Tentative list.

Page	HW	Class	Topic
6	1.15	1.14	Notations
6	1.17		Notations
6	1.18		Notations
6	1.22	1.21	Notations
30	4.40	4.39	Separation of variables*\#
30	4.44	4.42	Separation of variables\#
48	6.35	6.34	Linear equations\#
88	9.28	9.18	Vibrational and growth type*\#
88	9.23	9.19	Vibrational and growth type*\#
88	9.24	9.21	Vibrational and growth type\#
102	11.44	11.45	Vibrational and growth, forced\#
102	11.46		Vibrational and growth, forced*\#
102	11.52	11.47	Vibrational and growth, forced*\#
109	12.9	12.10	Vibrational and growth, forced*\#
109	12.26	12.25	Vibrational and growth, forced\#
113	13.10	13.11	Vibrational and growth, forced\#
232	22.44		Controls ${ }^{1}$
248	24.19	24.23	Controls
248	24.25	24.32	Controls ${ }^{1}$
248	24.29		Controls ${ }^{1 *}$
317	32.23	32.22	Boundary value problems
317	32.25	32.24	Boundary value problems
317	32.31	32.30	Boundary value problems ${ }^{2}$
317	32.36	32.34	Boundary value problems ${ }^{2}$
155	17.10		Reduction to 1st order systems
155	17.12		Reduction to 1st order systems
156	17.15		Reduction to 1st order systems
261	26.13	26.12	First order systems ${ }^{3} \#$
261	26.18		First order systems ${ }^{3}$ \#
171	18.17		Graphical solution ${ }^{4}$ \#
261	26.15		First order systems ${ }^{3,4}$ \#
261	26.23		First order systems ${ }^{2,3,4,5}$ \#
below	1		Predator-prey
below	2		Predator-prey
below	3		Van der Pol oscillator

1. The predator-prey problem is:

$$
\dot{x}_{1}=a x_{1}-b x_{1} x_{2} \quad \dot{x}_{2}=c x_{1} x_{2}-d x_{2}
$$

where a, b, c, and d are positive constants. The product $x_{1} x_{2}$ is a measure of how frequently predators and preys meet; note that such meetings decrease the number of preys, but benefit the predators.
Find the two critical points of this system and classify them according to type. What can you say about the topology of the linearized solution near the two points? And what about the topology of the full nonlinear solution?
2. Take the ratio of the two predator-prey equations to eliminate time, and solve the resulting first order ODE. Determine whether you can now be more specific about the nonlinear topology of the solution
curves. Also note that the x_{1} and and x_{2} axes are solution curves; examine the direction of their arrows. Now sketch the complete set of solution curves.
3. Classify the topology of the critical points of the Van der Pol equation

$$
\ddot{\theta}+c\left(\theta^{2}-1\right) \dot{\theta}+\theta=0
$$

*: Recommended question. Not required if you know you can do it.
\#: Make a graph. For problems with more than one unknown parameter, draw the independent solutions. For systems, draw the solution/ all solutions in the phase plane.
${ }^{1}$: Simplify the transformed solution using partial fractions.
${ }^{2}$: Solution appears to be wrong.
${ }^{3}$: Solve as a system, but do not use $e^{A} t$. Use eigenvectors.
${ }^{4}$: Sketch the solution curves using the actual eigenvectors.
${ }^{5}$: Ignore the given initial conditions in sketching the solution curves.

