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Chapter 1

Graphs

1.1 Introduction

Graphs are important for engineers for a number of reasons:

• Understanding relationships between variables.

• Summarizing data.

• Representing data (like in a Moody diagram).

• Interpolating data.

• Understanding the overal nature of data. See warming.jpg1 for an example
that you simply could not appreciate by looking at a list of numbers.

• ...

Look for:

• Intercepts. Intercepts with the x-axis satisfy y = 0. Intercepts with the
y-axis satisfy x = 0.

• A symmetry line exists if the curve is the same at both sides of the line.
More precisely, a symmetry line acts as a mirror that mirrors the curve
into itself. The y-axis is a symmetry line if the sign of x does not make a
difference. The x-axis is one if the sign of y does not make a difference.
The 45◦ line y = x is one if swapping x and y does not make a difference.

• Symmetry points. Every point on the curve must have match at the exact
opposite side of a symmetry point. Mathematically, if ~r1 is on the curve,
then so must be ~rS − (~r1 − ~rS). The origin is a symmetry point if y(−x)
= −y(x), i.e. if function y(x) is antisymmetric.

1http://www.eng.fsu.edu/~dommelen/calculus/warming.jpg

3

http://www.eng.fsu.edu/~dommelen/calculus/warming.jpg


4 CHAPTER 1. GRAPHS

• Singular points:
• corners where the direction of the curve changes by an angle
less than 180◦,

• cusps where it changes 180◦,
• crossings where the curve crosses itself,
• positions of infinite curvature,
• . . .

If y or any of its derivatives is infinite or not uniquely defined, the curve
has a singularity at that point.

• A vertical asymptote xva = A exists if y → ±∞ for x → A.

• A horizontal asymptote y = A exists if A = limx→±∞ y exists.

• Behavior for x → ±∞ (e.g. y ∼ |x|p for some p).

• An oblique asymptote yoa = Ax + B exists if A = limx→±∞ y′ and b =
limx→±∞ y − Ax exist. (Or more simply if limx→±∞ y − Ax−B = 0.)

• Extent in x (the range of x-values of the curve) and extent in y (the range
of y-values of the curve). If y is a given function of x, then the x-extent
is the x-values for which y can be computed, but the y extent may not be
so simple.

• Minima and maxima. A global maximum/minimum is the highest/lowest
value of y that can be found anywhere. You should find both the value of
the maximum/minimum and its location(s). A local maximum/minimum
is the highest/lowest value that can be found in a small vicinity around the
localtion of the local maximum/minimum. Normally, you first find the lo-
cal maxima/minima, and then, based on consideration of the entire graph,
decide whether they are also global ones. The derivative changes sign at a
maximum/minimum if defined at both sides of the maximum/minimum.
So look for both zero derrivatives and singular points.

• Concavity is upward if y′′ > 0, downward if y′′ < 0.

• Inflection points are points where the concavity changes sign.

See [1, Chapters 13-15]

1.2 Example

From [1, p. 128, 13a]
Asked: Draw the graph of

xy =
(
x2 − 9

)2
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1.2.1 Using reasoning

xy =
(
x2 − 9

)2

Instead of starting to crunch numbers, look at the pieces first:
Factor x2 − 9 = (x− 3)(x+ 3) is a parabola with zeros at x = ±3:

Squaring gives a quartic with double zeros at x = ±3:

Dividing by x will produce a simple pole at x = 0 and also a sign change at
negative x:

Function y(x):
• has an x-extent x 6= 0 and a y-extend −∞ < y < ∞;
• is odd (symmetric with respect to the origin);
• has a relative maximum at -3 of finite curvature: y ∝ (x+ 3)2;
• has a relative minimum at 3 of finite curvature: y ∝ (x− 3)2;
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• has a vertical asymptote at x = 0 with asymptotic behavior: y ∼
81/x for |x| → 0;

• behaves asymptotically as y ∼ x3 for x → ±∞;

• is concave up for x > 0, down for x < 0. (Should really prove this,
I guess.)

1.2.2 Using brute force

y =
(x2 − 9)

2

x

Hence

• intercepts with x-axis are at x = ±3;

• no intercepts with the y axis;

• y is an odd function of x (symmetric about the origin);

• for x ↓ 0, y → ∞ (vertical asymptote);

• for x ↑ 0, y → −∞ (singularity is an odd, simple pole);

• for x → ±∞, y ∼ x3 → ±∞.

y′ ≡ dy

dx
=

(x2 − 9) (3x2 + 9)

x2

Hence,

• y′ > 0 for −∞ < x < −3 (y increases from −∞);

• y′ = 0 for x = −3 (local maximum, y = 0);

• y′ < 0 for −3 < x < 0 (y decreases towards −∞);

• y′ = −∞ for x = 0 (singular point, vertical asymptote);

• y′ < 0 for 0 < x < −3 (decreases from ∞);

• y′ = 0 for x = 3 (local minimum, y = 0);

• y′ > 0 for 3 < x < ∞ (increases to ∞).

