Page	HW	Class	Topic
23	1.42	1.41	vectors of all types
24	1.49	1.48 a	decomposing vectors
24	1.54	1.54	Cartesian basis vectors
24	1.55 b	1.55 a	planes
24	1.56 a	1.56 b	lines
25	1.58	1.57	curved motion $\#^{0}$
25	1.59 a	1.59 b	tangent planes
25	1.64 b	1.64 a	normal vectors
53	2.37 ac	2.37 b	elementary operations
53	2.38 a	2.38 b	elementary operations
53	2.40 c	2.40 d	elementary operations
54	2.53 AC	2.53 B	elementary operations ${ }^{1}$
54	2.54 B	2.54 A	elementary operations ${ }^{1}$
111	3.49	-	linearity
111	3.50	-	one unknown
111	3.51 bc	3.51 ad	square systems of equations\#
111	3.53 ab	3.53 c	square systems of equations ${ }^{2}$
112	3.55	3.54	rectangular systems
112	3.57 bc	3.57 a	bases
113	3.62 a	3.61 b	rectangular systems
112	3.60 b	3.60 a	unforced systems
113	3.67 AB	3.67 C	inverse matrices ${ }^{3}$
164	4.89 b	4.89 a	linear dependence
165	4.99 b	-	unforced systems*
165	4.104 a	4.104 b	rank
232	6.47 b	6.47 a	change of basis\#
232	6.51	6.48	change of basis\#
232	6.49	-	change of basis\#
232	6.50 a	-	change of basis
233	6.56	-	change of basis
273	7.75 a	7.21	orthogonalization
301	8.42 a	8.41 a	determinants ${ }^{4}$
336	9.46	9.47	eigenvalues and diagonalization\#
336	9.48 ab	9.48 c	eigenvalues and diagonalization
337	9.56 b	9.56 a	principal axes ${ }^{5}$
337	9.57 b	-	principal axes ${ }^{5}$
337	9.58 a	9.58 b	quadratic forms\#
337	9.59 a	-	quadratic forms*

*: Recommended question. Not required if you know you can do it.
\#: Make a graph.
${ }^{0} z$-component is $2 t \hat{k}$
${ }^{1}$ Use determinants.
${ }^{2}$ Answer for a is wrong.
${ }^{3}$ Use GE.
${ }^{4}$ Use both methods.
${ }^{5}$ Orthonormal matrix.
${ }^{6}$ The value of b_{21} in the first column is 2 , not 4 . Be careful not to make errors in the determinant. Since u and v are nonunique, find those that result from Gram-Schmidt orthogonalization of the basis of the null space.

Also: Make exam 2 of 1998. Give yourself 50 minutes. Include your solutions with homework set Lin IV and grade yourself using the solutions on the web after you get it back.

