
≈ −1

6
x3

x3
= −1

6

(Note that we needed to keep the cubic term in the Taylor series for arcsin x
since the term x dropped out.)



Chapter 5

Surface and Volume Integrals

5.1 Introduction

Multiple integrals are used to find various engineering quantities:

• Areas (cost, heat losses, . . . ):

2D Cartesian: dA = dxdy

2D polar: dA = ρdρdθ

• Volumes (weight, ...):

3D Cartesian: dV = dxdydz

Cylindrical: dV = ρdρdθdz

Spherical: dV = r2 sinφdrdφdθ

• Centroids (center of gravity, center of pressure, ...)

x̄ =
∫

xdA
/
∫

dA x̄ =
∫

xdV
/
∫

dV

• Moments of inertia (solid body dynamics, center of pressure, ...)

Ix =
∫

y2dA I0 =
∫

x2 + y2dA

Ix =
∫

y2 + z2dV Ixy = −
∫

xydV

• ...
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If the material is not homogenous, you may have to put an additional density-like
factor in those integrals.

Procedure:

• Draw the region to be integrated over.

• When integrating, say
∫ ∫ ∫

f(a, b, c) dadbdc, you have to decide
whether you want to do a, b, or c first. Usually, you do the co-
ordinate with the easiest limits of integration first.

• If you decide to do, say, b first, (i.e. you want to integrate

∫ b2

b1
f(a, b, c) db

first), the limits of integration b1 and b2 must be identified from the
graph at arbitrary a and c, and are normally functions of a and c:
b1 = b1(a, c), b2 = b2(a, c).

• After integrating over, say, b, the remaining double integral should
no longer depend on b in any way. Nor does the region of integration:
redraw it without the b coordinate. In other words, project it onto
the a, c-plane. Then integrate over the next easiest coordinate in the
same way.

• If you change integration variables from a, b, c to p, q, r, the integral
becomes

∫ ∫ ∫

f(p, q, r)J dpdqdr with the “Jacobian”

J =
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂a
∂p

∂a
∂q

∂a
∂r

∂b
∂p

∂b
∂q

∂b
∂r

∂c
∂p

∂c
∂q

∂c
∂r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Here the inner bars indicate the determinant of the matrix of deriva-
tives and the outer bars the absolute value of that. (Sometimes it is
easier to take the inverse of the Jacobian of the inverse transforma-
tion.)

5.2 Example

From [1, p. 487, 14e]

Asked: Find the centroid of the first-quadrant area bounded by x2−8y+4 =
0 and x2 = 4y and x = 0.
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5.2.1 Region

5.2.2 Approach

Integrate x first?

The integral would have to be split up into the light and dark areas since the
lower boundary of integration is x1 = 0 in the light region and x1 =

√
8y − 4 in

the dark region.
So integrate y first!

The boundaries of integration will be

y1 =
1
4
x2 y2 =

1
8
x2 + 1

2

After integration over y, the remaining region of integration over x will be a
line segment:
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x1 = 0 x2 = 2

5.2.3 Results

For A =
∫

dA =
∫ ∫

dxdy:

A =
∫ x=2

x=0

[

∫ y= 1

8
x2+ 1

2

y= 1

4
x2

dy

]

dx

=
∫ 2

x=0

[

y
∣

∣

∣

y= 1

8
x2+ 1

2

y= 1

4
x2

]

dx

=
∫ 2

x=0

[

(1
8
x2 + 1

2
)− (1

4
x2)

]

dx

=
∫ 2

x=0

[

(1
2
− 1

8
x2
]

dx = 2
3
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For Ax̄ =
∫

xdA =
∫ ∫

xdxdy:

A =
∫ x=2

x=0

[

∫ y= 1

8
x2+ 1

2

y= 1

4
x2

x dy

]

dx

where x is constant in the integration;

=
∫ 2

x=0

[

xy
∣

∣

∣

y= 1

8
x2+ 1

2

y= 1

4
x2

]

dx

=
∫ 2

x=0

[

(1
8
x3 + 1

2
x)− (1

4
x3)

]

dx

=
∫ 2

x=0

[

(1
2
x− 1

8
x3
]

dx = 1
2

Hence x̄ = 1
2
/2
3
= 3

4
.

For Aȳ =
∫

ydA =
∫ ∫

ydxdy:

A =
∫ x=2

x=0

[

∫ y= 1

8
x2+ 1

2

y= 1

4
x2

y dy

]

dx

=
∫ 2

x=0

[

1
2
y2
∣

∣

∣

y= 1

8
x2+ 1

2

y= 1

4
x2

]

dx

=
∫ 2

x=0

[

1
2
(1
8
x2 + 1

2
)2 − 1

2
(1
4
x2)2

]

dx

=
∫ 2

x=0

[

(1
8
+ 1

16
x2 − 3

128
x2
]

dx = 4
15

Hence ȳ = 4
15
/2
3
= 2

5
.