Also,

• y′ → ∞ when x → ±∞ (no horizontal or oblique asymptotes);

• all derivatives exist, except at x = 0, which has no point on the curve
(no corners, cusps, infinite curvature, or other singular points);

• probably no inflection points.

y′′ =
6x4 + 162

x3

Hence

• really no inflection points (since there is no point at x = 0);

• cocave downward for x < 0, upward for x > 0.
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Hence the x- and y-extends are as before.

1.3 Example

From [1, p. 128, 13g]
Asked: Graph

y = x
√
x− 1

1.3.1 Solution

y = x
√
x− 1

Factor
√
x− 1 is

√
x shifted one unit towards the right.

Multiplying by x magnifies it by a factor ranging from 1 to ∞:

Function y(x):
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• has an x-extent x > 1 and a y-extent y > 0;
• behaves asymptotically as y ∼ x3/2 for x → ∞;
• is monotonous:

y′ =
dy

dx
=

√
x− 1 +

x

2
√
x− 1

=
2x− 2 + x

2
√
x− 1

=
3x− 2

2
√
x− 1

> 0;

• has vertical slope at x = 1;
• is concave down for smaller x, concave up for larger x;
• the inflection point is at

y′′ =
3x− 4

4(x− 1)3/2
= 0

giving x = 4/3.



Chapter 2

Optimization

2.1 Introduction

Optimization is important for engineers for a number of reasons:

• A best design finds the maximum of some benefit function.

• Drag reduction minimizes drag.

• Potential energy minimization finds the stationary state of a system. That
is the basis for true finite element methods.

• Much of economics is based on finding the extrema of cost or benefi func-
tions.

• ...

Key ideas:

• zero partial derivatives at an interior extremum

• Lagrangian multipliers can account for constraints

2.2 Example

From [1, p. 116, 30]

9
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Given: A free standing wall, located 33
8
ft from the side of a house.

Asked: What is the length ℓ of the shortest ladder that can reach the house
(over the free standing wall).

2.2.1 Definition

Two degrees of freedom: say h and d

One inequality constraint: the ladder must be above the free standing wall.

2.2.2 Reduction

The shortest ladder hits the free standing wall:
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One degree of freedom left: ϕ.

2.2.3 Further reduction

At the minimum:

dℓ

dϕ
= 0
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2.2.4 Finding the length

First find a:

a =
8

tanϕ
.

Then:

ℓ =
33
8
+ a

cosϕ
=

33
8

cosϕ
+

8

sinϕ
(2.1)

2.2.5 Finding the optimum angle

dℓ

dϕ
=

33
8

cos2 ϕ
sinϕ− 8

sin2 ϕ
cosϕ = 0.

27

8 cos2 ϕ
sinϕ =

8

sin2 ϕ
cosϕ

tan3 ϕ =
64

27
⇒ ϕmin = 0.9273 radians

2.2.6 Finding the optimum length

From (2.1)

ℓmin = 15.625 ft
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2.3 General Approach

If you do not know a priori that the ladder hits the wall, you can follow the
general approach.

There are now two degrees of freedom. They are conveniently taken to be h
and d.

Then the length of the ladder is, (from Pythagoras),

ℓ(h, d) =
√
h2 + d2

We now need to figure out what values of h and d produce the shortest
ladder.

2.3.1 Formulation

Note that by the definition of the problem, h > 8 and d > 33
8
. But these

constraints are not precise. For example, h = 8.001 and d = 33
8
+ 0.001 would

obviously have the ladder go through the wall.
There is a precise constraint, that the ladder cannot pass through the wall.

If b is the height of the point on the ladder straight above the wall, then similar
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triangles give:

b

d− 33
8

=
h

d
(= tanφ)

The constraint is that b > 8, so:

h
d− 33

8

d
≥ 8 ⇒ h[d− 3

3

8
]− 8d ≥ 0

Note that this is in general an inequality constraint. Equality occurs when the
ladder hits the wall.

So the problem is to minimize

ℓ(h, d) =
√
h2 + d2

(from Pythagoras), subject to the inequality constraint

h[d− 33
8
]− 8d ≥ 0

To solve this, first plot the possible h and d values:

Plotting the curve where equality occurs in the constraint gives the bottom of
the grey region above. On that curve, the ladder hits the wall. If you go above
the curve, into the grey region, h becomes bigger and the ladder then moves
above the wall.

Now you must figure out whether the shortest ladder occurs in the strict
interior of the grey region or on its boundary. Try the interior first.
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2.3.2 Interior minima

For a minimum, at least locally, in the strict interior of the grey region, the
partial derivatives must be zero.

∂ℓ

∂d
= (h2 + d2)−1/2d = 0

∂ℓ

∂h
= (h2 + d2)−1/2h = 0

But these two requirements can only be true if d = h = 0, and that point is
not in the grey region. So there is no interior minimum (or maximum, for that
matter).

