
EML 5060 Analysis in Mechanical Engineering 12/12/14
Closed book Van Dommelen 10-12 noon

Solutions should be fully derived showing all intermediate results, using class procedures. Show all

reasoning. Bare answers are absolutely not acceptable, because I will assume they come from your calculator
(or the math handbook, sometimes,) instead of from you. You must state what result answers what part of
the question. Answer exactly what is asked; you do not get any credit for making up your own questions
and answering those. Use the stated procedures. Give exact, fully simplified, answers where possible.

One book of mathematical tables, such as Schaum’s Mathematical Handbook, may be used, as well as a
calculator, and a handwritten letter-size formula sheet.

1. Background: To understand the topology of a flow, and in particular where the fluid goes, the
behavior of the streamlines near the stagnation points must be studied.

Question: The streamlines near a double stagnation point in an ideal two-dimensional flow are given
by
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Solve this equation using the class procedure for this type of equation. Neatly and accurately draw
the solution lines for the case that the appropriate integration constant is zero. Use a different color
for the solution lines, or fatten them.

2. Background: The Laplace transform is a primary way to study the stability and evolution of linearized
dynamical systems, because it turns them into algebraic systems.

Question: Consider the response of the following frictionless spring-mass system that experiences a
forcing for a limited time:

ẍ+ 4x = F (t) x(0) = ẋ(0) = 0 F (t) =

{
et for 0 < t < 2
0 for t > 2

Find the evolution using the Laplace transform. There may be no funny functions in your answer; it
should be phrased so that anyone can understand it.

A table of Laplace transforms is attached. Everything not in this table must be fully derived showing
all reasoning. The convolution theorem may only be used where it is absolutely unavoidable. Do not
use any complex numbers in your analysis (besides s.)

3. Background: While nonlinear systems of differential equations are usually not analytically solvable,
their qualitative behavior can be understood by analyzing their critical points (and behavior at infinity).

Question: Consider the equation for a pendulum that experiences both laminar and turbulent damp-
ing:

ϑ̈+ 6ϑ̇+ 8ϑ̇2 + 9 sin(ϑ) = 0

Write this equation as a first order system. Then explain why near equilibrium, ϑ = ϑ̇ = 0, small
perturbations are governed by
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)
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Solve the above linearized system using the class procedures for first order systems. Draw the solution
curves in the x, y-plane very neatly and quantitatively reasonably accurately. You should have 2
examples of each different type of curve, or 1 if there is just one curve of that type. Be sure to put an
arrow in the direction of motion on each curve. Make sure that you check your algebra carefully. You
do not get credit for making the wrong graph.

Finally, can we be confident that the shape of the solution lines of the nonlinear system will be
approximately the same, if we are close enough to equilibrium? Why/why not?



Properties of the Laplace Transform

Property f(t) f̂(s)

P1: Inversion
1

2πi

∫ c+i∞

c−i∞

f̂(s)est ds

∫ ∞

0

f(t)e−st dt

P2: Linearity C1f1(t) + C2f2(t) C1f̂1(s) + C2f̂2(s)

P3: Dilation f(ωt) ω−1f̂(s/ω)

P4: Differentiation f (n)(t) snf̂(s)− sn−1f(0+)− . . .− f (n−1)(0+)

P5: Differentiation tnf(t) (−1)nf̂ (n)(s)

P6: Shift H(t− τ)f(t− τ)

H(t) =

{
0 t < 0
1 t > 0

e−τsf̂(s)

P7: Shift eσtf(t) f̂(s− σ)

P8: Convolution

∫ t

0

f(t− τ)g(τ) dτ

Do not write as f ∗ g

f̂(s)ĝ(s)

Special Laplace Transform Pairs

f(t) f̂(s) f(t) f̂(s)

S1: 1
1

s
S8: sin(ωt)

ω

s2 + ω2

S2: tn
n!

sn+1
S9: cos(ωt)

s

s2 + ω2

S3: eσt 1

s− σ
S10: t sin(ωt)

2ωs

(s2 + ω2)2

S4:
1

√
πt

1
√
s

S11: t cos(ωt)
s2 − ω2

(s2 + ω2)2

S5:
1

√
πt

e−k2/4t 1
√
s
e−k

√
s S12: sinh(ωt)

ω

s2 − ω2

S6:
k

√
4πt3

e−k2/4t e−k
√
s S13: cosh(ωt)

s

s2 − ω2

S7: erfc
(
k/2

√
t
) 1

s
e−k

√
s S14: δ(t− τ) e−τs

Table 1: Properties of the Laplace Transform. (k, τ, ω > 0, n = 1, 2, . . .)