5.3 Example

From [1, p. 507, 21c]

Asked: Find the centroid of the first octant region inside x2 + y2 = 9 and
below x+ z = 4.
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5.3.1 Approach

The region inside x2 + y2 = 9 is the inside of a cylinder of radius 3 around the
z-axis. The equation x + z = 4 describes a plane through the y-axis under 45
degrees with the x-axis:

Use cylindrical coordinates r, θ, and z:

x = r cos θ y = r sin θ

Integrate z first:

(Why not r first? Why not θ?). Boundaries are

z1 = 0 z2 = 4− x = 4− r cos θ

Next integrate θ and r:
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θ1 = 0 θ2 =
1
2
π

r1 = 0 r2 = 3

5.3.2 Results

For the volume V =
∫ ∫ ∫

dV =
∫ ∫ ∫

r dzdrdθ:

V =
∫ π/2

θ=0

∫ 3

r=0

[

∫ 4−r cos θ

z=0
r dz

]

drdθ

=
∫ π/2

θ=0

[
∫ 3

r=0
(4− r cos θ)rdr

]

dθ

=
∫ π/2

θ=0
18− 9 cos θdθ = 9(π − 1)

For V x̄ =
∫ ∫ ∫

x dV =
∫ ∫ ∫

xrdzdrdθ:

V x̄ =
∫ π/2

θ=0

∫ 3

r=0

[

∫ 4−r cos θ

z=0
r2 cos θ dz

]

drdθ

=
∫ π/2

θ=0

[
∫ 3

r=0
4r2 cos θ − r3 cos2 θdr

]

dθ

=
∫ π/2

θ=0
36 cos θ − 81

4
cos2 θdθ =

9

16
(64− 9π)

hence x̄ = (64− 9π)/16(π − 1)
Etcetera.
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Chapter 6

Combined Changes in Variables

6.1 Introduction

Combined changes in variables are common. For example:

• Error estimates.

• Changes for a moving particle in a field.

• Changes in scalar quantities depending on several variables,

• ...

The key concept is the total differential. For any function f = f(x, y, z),

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

Of course, f could be a vector.

6.2 Example

From [1, p. 422, 27a]

Given:

ω = 3

√

g

b

The maximum error in g is 1%, the maximum error in b is 0.5%.

Asked: The maximum percentage error in ω.
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6.2.1 Identification

Given is that the maximum error in g is 1% and the maximum error in b is 0.5%.
That means that the relative errors are:

δg

g
≤ 0.01

δb

b
≤ 0.005

where δg and δb are the absolute errors. Errors are always positive.
Error manipulation rules:
1. During addition and substraction of variables, add their absolute

errors;
2. During multiplication or division, add their relative errors;
3. During exponentiation, multiply the relative error by the absolute

power.

6.2.2 Results

Consider first the relative change in g/b due to changes dg in g and db in b. The
rule for differentiating a ratio implies:

d(g/b)

(g/b)
=

b

g

(

bdg − gdb

b2

)

=
dg

g
− db

b

Note that if you do not know the sign of the errors, you can only say that
the final result is no bigger than

∣

∣

∣

∣

∣

dg

g

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

db

b

∣

∣

∣

∣

∣

which is simply the rule for adding relative errors if you take a ratio or product
of variables.

Hence the greatest possible relative error in (g/b) is:

δ(g/b)

(g/b)
= 0.01 + 0.005 = 0.015

But we need the relative error in 3

√

g/b instead of in g/b. Denoting g/b by u
for now, the rule for differentiating a power gives

du1/3

u1/3
=

1
3
u−2/3du

u1/3
= 1

3

du

u

That is simply the rule of multiplying the relative error by the absolute power
when exponentiating.

Hence
δω

ω
= 1

3
× 0.015 = 0.005 = 0.5%
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6.3 Example

From [1, p. 423, 29]
Given: A circular cylinder of changing radius r and height h. At a given

time, r = 6 inch, ṙ = 0.2 in/sec, h = 8 in, ḣ = −0.4 in/sec.
Asked: V̇ and Ȧ at that time.

6.3.1 Solution

V = πr2h A = 2πrh+ 2πr2

The total differential gives

dV =
∂V

∂h
dh+

∂V

∂r
dr

where differential changes become time derivatives if you divide by dt. So iden-
tifying the partial derivatives gives:

V̇ = πr2ḣ+ π2rhṙ = 15.08 in3/sec

Similarly:
Ȧ = 2πrḣ+ (2πh+ 4πr) ṙ = 10.05 in2/sec





Appendix A

Addenda

This appendix describes a number of additional topics. They did not seem
important enough to warrant including them in the main text. An addition is
always a distraction; at the minimum you have to worry about whether you
need to worry about it.
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Appendix D

Derivations

This appendix gives various derivations. Sometimes you need to see the deriva-
tion to judge whether a result is applicable in given circumstances. And some
people like to see the derivation period.
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Appendix N

Notes

This appendix collects various notes on the material. This sort of material is
often given in footnotes at the bottom of the text. However, such a footnote
is distracting. You tend to read them even if they are probably not really that
important to you. Also, footnotes have to be concise, or they make a mess of
the main text.