2.3.3 Boundary minima

Since the minimum is not in the interior, it must be on the boundary of
the grey region. Now obviously for infinite h or d or both you do not have the
shortest ladder. So the minimum cannot be on the boundary at infinity. It must
be on the curve where the ladder just hits the wall.

But how do we find the minimum on this line? The partial derivatives of ℓ
are not zero at this point. (Just check that out in the previous subsection.)
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The trick is to define an artificial third variable λ, called a “Lagrangian
multiplier,” corresponding to the constraint. (In the most general case, this
Lagrangian multiplier has no particular physical meaning.) Then define a new
function f to replace ℓ in the minimization:

f =
√
h2 + d2 + λ(h[d− 33

8
]− 8d).

Note that λ multiplies whatever is zero according to the constraint.
Now it turns out that you can find the desired minimum by finding an

unconstrained stationary point to this function f :

∂f/∂d = (h2 + d2)−1/2d+ λ(h− 8) = 0

∂f/∂h = (h2 + d2)−1/2h+ λ(d− 33
8
) = 0

∂f/∂λ = h[d− 33
8
]− 8d = 0

From the first two equations

(h2 + d2)−1/2d = −λ(h− 8) (h2 + d2)−1/2h = −λ(d− 33
8
)

or taking the ratio of these two equations,

d

h
=

h− 8

d− 33
8

Solving the constraint for h and putting it in the above gives after simplification:

(d− 33
8
)3 = 8× 27 ⇒ d = 75

8
⇒ h = 75

6
⇒ ℓ = 125

8

If you would have more than one constraint, there is one separate Lagrangian
multiplier for each one. For example, if you take care of the boundary conditions
in a finite element computation this way, you will get one for each boundary
condition at each boundary point.



Chapter 3

Approximations

3.1 Introduction

Why use approximation:

• Because it is needed. In fact everything you do in real life is an approxima-
tion. Real life is proably determined by some sort of quantum mechanics.
But we do not know what it is. And we would definitely not know how
to solve it even if we knew what it was.

• To reduce effort.

• To increase accuracy. You might be able to solve approximate equations
more accurately than more accurate equations, producing a better result.

• To get more insight in the problem. If you have computed say an in-
compressible flow of interest, the only real thing you can say about it is
that indeed, it is free from singularities. You can wax about “vortices,”
“fingers,” “intestines,” etcetera, that you seem to see in the flow, but that
you can also see in the clouds in the sky. If you start computing the flow
for various parameters, you may start getting somewhere to an inkling
of insight. However, doing that is limited by what the computer can do.
And the interpretation will always have ambiguity. However, if you start
looking at limiting processes of your parameters, you are suddenly getting
somewhere. You can now define meaningful “boundary layers”, “vortex
layers”, “shocks.” etcetera that are not just arbitrary interpretations but
have rigorous mathematical definitions.

• ...

This chapter looks at simple approximations using Taylor series (which of
course always includes linearization.)

17
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3.2 Example

From [1, p. 402, 10b]
Asked: The Maclaurin series of sin2 x.

3.2.1 Identification

General Taylor series:

f(x) = f(a) + f ′(a)
x− a

1!
+ f ′′(a)

(x− a)2

2!
+ . . .

=
∞∑

n=0

f (n)(a)
(x− a)n

n!

This is a power series (a is a given constant.) Maclaurin series: a = 0.
Approach:
• note that a = 0;
• identify the derivatives;
• evaluate them at a = 0;
• put in the formula;
• identify the terms for any value of n.

3.2.2 Results

f(x) = sin2 x f(0) = 0
f ′(x) = 2 sin x cos x f ′(0) = 0
f ′′(x) = 2 cos2 x− 2 sin2 x = 2− 4 sin2 x f ′′(0) = 2
f ′′′(x) = −8 sin x cos x = −4f ′(x) f ′′′(0) = 0
f ′′′′(x) = −4f ′′(x) f ′′′′(0) = −8
f (5)(x) = −4f ′′′(x) f (5)(0) = 0
f (6)(x) = −4f ′′′′(x) = (−4)2f ′′(x) f (6)(0) = 32
...

...

sin2 x = f(0) + f ′(0)
x− a

1!
+ f ′′(0)

(x− a)2

2!
+ . . .

= 2
x2

2!
− 8

x4

4!
+ 32

x6

6!
+ . . .

General expression:

When n = 2k with k ≥ 1: f (n) = 2(−4)ek−1 Otherwise: f (n)e = 0

sin2 x =
∞∑

k=1

2(−4)k−1 x2k

(2k)!
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3.2.3 Other way

Write sin2 x = 1
2
− 1

2
cos(2x) and look up the Maclaurin series for the cosine.

(No fair.)

3.3 Example

From [1, p. 404, 30]
Asked: The area below y = sin x2 for 0 6 x 6 1.

