EML 5060

Homework Set 3

Page	HW	Class	Topic
6	1.15	1.14	Notations
6	1.17		Notations
6	1.18		Notations
6	1.22	1.21	Notations
6	1.26		Solution by inspection#
23	3.40	3.39	Separation of variables#
23	3.44	3.42	Separation of variables#
23	3.49	3.50	Homogeneous equations
23	3.52		Homogeneous equations#
33	4.30	4.32	Exact equations#
33	4.34		Exact equations#
41	5.35	5.34	Linear equations#
41	5.53	5.38	Bernoulli equations#
63	6.33		Radioactive decay [*] #
64	6.59a		Air resistance [*] #
81	8.28	8.18	Vibrational and growth type ¹ #
81	8.23	8.19	Vibrational and growth type#
81	8.24	8.21	Vibrational and growth type#
86	9.23		Vibrational and growth type [*]
96	10.44	10.45	Vibrational and growth, forced#
96	10.46		Vibrational and growth, forced#
96	10.52	10.47	Vibrational and growth, forced#
103	11.9	11.10	Vibrational and growth, forced#
103	11.14		Vibrational and growth, forced#
103	11.26	11.25	Vibrational and growth, forced#
107	12.10	12.11	Vibrational and growth, forced#
122	13.40		Spring mass system [*] #
198	22.22	22.12	Solve as 22.12 (required) ²

*: Recommended question. Not required if you know you can do it.

#: Make a graph. For problems with more than one unknown parameter, draw the solutions taking one parameter 1 and the rest 0.

¹: Second double dot should be single dot.

 $^2:$ Solution appears to be wrong.

Also solve the 4 questions below*:

1. Solve the Cauchy equation

$$x^2y'' + xy' - 4y = \ln x^2$$

by taking $u = \ln |x|$ as the new independent variable. To eliminate x, use the chain rule of differentiation as in

$$y' \equiv \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \frac{dy}{du}\frac{1}{x}$$

and once more to find y'' in terms of dy/du and d^2y/du^2 . Please do not indicate dy/du also by y'! Solution:

$$y = -\frac{1}{2}\ln x + Ax^2 + Bx^{-2}$$

2. Solve the aerodynamically damped spring-mass system

$$\ddot{y} + (\dot{y})^2 + y = 0$$

by taking y as the independent variable and \dot{y} as the dependent variable. To eliminate the remaining dt, (in $\ddot{y} = d\dot{y}/dt$), use the chain rule of differentiation. Solution:

$$\dot{y}^2 = -y + \frac{1}{2} + C_0 e^{-2y}$$
, hence $t = \pm \int \frac{dy}{\sqrt{-y + \frac{1}{2} + C_0 e^{-2y}}}$

3. Solve the motion of a falling body with aerodynamic drag:

$$\ddot{x} + \left(\dot{x}\right)^2 = 1.$$

Solution:

$$\dot{x} = \frac{Ce^{2t} - 1}{Ce^{2t} + 1}$$
 $x = \ln |Ce^{2t} + 1| - t + D$

4. Solve the equation for the streamfunction in a Stokes boundary layer:

$$y'' + 2xy' - 2y = 0.$$

Note that y = x is one solution. Solution:

$$y = C_0 x + C_1 x \int \frac{e^{-x^2}}{x^2} dx$$

Also: Make exam 3 of 1998. Give yourself 50 minutes. Include your solutions with homework set I and grade yourself using the solutions on the web after you get it back.