N.1 Why this book?

See the preface.

N.2 History and wish list

• Sep. 1, 2013 The first version of this manuscript was posted.
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Web Pages

Below is a list of relevant web pages.
1. Wikipedia1

A valuable source source of information on about every loose end,
though somewhat uneven. Some great, some confusing, some overly
technical.

1http://wikipedia.org
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Notations

The below are the simplest possible descriptions of various symbols, just to help
you keep reading if you do not remember/know what they stand for.

Watch it. There are so many ad hoc usages of symbols, some will have been
overlooked here. Always use common sense first in guessing what a symbol
means in a given context.

· A dot might indicate

• A dot product between vectors, if in between them.

• A time derivative of a quantity, if on top of it.

And also many more prosaic things (punctuation signs, decimal points,
. . . ).

× Multiplication symbol. May indicate:

• An emphatic multiplication.

• Multiplication continued on the next line / from the previous line.

• A vectorial product between vectors. In index notation, the i-th
component of ~v × ~w equals

(~v × ~w)i = vıwı − vıwı

where ı is the index following i in the sequence 123123. . . , and ı the
one preceding it (or second following). Alternatively, evaluate the
determinant

~v × ~w =

∣

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
vx vy vz
wx wy wz

∣

∣

∣

∣

∣

∣

∣

! Might be used to indicate a factorial. Example: 5! = 1× 2× 3× 4× 5 = 120.

The function that generalizes n! to noninteger values of n is called the
gamma function; n! = Γ(n + 1). The gamma function generalization is
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due to, who else, Euler. (However, the fact that n! = Γ(n + 1) instead
of n! = Γ(n) is due to the idiocy of Legendre.) In Legendre-resistant
notation,

n! =
∫ ∞

0
tne−t dt

Straightforward integration shows that 0! is 1 as it should, and integration
by parts shows that (n + 1)! = (n + 1)n!, which ensures that the integral
also produces the correct value of n! for any higher integer value of n than
0. The integral, however, exists for any real value of n above −1, not
just integers. The values of the integral are always positive, tending to
positive infinity for both n ↓ −1, (because the integral then blows up at
small values of t), and for n ↑ ∞, (because the integral then blows up at
medium-large values of t). In particular, Stirling’s formula says that for
large positive n, n! can be approximated as

n! ∼
√
2πnnne−n [1 + . . .]

where the value indicated by the dots becomes negligibly small for large n.
The function n! can be extended further to any complex value of n, except
the negative integer values of n, where n! is infinite, but is then no longer
positive. Euler’s integral can be done for n = −1

2
by making the change

of variables
√
t = u, producing the integral

∫∞
0 2e−u2

du, or
∫∞
−∞ e−u2

du,

which equals
√

∫∞
−∞ e−x2 dx

∫∞
−∞ e−y2 dy and the integral under the square

root can be done analytically using polar coordinates. The result is that

−1

2
! =

∫ ∞

−∞
e−u2

du =
√
π

To get 1
2
!, multiply by 1

2
, since n! = n(n− 1)!.

| May indicate:

• The magnitude or absolute value of the number or vector, if enclosed
between a pair of them.

• The determinant of a matrix, if enclosed between a pair of them.

• The norm of the function, if enclosed between two pairs of them.

∑

Summation symbol. Example: if in three dimensional space a vector ~f has
components f1 = 2, f2 = 1, f3 = 4, then

∑

all i fi stands for 2 + 1 + 4 = 7.

∫

Integration symbol, the continuous version of the summation symbol. For
example,

∫

all x
f(x) dx
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is the summation of f(x) dx over all little fragments dx that make up the
entire x-range.

→ May indicate:

• An approaching process. limε→0 indicates for practical purposes the
value of the expression following the lim when ε is extremely small.
Similarly, limr→∞ indicates the value of the following expression when
r is extremely large.

• The fact that the left side leads to, or implies, the right-hand side.

~ Vector symbol. An arrow above a letter indicates it is a vector. A vector
is a quantity that requires more than one number to be characterized.
Typical vectors in physics include position ~r, velocity ~v, linear momentum
~p, acceleration ~a, force ~F , moment ~M , etcetera.

′ May indicate:

• A derivative of a function. Examples: 1′ = 0, x′ = 1, sin′(x) = cos(x),
cos′(x) = − sin(x), (ex)′ = ex.

• A small or modified quantity.

∇ The spatial differentiation operator nabla. In Cartesian coordinates:

∇ ≡
(

∂

∂x
,
∂

∂y
,
∂

∂z

)

= ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

Nabla can be applied to a scalar function f in which case it gives a vector
of partial derivatives called the gradient of the function:

grad f = ∇f = ı̂
∂f

∂x
+ ̂

∂f

∂y
+ k̂

∂f

∂z
.