3.3.1 Identification

∫ 1

0

sin x2 dx

Analytically? Actually, the integral is equivalent to
∫
(sin(x)/x) dx, which

cannot be written in terms of elementary functions.
But since the x range is not large, we will try approximating sin x2 using a

Taylor series.

3.3.2 Finish

The Taylor series of sin x2 is that of sin x with x replaced by x2. So:

∫ 1

0
sin x2 dx =

∫ 1

0

x2

1!
− x6

3!
+

x10

5!
+ . . .

=
1

3
− 1

3!7
+

1

5!11

= .3103± 0.0008

The error estimate is rigorous since the series is an alternating one whose
terms get smaller monotoneously.





Chapter 4

Limits

4.1 Introduction

Taylor series often do not work because the functions involved are not analytic
at the point of interest. For example, this is common if the behavior of interest
is at large time, or for large values of some other parameter, like the Reynolds
number Re of a flow. (In fact, for flows in infinite domains it normally also
occurs for small Reynolds numbers.

Finding nonanalytic limits is then needed. Applications are very similar to
those of Taylor series:

• Because it is needed.

• To reduce effort.

• To increase accuracy.

• For making estimates of how importants something is.

• To get more insight. For example, consider the laminar flow past a flat
plate if the plate is aligned with the incoming flow velocity U . For finite
Reynolds numbers, there is little more you can say than that the flow
velocity will be zero at the plate, and U far away from the plate. To get
more insight than that, you can ask: “What is the limit of the velocity
for infinite Reynolds number Re, assuming that you keep the streamwise
location x fixed, as well as keep the ratio η = y

√
Re/x fixed, where y the

distance from the wall?” The answer is Uf ′(η) where f ′ is the Blasius
function tabulated in any real book on fluid mechanics. (If you instead
keep y itself fixed at a nonzero value, the limit is U , which is not very
interesting.) Most of my theoretical research in fluids (as opposed to in
numerical methods) really simply finds limits like this.

• ...

21
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4.2 Example

From [1, p. 227, 10v]
Asked:

lim
x→−∞

x2ex

4.2.1 Observations

lim
x→−∞

x2ex

You must first look whether the limit is trivial:

x2 → ∞ ex → 0

Since the product of infinity times zero is unknown, this limit is nontrivial.

4.2.2 L’Hopital

L’Hopital can be used if you create a ratio of quantities that both become zero
or both become infinite. (For example, you would not want to apply L’Hopital
on limx→0 3/2.)

lim
x→−∞

x2

e−x
= lim

x→−∞

(x2)
′

(e−x)′

Now both top and bottom become infinite. So L’Hopital can be applied, by
differentiating top and bottom separately:

lim
x→−∞

(x2)
′

(e−x)′
= lim

x→−∞

2x

−e−x
=

Still infinity over infinity, so differentiate once more

lim
x→−∞

2x

−e−x
= lim

x→−∞

2

e−x
= 0

4.2.3 Better

Using some insight is always better than just crunching it out. First simplify
things for yourself by defining u = −x. Then u goes to plus infinity instead of
minus infinity like x. Then

lim
x→−∞

x2ex lim
u→∞

u2

eu
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and that is zero because eu is much greater than any power of u for large positive
u. (To see that, just look at the Taylor series:

eu = 1 +
u

1!
+

u2

2!
+

u3

3!
+ . . .

The u3 term is much larger than u2 for large u and the other terms make eu

larger still.)
So you could replace x2 by x100 and the limit would still be zero.

4.3 Example

From [1, p. 228, 10z]
Asked:

lim
x→0

(x− arcsin x) csc3 x

4.3.1 Grinding it out

In

lim
x→0

(x− arcsin x) csc3 x

x and arcsin x become zero, but cscx becomes infinite. The total is undefined.
The simplest way to make a ratio suitable for l’Hopital is to use that cscx ≡

1/ sin x:

lim
x→0

(x− arcsin x) csc3 x = lim
x→0

x− arcsin x

sin3 x

Differentiate top and bottom

lim
x→0

1− (1− x2)−1/2

3 sin2 x cos x

Still zero over zero, so differentiate again

lim
x→0

−x(1− x2)−3/2

6 sin x cos2 x− 3 sin3 x

Still zero over zero, so differentiate again

lim
x→0

−(1− x2)−3/2 − 3x2(1− x2)−3/2

6 cos3 x− 21 sin2 x cos x
= 1

6

If I did not make any mistakes, I guess.
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4.3.2 Using insight

Since sin x ≈ x for small x, sin3 x ≈ x3. Also looking at a mathematical
handbook, arcsin x ≈ x+ 1

6
x3 + . . .. So:

lim
x→0

x− arcsin x

sin3 x
≈ −1

6
x3

x3
= −1

6

(Note that we needed to keep the cubic term in the Taylor series for arcsin x
since the term x dropped out.)



