Tentative list.

Page	HW	Class	Topic
23	1.42	$1.41{ }^{\prime}$	vectors of all types
24	1.49	1.48a	decomposing vectors
24	1.54	$1.54{ }^{\prime}$	Cartesian basis vectors
24	1.55 b	1.55 a	planes
24	1.56a	1.56 b	lines
25	1.58	1.57	curved motion $\#^{0}$
25	1.59 a	1.59b	tangent planes ${ }^{7}$
25	1.64 b	1.64a	normal vectors
53	2.37 ac	2.37 b	elementary operations
53	2.38a	2.38 b	elementary operations
53	2.40c	2.40 d	elementary operations
54	2.53 AC	2.53B	elementary operations ${ }^{1}$
54	2.54 B	2.54 A	elementary operations ${ }^{1}$
111	3.49	-	linearity
111	3.50	-	one unknown
111	3.51 bc	3.51 ad	square systems of equations\#
111	3.53 ab	3.53c	square systems of equations ${ }^{2}$
112	3.55b	3.54	rectangular systems
112	3.57 bc	3.57 a	bases ${ }^{8}$
113	3.62a	3.61 b	rectangular systems
112	3.60 b	3.60a	unforced systems
113	3.67 AB	3.67 C	inverse matrices ${ }^{3}$
164	4.89b	4.89a	linear dependence
165	4.99b	-	unforced systems*
165	4.104a	4.104b	rank
232	6.47b	6.47a	change of basis\#
232	6.51	6.48	change of basis\#
232	6.49	-	change of basis\#
232	6.50a	-	change of basis*
233	6.56	-	change of basis (note that $B=A^{\prime}$)
273	7.75a	7.21	orthogonalization
301	8.42a	8.41a	determinants ${ }^{4 a}$
301	8.42a		determinants ${ }^{4 b}$
336	9.46	9.47	eigenvalues and diagonalization\#
336	9.48 b	9.48c	eigenvalues and diagonalization
337	9.56 b	9.56a	principal axes ${ }^{5}$
337	9.57 b	-	principal axes ${ }^{5,6}$
337	9.58 a	9.58 b	quadratic forms\#*
337	9.59a	-	quadratic forms

*: Recommended question. Not required if you know you can do it.
\#: Make a graph.
${ }^{0} z$-component is $2 t \hat{k}$
${ }^{1}$ Use determinants.
${ }^{2}$ Answer for a may be wrong, depending on book.
${ }^{3}$ Use GE. Do not take any determinants
${ }^{4 a}$ Use minors.
${ }^{4 b}$ Use Gaussian elimination.
${ }^{5}$ Orthonormal matrix.
${ }^{6}$ The value of b_{21} in the first column is 2 , not 4 . Be careful not to make errors in the determinant. Since u and v are nonunique, find those that result from Gram-Schmidt orthogonalization of the basis of the null space.

721 , not 20 .
8 answer for b may be wrong.