Nabla can be applied to a vector in a dot product multiplication, in which
case it gives a scalar function called the divergence of the vector:

div~v = ∇ · ~v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

or in index notation

div~v = ∇ · ~v =
3
∑

i=1

∂vi
∂xi
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Nabla can also be applied to a vector in a vectorial product multiplication,
in which case it gives a vector function called the curl or rot of the vector.
In index notation, the i-th component of this vector is

(curl~v)i = (rot~v)i = (∇× ~v)i =
∂vı
∂xı

− ∂vı
∂xı

where ı is the index following i in the sequence 123123. . . , and ı the one
preceding it (or the second following it).

The operator ∇2 is called the Laplacian. In Cartesian coordinates:

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

In non Cartesian coordinates, don’t guess; look these operators up in a
table book.

∗ A superscript star normally indicates a complex conjugate. In the complex
conjugate of a number, every i is changed into a −i.

< Less than.

> Greater than.

≡ Emphatic equals sign. Typically means “by definition equal” or “everywhere
equal.”

∼ Indicates approximately equal. Normally the approximation applies when
something is small or large. Read it as “is approximately equal to.”

∝ Proportional to. The two sides are equal except for some unknown constant
factor.

Γ (Gamma) May indicate:

• The Gamma function. Look under “!” for details.

∆ (capital delta) May indicate:

• An increment in the quantity following it.

• Often used to indicate the Laplacian ∇2.

δ (delta) May indicate:
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• With two subscripts, the “Kronecker delta”, which by definition is
equal to one if its two subscripts are equal, and zero in all other
cases.

• Without two subscripts, the “Dirac delta function”, which is infinite
when its argument is zero, and zero if it is not. In addition the infinity
is such that the integral of the delta function over its single nonzero
point is unity. The delta function is not a normal function, but a
distribution.

One often important way to create a three-dimensional delta func-
tion in spherical coordinates is to take the Laplacian of the function
−1/4πr. In two dimensions, take the Laplacian of ln(r)/2π to get a
delta function.

• Often used to indicate a small amount of the following quantity, or of a
small change in the following quantity. There are nuanced differences
in the usage of δ, ∂ and d that are too much to go in here.

• Often used to indicate a second small quantity in addition to ε.

∂ (partial) Indicates a vanishingly small change or interval of the following vari-
able. For example, ∂f/∂x is the ratio of a vanishingly small change in func-
tion f divided by the vanishingly small change in variable x that causes
this change in f . Such ratios define derivatives, in this case the partial
derivative of f with respect to x.

ε (variant of epsilon) May indicate:

• A very small quantity.

η (eta) May be used to indicate a y-position.

Θ (capital theta) Used in this book to indicate some function of θ to be deter-
mined.

θ (theta) May indicate:

• In spherical coordinates, the angle from the chosen z axis, with apex
at the origin.

• a z-position.

• A generic angle, like the one between the vectors in a cross or dot
product.

ϑ (variant of theta) An alternate symbol for θ.
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λ (lambda) May indicate:

• Wave length.

• An eigenvalue.

• Some multiple of something.

ξ (xi) May indicate:

• An x-position.

π (pi) May indicate:

• The area of a circle of unit radius. Value 3.141 592...

• Half the perimeter of a circle of unit radius. Value 3.141 592...

• A 180◦ angle expressed in radians. Note that e±iπ = −1. Value
3.141 592...

ρ (rho) May indicate:

• Scaled radial coordinate.

• Radial coordinate.

τ (tau) May indicate:

• A time or time interval.

Φ (capital phi) May indicate:

• Some function of φ to be determined.

φ (phi) May indicate:

• In spherical coordinates, the angle around the chosen z axis. Increas-
ing φ by 2π encircles the z-axis exactly once.

• A phase angle.

• Something equivalent to an angle.

ϕ (variant of phi) May indicate:

• A change in angle φ.

• An alternate symbol for φ.
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ω (omega) May indicate:

• Angular frequency.

A May indicate:

• Some generic matrix or operator.

• Some constant.

• Area.

a May indicate:

• Acceleration.

• Start point of an integration interval.

• Some coefficient.

• Some constant.

absolute May indicate:

• The absolute value of a real number a is indicated by |a|. It equals a
is a is positive or zero and −a if a is negative.

• The absolute value of a complex number a is indicated by |a|. It
equals the length of the number plotted as a vector in the complex
plane. This simplifies to above definition if a is real.

adjoint The adjoint AH or A† of a matrix is the complex-conjugate transpose
of the matrix.

Alternatively, it is the matrix you get if you take it to the other side of
an inner product. (While keeping the value of the inner product the same
regardless of whatever two vectors or functions may be involved.)

“Hermitian”matrices are “self-adjoint;”they are equal to their adjoint.
“Skew-Hermitian”matrices are the negative of their adjoint.

“Unitary”matrices are the inverse of their adjoint. Unitary matrices gener-
alize rotations and reflections of vectors. Unitary operators preserve inner
products.