Chapter 5

Combined Changes in Variables

5.1 Introduction

Combined changes in variables are common. For example:

• Error estimates.

• Changes for a moving particle in a field.

• Changes in scalar quantities depending on several variables,

• ...

The key concept is the total differential. For any function f = f(x, y, z),

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

Of course, f could be a vector.

5.2 Example

From [1, p. 422, 27a]

Given:

ω = 3

√
g

b

The maximum error in g is 1%, the maximum error in b is 0.5%.

Asked: The maximum percentage error in ω.

25
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5.2.1 Identification

Given is that the maximum error in g is 1% and the maximum error in b is
0.5%. That means that the relative errors are:

δg

g
≤ 0.01

δb

b
≤ 0.005

where δg and δb are the absolute errors. Errors are always positive.
Error manipulation rules:
1. During addition and substraction of variables, add their absolute

errors;
2. During multiplication or division, add their relative errors;
3. During exponentiation, multiply the relative error by the absolute

power.

5.2.2 Results

Consider first the relative change in g/b due to changes dg in g and db in b. The
rule for differentiating a ratio implies:

d(g/b)

(g/b)
=

b

g

(
bdg − gdb

b2

)
=

dg

g
− db

b

Note that if you do not know the sign of the errors, you can only say that
the final result is no bigger than

∣∣∣∣
dg

g

∣∣∣∣+
∣∣∣∣
db

b

∣∣∣∣

which is simply the rule for adding relative errors if you take a ratio or product
of variables.

Hence the greatest possible relative error in (g/b) is:

δ(g/b)

(g/b)
= 0.01 + 0.005 = 0.015

But we need the relative error in 3
√
g/b instead of in g/b. Denoting g/b by

u for now, the rule for differentiating a power gives

du1/3

u1/3
=

1
3
u−2/3du

u1/3
= 1

3

du

u

That is simply the rule of multiplying the relative error by the absolute power
when exponentiating.

Hence
δω

ω
= 1

3
× 0.015 = 0.005 = 0.5%
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5.3 Example

From [1, p. 423, 29]
Given: A circular cylinder of changing radius r and height h. At a given

time, r = 6 inch, ṙ = 0.2 in/sec, h = 8 in, ḣ = −0.4 in/sec.
Asked: V̇ and Ȧ at that time.

5.3.1 Solution

V = πr2h A = 2πrh+ 2πr2

The total differential gives

dV =
∂V

∂h
dh+

∂V

∂r
dr

where differential changes become time derivatives if you divide by dt. So iden-
tifying the partial derivatives gives:

V̇ = πr2ḣ+ π2rhṙ = 15.08 in3/sec

Similarly:
Ȧ = 2πrḣ+ (2πh+ 4πr) ṙ = 10.05 in2/sec





Chapter 6

Curvilinear Motion

6.1 Introduction

Curvilinear motion:

• Dynamics of vehicles (cars, planes, ...)

• Ballistics,

• Forces,

• Vortex lines,

• ...

~r = ~r(t) ~v =
d~r

dt
~a =

d~v

dt

6.2 Example

From [1, p. 338, 14]
Given: A particle moves along a curve described by

x = 1
2
t2 y = 1

2
x2 − 1

4
ln x (6.1)

Asked: The velocity and acceleration at t = 1

29
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6.2.1 Position

At t = 1:

x = 1
2
t2 = 1

2
y = 1

2
x2 − 1

4
ln x = 0.298 (6.2)

hence

~r =

(
0.5
0.298

)
= 0.5ı̂+ 0.298̂ (6.3)

6.2.2 Velocity

Velocity:

~v =




dx

dt
dy

dt


 =




dx

dt
dy

dx

dx

dt


 =

(
t

(x− 1
4
x−1)t

)
=

(
t

1
2
t3 − 1

2
t−1

)
(6.4)

Velocity at t = 1:

~v(1) =

(
1
0

)
= 1ı̂+ 0̂ = ı̂ (6.5)

Components at t = 1:

vx ≡ dx

dt
= 1 vy ≡

dy

dt
= 0 (6.6)

Magnitude at t = 1:

|~v| = v ≡ ds

dt
=
√

v2x + v2y = 1 (6.7)

Angle with the positive x-axis at t = 1:

τ = arctan
vy
vx

= 0 (not π). (6.8)
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6.2.3 Acceleration

Acceleration:

~a =




dvx
dt
dvy
dt


 =

(
1

3
2
t2 + 1

2
t−2

)
(6.9)

from (6.4).
Acceleration at t = 1:

~a(1) =

(
1
2

)
= 1ı̂+ 2̂ (6.10)

Components at t = 1:

ax ≡ dvx
dt

= 1 ay ≡
dvy
dt

= 2 (6.11)

Magnitude at t = 1:

|~a| = a =
√
a2x + a2y =

√
5 (6.12)

Angle with the positive x-axis at t = 1:

φ = arctan
ay
ax

= 63◦ (not 243◦). (6.13)

Component tangential to the motion:

at ≡
dv

dt
≡ d2s

dt2
=

~a · ~v
|~v| =

axvx + ayvy
|~v| = 1 (6.14)

Component normal to the motion:

an ≡ v2

R
=
√
a2 − a2t = 2 (6.15)





Chapter 7

Line Integrals

7.1 Introduction

Line integrals:

• work;

• potential energy;

• velocity potential

• ...

