Page	HW	Class	Topic
6	1.15	1.14	Notations
6	1.17		Notations
6	1.18		Notations
6	1.22	1.21	Notations
6	1.26		Solution by inspection\#
23	3.40	3.39	Separation of variables\#
23	3.44	3.42	Separation of variables\#
23	3.49	3.50	Homogeneous equations
23	3.52		Homogeneous equations\#
33	4.30	4.32	Exact equations\#
33	4.34		Exact equations\#
41	5.35	5.34	Linear equations\#
41	5.53	5.38	Bernoulli equations\#
63	6.33		Radioactive decay*\#
64	$6.59 a$		Air resistance*\#
81	8.28	8.18	Vibrational and growth type ${ }^{*} \#$
81	8.23	8.19	Vibrational and growth type\#
81	8.24	8.21	Vibrational and growth type\#
86	9.23		Vibrational and growth type*
96	10.44	10.45	Vibrational and growth, forced\#
96	10.46		Vibrational and growth, forced\#
96	10.52	10.47	Vibrational and growth, forced\#
103	11.9	11.10	Vibrational and growth, forced\#
103	11.14		Vibrational and growth, forced\#
103	11.26	11.25	Vibrational and growth, forced\#
107	12.10	12.11	Vibrational and growth, forced\#
122	13.40		Spring mass system*\#
198	22.22	22.12	Solve as 22.12 (required) ${ }^{2}$

*: Recommended question. Not required if you know you can do it.
\#: Make a graph. For problems with more than one unknown parameter, draw the solutions taking one parameter 1 and the rest 0 .
${ }^{1}$: Second double dot should be single dot.
${ }^{2}$: Solution appears to be wrong.
Also solve the 4 questions below*:

1. Solve the Cauchy equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x^{2}
$$

by taking $u=\ln |x|$ as the new independent variable. To eliminate x, use the chain rule of differentiation as in

$$
y^{\prime} \equiv \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=\frac{d y}{d u} \frac{1}{x}
$$

and once more to find $y^{\prime \prime}$ in terms of $d y / d u$ and $d^{2} y / d u^{2}$. Please do not indicate $d y / d u$ also by y^{\prime} ! Solution:

$$
y=-\frac{1}{2} \ln x+A x^{2}+B x^{-2}
$$

2. Solve the aerodynamically damped spring-mass system

$$
\ddot{y}+(\dot{y})^{2}+y=0
$$

by taking y as the independent variable and \dot{y} as the dependent variable. To eliminate the remaining $d t$, (in $\ddot{y}=d \dot{y} / d t$), use the chain rule of differentiation. Solution:

$$
\dot{y}^{2}=-y+\frac{1}{2}+C_{0} e^{-2 y}, \text { hence } t= \pm \int \frac{d y}{\sqrt{-y+\frac{1}{2}+C_{0} e^{-2 y}}}
$$

3. Solve the motion of a falling body with aerodynamic drag:

$$
\ddot{x}+(\dot{x})^{2}=1
$$

Solution:

$$
\dot{x}=\frac{C e^{2 t}-1}{C e^{2 t}+1} \quad x=\ln \left|C e^{2 t}+1\right|-t+D
$$

4. Solve the equation for the streamfunction in a Stokes boundary layer:

$$
y^{\prime \prime}+2 x y^{\prime}-2 y=0
$$

Note that $y=x$ is one solution. Solution:

$$
y=C_{0} x+C_{1} x \int \frac{e^{-x^{2}}}{x^{2}} d x
$$

Also: Make exam 3 of 1998. Give yourself 50 minutes. Include your solutions with homework set I and grade yourself using the solutions on the web after you get it back.