Fourier transforms are unitary operators on account of the Parseval equal-
ity that says that inner products are preserved.

51



angle According to trigonometry, if the length of a segment of a circle is divided
by its radius, it gives the total angular extent of the circle segment. More
precisely, it gives the angle, in radians, between the line from the center
to the start of the circle segment and the line from the center to the end
of the segment. The generalization to three dimensions is called the “solid
angle;” the total solid angle over which a segment of a spherical surface
extends, measured from the center of the sphere, is the area of that segment
divided by the square radius of the sphere.

B May indicate:

• A generic second matrix.

• Some constant.

b May indicate:

• End point of an integration interval.

• Some coefficient.

• Some constant.

basis A basis is a minimal set of vectors or functions that you can write all other
vectors or functions in terms of. For example, the unit vectors ı̂, ̂, and k̂
are a basis for normal three-dimensional space. Every three-dimensional
vector can be written as a linear combination of the three.

C May indicate:

• A third matrix.

• A constant.

Cauchy-Schwartz inequality The Cauchy-Schwartz inequality puts a limita-
tion on the magnitude of inner products. In particular, it says that for
any vectors ~v and vec w

|~vH ~w| ≤ |~v||~w|
For example, if ~v and ~w are real vectors, the inner product is the dot
product and we have

~v · ~w = |~v||~w| cos θ
where |~v| is the length of vector ~v and |~w| the one of ~w, and θ is the angle
in between the two vectors. Since a cosine is less than one in magnitude,
the Cauchy-Schwartz inequality is therefore true for vectors.
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cos The cosine function, a periodic function oscillating between 1 and -1 as
shown in [2, pp. 40-...].

curl The curl of a vector field ~v is defined as curl ~v = rot ~v = ∇× ~v.

d Indicates a vanishingly small change or interval of the following variable. For
example, dx can be thought of as a small segment of the x-axis.

derivative A derivative of a function is the ratio of a vanishingly small change
in a function divided by the vanishingly small change in the independent
variable that causes the change in the function. The derivative of f(x)
with respect to x is written as df/dx, or also simply as f ′. Note that the
derivative of function f(x) is again a function of x: a ratio f ′ can be found
at every point x. The derivative of a function f(x, y, z) with respect to
x is written as ∂f/∂x to indicate that there are other variables, y and z,
that do not vary.

determinant The determinant of a square matrix A is a single number indi-
cated by |A|. If this number is nonzero, A~v can be any vector ~w for the
right choice of ~v. Conversely, if the determinant is zero, A~v can only pro-
duce a very limited set of vectors. But if it can produce a vector w, it can
do so for multiple vectors ~v.

There is a recursive algorithm that allows you to compute determinants
from increasingly bigger matrices in terms of determinants of smaller ma-
trices. For a 1 × 1 matrix consisting of a single number, the determinant
is simply that number:

|a11| = a11

(This determinant should not be confused with the absolute value of the
number, which is written the same way. Since we normally do not deal
with 1 × 1 matrices, there is normally no confusion.) For 2 × 2 matrices,
the determinant can be written in terms of 1× 1 determinants:
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so the determinant is a11a22 − a12a21 in short. For 3× 3 matrices, we have
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and we already know how to work out those 2×2 determinants, so we now
know how to do 3× 3 determinants. Written out fully:

a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

For 4× 4 determinants,
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Etcetera. Note the alternating sign pattern of the terms.

As you might infer from the above, computing a good size determinant
takes a large amount of work. Fortunately, it is possible to simplify the
matrix to put zeros in suitable locations, and that can cut down the work
of finding the determinant greatly. We are allowed to use the following
manipulations without seriously affecting the computed determinant:

1. We may “transpose”the matrix, i.e. change its columns into its rows.

2. We can create zeros in a row by subtracting a suitable multiple of
another row.

3. We may also swap rows, as long as we remember that each time
that we swap two rows, it will flip over the sign of the computed
determinant.

4. We can also multiply an entire row by a constant, but that will mul-
tiply the computed determinant by the same constant.

Applying these tricks in a systematic way, called “Gaussian elimination”
or “reduction to lower triangular form”, we can eliminate all matrix co-
efficients aij for which j is greater than i, and that makes evaluating the
determinant pretty much trivial.
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div(ergence) The divergence of a vector field ~v is defined as div ~v = ∇ · ~v.

e May indicate:

• The basis for the natural logarithms. Equal to 2.71 281 828 459...
This number produces the “exponential function” ex, or exp(x), or
in words “e to the power x”, whose derivative with respect to x is
again ex. If a is a constant, then the derivative of eax is aeax. Also,
if a is an ordinary real number, then eia is a complex number with
magnitude 1.

eiax Assuming that a is an ordinary real number, and x a real variable, eiax is
a complex function of magnitude one. The derivative of eiax with respect
to x is iaeiax

eigenvector A vector ~v is an eigenvector of a matrix A if ~v is nonzero and
A~v = λ~v for some number λ called the corresponding eigenvalue.

exponential function A function of the form e..., also written as exp(. . .). See
function and e.