Path independence:
∫ B

A

~F · d~r

is independent of the path between A and B when curl~F ≡ rot~F ≡ ∇× ~F = 0.

7.2 Example

From [1, p. 487, 14e]

Given: ~F = xı̂+ 2ŷ+ 3xk̂
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Asked: The work done by this force going from O to C along (1) the
connecting line; (2) the curve x = t, y = t2, z = t3; (3) path OABC.

7.2.1 Identification

Find the curl of the vector to see whether the three integrals are going to be
the same:

∇× ~F =

∣∣∣∣∣∣

ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

x 2y 3x

∣∣∣∣∣∣
=




0
−3
0




Nonzero, so the integrals along the three paths need not be the same.

7.2.2 Solution

∫ C

O

~Fd~r =

∫ C

O

xdx+ 2ydy + 3xdz

1. Along the line y = x and z = x:
∫ 1

x=0

6xdx = 3

2. Along the curve x = t, y = t2, z = t3:
∫ 1

t=0

Fx
dx

dt
+ Fy

dy

dt
+ Fz

dz

dt
=

∫ 1

0

tdt+ 2t2 2tdt+ 3t 3t2dt =
15

4
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3. Along OABC:

∫ 1

x=0

xdx+

∫ 1

y=0

2ydy +

∫ 1

z=0

3 1dz =
9

2





Chapter 8

Surface and Volume Integrals

8.1 Introduction

Multiple integrals are used to find various engineering quantities:

• Areas (cost, heat losses, . . . ):

2D Cartesian: dA = dxdy

2D polar: dA = ρdρdθ

• Volumes (weight, ...):

3D Cartesian: dV = dxdydz

Cylindrical: dV = ρdρdθdz

Spherical: dV = r2 sinφdrdφdθ

• Centroids (center of gravity, center of pressure, ...)

x̄ =

∫
xdA

/∫
dA x̄ =

∫
xdV

/∫
dV

• Moments of inertia (solid body dynamics, center of pressure, ...)

Ix =

∫
y2dA I0 =

∫
x2 + y2dA

Ix =

∫
y2 + z2dV Ixy = −

∫
xydV

• ...
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If the material is not homogenous, you may have to put an additional density-
like factor in those integrals.

Procedure:

• Draw the region to be integrated over.

• When integrating, say
∫ ∫ ∫

f(a, b, c) dadbdc, you have to decide
whether you want to do a, b, or c first. Usually, you do the coordinate
with the easiest limits of integration first.

• If you decide to do, say, b first, (i.e. you want to integrate

∫ b2

b1

f(a, b, c) db

first), the limits of integration b1 and b2 must be identified from the
graph at arbitrary a and c, and are normally functions of a and c:
b1 = b1(a, c), b2 = b2(a, c).

• After integrating over, say, b, the remaining double integral should
no longer depend on b in any way. Nor does the region of integration:
redraw it without the b coordinate. In other words, project it onto
the a, c-plane. Then integrate over the next easiest coordinate in the
same way.

• If you change integration variables from a, b, c to p, q, r, the integral
becomes

∫ ∫ ∫
f(p, q, r)J dpdqdr with the “Jacobian”

J =
∣∣∣

∣∣∣∣∣∣

∂a
∂p

∂a
∂q

∂a
∂r

∂b
∂p

∂b
∂q

∂b
∂r

∂c
∂p

∂c
∂q

∂c
∂r

∣∣∣∣∣∣

∣∣∣

Here the inner bars indicate the determinant of the matrix of deriva-
tives and the outer bars the absolute value of that. (Sometimes it is
easier to take the inverse of the Jacobian of the inverse transforma-
tion.)

8.2 Example

From [1, p. 487, 14e]

Asked: Find the centroid of the first-quadrant area bounded by x2− 8y+4
= 0 and x2 = 4y and x = 0.
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8.2.1 Region

8.2.2 Approach

Integrate x first?

The integral would have to be split up into the light and dark areas since the
lower boundary of integration is x1 = 0 in the light region and x1 =

√
8y − 4 in

the dark region.
So integrate y first!

The boundaries of integration will be

y1 =
1
4
x2 y2 =

1
8
x2 + 1

2

After integration over y, the remaining region of integration over x will be
a line segment:
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x1 = 0 x2 = 2

8.2.3 Results

For A =
∫
dA =

∫ ∫
dxdy:

A =

∫ x=2

x=0

[∫ y= 1

8
x2+ 1

2

y= 1

4
x2

dy

]
dx

=

∫ 2

x=0

[
y
∣∣∣
y= 1

8
x2+ 1

2

y= 1

4
x2

]
dx

=

∫ 2

x=0

[
(1
8
x2 + 1

2
)− (1

4
x2)
]
dx

=

∫ 2

x=0

[
(1
2
− 1

8
x2
]
dx = 2

3
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For Ax̄ =
∫
xdA =

∫ ∫
xdxdy:

A =

∫ x=2

x=0

[∫ y= 1

8
x2+ 1

2

y= 1

4
x2

x dy

]
dx

where x is constant in the integration;

=

∫ 2

x=0

[
xy
∣∣∣
y= 1

8
x2+ 1

2

y= 1

4
x2

]
dx

=

∫ 2

x=0

[
(1
8
x3 + 1

2
x)− (1

4
x3)
]
dx

=

∫ 2

x=0

[
(1
2
x− 1

8
x3
]
dx = 1

2

Hence x̄ = 1
2
/2
3
= 3

4
.

For Aȳ =
∫
ydA =

∫ ∫
ydxdy:

A =

∫ x=2

x=0

[∫ y= 1

8
x2+ 1

2

y= 1

4
x2

y dy

]
dx

=

∫ 2

x=0

[
1
2
y2
∣∣∣
y= 1

8
x2+ 1

2

y= 1

4
x2

]
dx

=

∫ 2

x=0

[
1
2
(1
8
x2 + 1

2
)2 − 1

2
(1
4
x2)2

]
dx

=

∫ 2

x=0

[
(1
8
+ 1

16
x2 − 3

128
x2
]
dx = 4

15

Hence ȳ = 4
15
/2
3
= 2

5
.

8.3 Example

From [1, p. 507, 21c]
Asked: Find the centroid of the first octant region inside x2 + y2 = 9 and

below x+ z = 4.
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8.3.1 Approach

The region inside x2 + y2 = 9 is the inside of a cylinder of radius 3 around the
z-axis. The equation x + z = 4 describes a plane through the y-axis under 45
degrees with the x-axis:

Use cylindrical coordinates r, θ, and z:

x = r cos θ y = r sin θ

Integrate z first:

(Why not r first? Why not θ?). Boundaries are

z1 = 0 z2 = 4− x = 4− r cos θ

Next integrate θ and r:
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θ1 = 0 θ2 =
1
2
π

r1 = 0 r2 = 3

8.3.2 Results

For the volume V =
∫ ∫ ∫

dV =
∫ ∫ ∫

r dzdrdθ:

V =

∫ π/2

θ=0

∫ 3

r=0

[∫ 4−r cos θ

z=0

r dz

]
drdθ

=

∫ π/2

θ=0

[∫ 3

r=0

(4− r cos θ)rdr

]
dθ

=

∫ π/2

θ=0

18− 9 cos θdθ = 9(π − 1)

For V x̄ =
∫ ∫ ∫

x dV =
∫ ∫ ∫

xrdzdrdθ:

V x̄ =

∫ π/2

θ=0

∫ 3

r=0

[∫ 4−r cos θ

z=0

r2 cos θ dz

]
drdθ

=

∫ π/2

θ=0

[∫ 3

r=0

4r2 cos θ − r3 cos2 θdr

]
dθ

=

∫ π/2

θ=0

36 cos θ − 81

4
cos2 θdθ =

9

16
(64− 9π)

hence x̄ = (64− 9π)/16(π − 1)
Etcetera.





Chapter 9

Numerical Integration

9.1 Introduction

Numerical integration using Newton formulae:

• can handle any function;

• simple;

• can handle measured data easily.

Trapezium rule for an interval from x = xi to xi+1:

∫ xi+1

xi

f(x) dx ≈ (xi+1 − xi)
f (xi) + f (xi+1)

2

45
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Simpson rule for an interval from x = xi to xi+1:
∫ xi+1

xi

f(x) dx ≈ (xi+1 − xi)
f (xi) + 4f(xi+ 1

2
) + f (xi+1)

6

These rules are accurate if the interval from xi to xi+1 is sufficiently small.
To integrate over an interval that is not small, divide it into small ones, then
integrate over each small interval and add the results.

9.2 Example

From [1, p. 205, 44], modified.
Asked: ∫ 2

1

x
3
√
x5 + 2x2 − 1 dx
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9.2.1 Solution

Divide into n=2 intervals and use the trapezium rule:

If
f(x) = x

3
√
x5 + 2x2 − 1

then the trapezium rule gives

∫ 1.5

1

f dx = 0.5
f(1) + f(1.5)

2
= 0.5

1.259921 + 3.345421

2
= 1.151336

∫ 2

1.5

f dx = 0.5
f(1.5) + f(2)

2
= 0.5

3.345421 + 6.782423

2
= 2.531961

∫ 2

1

f dx = 1.151336 + 2.531961 = 3.683297

Exact is 3.571639.
Now divide into n=2 half intervals and use the Simpson rule:

∫ 2

1

f dx = 1
f(1) + 4f(1.5) + f(2)

6

= 1
1.259921 + 4 ∗ 3.345421 + 6.782423

6
= 3.570671

Closer to the exact value 3.571639.