F May indicate:

• The anti-derivative of some function f .

• Some function.

f May indicate:

• A generic function.

• A fraction.

• Frequency.

function A mathematical object that associates values with other values. A
function f(x) associates every value of x with a value f . For example, the
function f(x) = x2 associates x = 0 with f = 0, x = 1

2
with f = 1

4
, x = 1

with f = 1, x = 2 with f = 4, x = 3 with f = 9, and more generally, any
arbitrary value of x with the square of that value x2. Similarly, function
f(x) = x3 associates any arbitrary x with its cube x3, f(x) = sin(x)
associates any arbitrary x with the sine of that value, etcetera.

One way of thinking of a function is as a procedure that allows you, when-
ever given a number, to compute another number.
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functional A functional associates entire functions with single numbers. For
example, the expectation energy is mathematically a functional: it as-
sociates any arbitrary wave function with a number: the value of the
expectation energy if physics is described by that wave function.

g May indicate:

• A second generic function.

grad(ient) The gradient of a scalar f is defined as grad f = ∇f .

ℑ The imaginary part of a complex number. If c = cr + ici with cr and ci real
numbers, then ℑ(c) = ci. Note that c− c∗ = 2iℑ(c).

i May indicate:

• The number of a particle.

• A summation index.

• A generic index or counter.

Not to be confused with i.

i The standard square root of minus one: i =
√
−1, i2 = −1, 1/i = −i, i∗ = −i.

index notation A more concise and powerful way of writing vector and matrix
components by using a numerical index to indicate the components. For
Cartesian coordinates, we might number the coordinates x as 1, y as 2,
and z as 3. In that case, a sum like vx + vy + vz can be more concisely
written as

∑

i vi. And a statement like vx 6= 0, vy 6= 0, vz 6= 0 can be more
compactly written as vi 6= 0. To really see how it simplifies the notations,
have a look at the matrix entry. (And that one shows only 2 by 2 matrices.
Just imagine 100 by 100 matrices.)

iff Emphatic “if.” Should be read as “if and only if.”

integer Integer numbers are the whole numbers: . . . ,−2,−1, 0, 1, 2, 3, 4, . . ..

inverse (Of matrices.) If a matrix A converts a vector ~v into a vector ~w, then
the inverse of the matrix, A−1, converts ~w back into ~v.

in other words, A−1A = AA−1 = I with I the unit, or identity, matrix.

The inverse of a matrix only exists if the matrix is square and has nonzero
determinant.

j May indicate:
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• A summation index.

• A generic index or counter.

k May indicate:

• A generic summation index.

l May indicate:

• The azimuthal quantum number.

• A generic summation index.

ℓ May indicate:

• A length.

lim Indicates the final result of an approaching process. limε→0 indicates for
practical purposes the value of the following expression when ε is extremely
small.

linear combination A very generic concept indicating sums of objects times
coefficients. For example, a position vector ~r is the linear combination
xı̂+ŷ+zk̂ with the objects the unit vectors ı̂, ̂, and k̂ and the coefficients
the position coordinates x, y, and z.

matrix A table of numbers.

As a simple example, a two-dimensional matrix A is a table of four numbers
called a11, a12, a21, and a22:

(

a11 a12
a21 a22

)

unlike a two-dimensional (ket) vector ~v, which would consist of only two
numbers v1 and v2 arranged in a column:

(

v1
v2

)

(Such a vector can be seen as a “rectangular matrix” of size 2 × 1, but
let’s not get into that.)

In index notation, a matrix A is a set of numbers {aij} indexed by two
indices. The first index i is the row number, the second index j is the
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column number. A matrix turns a vector ~v into another vector ~w according
to the recipe

wi =
∑

all j

aijvj for all i

where vj stands for “the j-th component of vector ~v,” and wi for “the i-th
component of vector ~w.”

As an example, the product of A and ~v above is by definition
(

a11 a12
a21 a22

)(

v1
v2

)

=

(

a11v1 + a12v2
a21v1 + a22v2

)

which is another two-dimensional ket vector.

Note that in matrix multiplications like the example above, in geometric
terms we take dot products between the rows of the first factor and the
column of the second factor.

To multiply two matrices together, just think of the columns of the second
matrix as separate vectors. For example:

(

a11 a12
a21 a22

)(

b11 b12
b21 b22

)

=

(

a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)

which is another two-dimensional matrix. In index notation, the ij com-
ponent of the product matrix has value

∑

k aikbkj.

The zero matrix is like the number zero; it does not change a matrix it is
added to and turns whatever it is multiplied with into zero. A zero matrix
is zero everywhere. In two dimensions:

(

0 0
0 0

)

A unit matrix is the equivalent of the number one for matrices; it does
not change the quantity it is multiplied with. A unit matrix is one on its
“main diagonal” and zero elsewhere. The 2 by 2 unit matrix is:

(

1 0
0 1

)

More generally the coefficients, {δij}, of a unit matrix are one if i = j and
zero otherwise.

The transpose of a matrix A, AT , is what you get if you switch the two
indices. Graphically, it turns its rows into its columns and vice versa. The
Hermitian “adjoint”AH is what you get if you switch the two indices and
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then take the complex conjugate of every element. If you want to take a
matrix to the other side of an inner product, you will need to change it to
its Hermitian adjoint. “Hermitian matrices”are equal to their Hermitian
adjoint, so this does nothing for them.

See also “determinant” and “eigenvector.”

M May indicate:

• Molecular mass. See separate entry.

• Mirror operator.

• Figure of merit.

m May indicate:

• Number of rows in a matrix.

• A generic summation index or generic integer.

n May indicate:

• Number of columns in a matrix.

• A generic summation index or generic integer.

• A natural number.

and maybe some other stuff.

natural Natural numbers are the numbers: 1, 2, 3, 4, . . ..

normal A normal operator or matrix is one that has orthonormal eigenfunc-
tions or eigenvectors. Since eigenvectors are not orthonormal in general,
a normal operator or matrix is abnormal! Normal matrices are matrices
that commute with their adjoint.

opposite The opposite of a number a is −a. In other words, it is the additive
inverse.

perpendicular bisector For two given points P and Q, the perpendicular
bisector consists of all points R that are equally far from P as they are
from Q. In two dimensions, the perpendicular bisector is the line that
passes through the point exactly half way in between P and Q, and that
is orthogonal to the line connecting P and Q. In three dimensions, the
perpendicular bisector is the plane that passes through the point exactly
half way in between P and Q, and that is orthogonal to the line connecting
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P and Q. In vector notation, the perpendicular bisector of points P and
Q is all points R whose radius vector ~r satisfies the equation:

(~r −~rP ) · (~rQ −~rP ) =
1
2
(~rQ −~rP ) · (~rQ −~rP )

(Note that the halfway point~r−~rP = 1
2
(~rQ−~rP ) is included in this formula,

as is the half way point plus any vector that is normal to (~rQ −~rP ).)

phase angle Any complex number can be written in “polar form” as c = |c|eiα
where both the magnitude |c| and the phase angle α are real numbers. Note
that when the phase angle varies from zero to 2π, the complex number c
varies from positive real to positive imaginary to negative real to negative
imaginary and back to positive real. When the complex number is plotted
in the complex plane, the phase angle is the direction of the number relative
to the origin. The phase angle α is often called the argument, but so is
about everything else in mathematics, so that is not very helpful.

In complex time-dependent waves of the form ei(ωt−φ), and its real equiva-
lent cos(ωt−φ), the phase angle φ gives the angular argument of the wave
at time zero.

q May indicate:

• Charge.

• Heat flux density.

R May indicate:

• Some function of r to be determined.

• Some function of (x, y, z) to be determined.

• Some radius.

ℜ The real part of a complex number. If c = cr+ici with cr and ci real numbers,
then ℜ(c) = cr. Note that c+ c∗ = 2ℜ(c).

r May indicate:

• The radial distance from the chosen origin of the coordinate system.

• ri often indicates the i-th Cartesian component of the radius vector
~r.

• Some ratio.
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~r The position vector. In Cartesian coordinates (x, y, z) or xı̂ + ŷ + zk̂. In
spherical coordinates rı̂r. Its three Cartesian components may be indicated
by r1, r2, r3 or by x, y, z or by x1, x2, x3.

reciprocal The reciprocal of a number a is 1/a. In other words, it is the
multiplicative inverse.

rot The rot of a vector ~v is defined as curl ~v = rot ~v = ∇× ~v.

scalar A quantity characterized by a single number.

sin The sine function, a periodic function oscillating between 1 and -1 as shown
in [2, pp. 40-]. Good to remember: cos2 α + sin2 α = 1.

Stokes’ Theorem This theorem, first derived by Kelvin and first published
by someone else I cannot recall, says that for any reasonably smoothly
varying vector ~v,

∫

A
(∇× ~v) dA =

∮

~v · d~r

where the first integral is over any smooth surface area A and the second
integral is over the edge of that surface. How did Stokes get his name on
it? He tortured his students with it, that’s how!

symmetry Symmetries are operations under which an object does not change.
For example, a human face is almost, but not completely, mirror sym-
metric: it looks almost the same in a mirror as when seen directly. The
electrical field of a single point charge is spherically symmetric; it looks
the same from whatever angle you look at it, just like a sphere does. A
simple smooth glass (like a glass of water) is cylindrically symmetric; it
looks the same whatever way you rotate it around its vertical axis.

t May indicate:

• Time.

triple product A product of three vectors. There are two different versions:

• The scalar triple product ~a · (~b× ~c). In index notation,

~a · (~b× ~c) =
∑

i

ai(bıcı − bıcı)

where ı is the index following i in the sequence 123123. . . , and ı the
one preceding it. This triple product equals the determinant |~a~b~c|
formed with the three vectors. Geometrically, it is plus or minus the
volume of the parallelepiped that has vectors ~a, ~b, and ~c as edges.
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Either way, as long as the vectors are normal vectors and not opera-
tors,

~a · (~b× ~c) = ~b · (~c× ~a) = ~c · (~a×~b)

and you can change the two sides of the dot product without changing
the triple product, and/or you can change the sides in the vectorial
product with a change of sign.

• The vectorial triple product ~a×(~b×~c). In index notation, component
number i of this triple product is

aı(bicı − bıci)− aı(bıci − bicı)

which may be rewritten as

aibici + aıbicı + aıbicı − aibici − aıbıci − aıbıci

In particular, as long as the vectors are normal ones,

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

u May indicate:

• The first velocity component in a Cartesian coordinate system.

• An integration variable.

V May indicate:

• Volume.

v May indicate:

• The second velocity component in a Cartesian coordinate system.

• Magnitude of a velocity (speed).

~v May indicate:

• Velocity vector.

• Generic vector.

vector A quantity characterized by a list of numbers. A vector ~v in index
notation is a set of numbers {vi} indexed by an index i. In normal three-
dimensional Cartesian space, i takes the values 1, 2, and 3, making the
vector a list of three numbers, v1, v2, and v3. These numbers are called
the three components of ~v.
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vectorial product An vectorial product, or cross product is a product of vec-
tors that produces another vector. If

~c = ~a×~b,

it means in index notation that the i-th component of vector ~c is

ci = aıbı − aıbı

where ı is the index following i in the sequence 123123. . . , and ı the one
preceding it. For example, c1 will equal a2b3 − a3b2.

w May indicate:

• The third velocity component in a Cartesian coordinate system.

• Weight factor.

~w Generic vector.

X Used in this book to indicate a function of x to be determined.

x May indicate:

• First coordinate in a Cartesian coordinate system.

• A generic argument of a function.

• An unknown value.

Y Used in this book to indicate a function of y to be determined.

y May indicate:

• Second coordinate in a Cartesian coordinate system.

• A second generic argument of a function.

• A second unknown value.

Z Used in this book to indicate a function of z to be determined.

z May indicate:

• Third coordinate in a Cartesian coordinate system.

• A third generic argument of a function.

• A third unknown value.
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Index

·, 45
×, 45
!, 45
|, 46
∑

, 46
∫

, 46
→, 47
~ , 47
′, 47
∇, 47
∗, 48
<, 48
>, 48
≡, 48
∼, 48
∝, 48
Γ, 48
∆, 48
δ, 48
∂, 49
ε, 49
η, 49
Θ, 49
θ, 49
ϑ, 49
λ, 49
ξ, 50
π, 50
ρ, 50
τ , 50
Φ, 50
φ, 50
ϕ, 50
ω, 50

A, 51
a, 51
absolute temperature, 51
absolute value, 51
adjoint, 51

matrices, 58
angle, 51

B, 52
b, 52
basis, 52

C, 52
Cauchy-Schwartz inequality, 52
cos, 52
cross product, 63
curl, 48, 53

d, 53
Delta, see ∆
delta, see δ

derivative, 53
determinant, 53
div, 47
div(ergence), 54
divergence, 47

e, 55
eiax, 55
eigenvector, 55
eta, see η

exponential function, 55

F , 55
f , 55
factorial, 45
function, 55
functional, 55

g, 56
Gamma, see Γ
gamma function, 45
grad, 47
grad(ient), 56
gradient, 47

Hermitian, 51
Hermitian matrices, 59

i, 56
ℑ, 56
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i, 56
iff, 56
index notation, 56
integer, 56
inverse, 56

j, 56

k, 57

l, 57
ℓ, 57
lambda, see λ

Laplacian, 48
lim, 57
linear combination, 57

M , 59
m, 59
matrix, 57

n, 59
nabla, 47
natural, 59
normal, 59

omega, see ω

opposite, 59

perpendicular bisector, 59
phase angle, 60
Phi, see Φ
phi, see φ, ϕ
pi, see π

q, 60

R, 60
ℜ, 60
r, 60
~r, 60
reciprocal, 61
rho, see ρ

rot, 48, 61

scalar, 61
self-adjoint, 51
sin, 61
skew-Hermitian, 51
solid angle, 51
Stokes’ theorem, 61
symmetry, 61

t, 61
tau, see τ

Theta, see Θ
theta, see θ, ϑ
transpose of a matrix, 54
triple product, 61

u, 62
unit matrix, 58
unitary, 51

V , 62
v, 62
~v, 62
vector, 62
vectorial product, 62

w, 63
~w, 63

X, 63
x, 63
xi, see ξ

Y , 63
y, 63

Z, 63
z, 63
zero matrix, 58
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