Chapter 10

Geometry using vectors

10.1 Introduction

Vectors for geometry:

• straight line trajectories;

• surfaces;

• ...

• Dot (scalar) product:

~a ·~b = axbx + ayby + azbz = |~a||~b| cosϑ

• Cross (vector) product:

|~a×~b| = |~a||~b| sinϑ

and normal to both vectors. Seen from below:

49
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• Line through point P parallel to vector ~s:

~r = ~rP + λ~s

• Plane through point P normal to vector ~n:

~n · ~r = ~n · ~rP

• Each equation ordinarily reduces the dimensionality by one: 3D (space)
→ 2D (plane) → 1D (line) → 0D (point) → nothing.

10.2 Example

From [1, p. 439, 35(b)].
Asked: The line through point P0, (2,-3,5), and parallel to the line x− y+

2z + 4 = 0, 2x+ 3y + 6z − 12 = 0.
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10.2.1 Identification

• I need a vector in the direction of the desired line.

• This is the same direction as the given line.

• The two equations give me vectors ~n1 and ~n2 normal to the given line

• Cross the two vectors!

10.2.2 Solution

x− y + 2z + 4 = 0 ⇒ ~n1 = (1,−1, 2)

2x+ 3y + 6z − 12 = 0 ⇒ ~n2 = (2, 3, 6)

~s =

∣∣∣∣∣∣

ı̂ ̂ k̂
1 −1 2
2 3 6

∣∣∣∣∣∣
=




−12
−2
5




~r =




x
y
z


 =




2
−3
5


+ µ




−12
−2
5




Alternatively:

x− 2

−12
=

y + 3

−2
=

z − 5

5
(= µ)
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10.3 Example

From [1, p. 440, 36(b)].
Asked: The plane through point P0, (2,-3,2), and the line 6x+4y+3z+5 =

0, 2x+ y + z − 2 = 0.

10.3.1 Identification

• I need a vector normal to the plane.

• I can get this by crossing two vectors in the plane.

• One such vector is ~n1 × ~n2.

• To find another, find any point Q on the line, then rQ−rP0
is in the plane.

10.3.2 Solution

6x+ 4y + 3z + 5 = 0 ⇒ ~n1 = (6, 4, 3)

2x+ y + z − 2 = 0 ⇒ ~n2 = (2, 1, 1)

~s =

∣∣∣∣∣∣

ı̂ ̂ k̂
6 4 3
2 1 1

∣∣∣∣∣∣
=




1
0
−2
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When x = 0 on the line,

4y + 3z + 5 = 0, y + z − 2 = 0 ⇒ x = 0, y = −11, z = 13

~n =




1
0
−2


×






0
−11
13


−




2
−3
2






=




1
0
−2


×




−2
−8
11


 =




−16
−7
−8







16
7
8


 ·




x
y
z


 =




16
7
8


 ·




2
−3
2




16x+ 7y + 8z = 27





Chapter 11

Vector Analysis

11.1 Coordinate Changes

11.1.1 General

Suppose that starting at Cartesian coordinates, we make a switch to new coor-
dinates, like cylindrical or spherical ones? What is involved such a change in
coordinates?

To find out, as always take the Cartesian coordinates (x, y, z) to form a
vector

~r = xı̂+ ŷ+ zk̂

in physical space. Let the new coordinates be called (u1, u2, u3). You can take
these to form a vector ~u in an artificial “parameter space”. Note that that
vector has no physical meaning; it is just a concise way of writing the three
coordinates.

The “Jacobian matrix” is defined as the matrix of derivatives

∂~r

∂~u
≡




∂x

∂u1

∂x

∂u2

∂x

∂u3

∂y

∂u1

∂y

∂u2

∂y

∂u3

∂z

∂u1

∂z

∂u2

∂z

∂u3




Note that often it is easier to differentiate the new coordinates with respect to
the physical ones, rather than vice versa. If so, you can find the Jacobian matrix
as the inverse:

∂~r

∂~u
=

(
∂~u

∂~r

)−1

This is based on the fact that the product of the two matrices above equals
∂~r/∂~r, which is the unit matrix.
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Any small change d~u in the artificial vector ~u corresponds to a small change
in physical position d~r given by:

d~~r =
∂~r

∂~u
d~u

So if the Jacobian matrix is well defined, and its determinant nonzero, any
small change in physical space d~r will correspond to a unique displacement d~u
in coordinate space, and vice versa. If however the coefficients of the Jacobian
matrix are undefined at a point, or the determinant is zero, the mapping is
called locally singular at that point.

So the determinant of the Jacobian matrix is very important. This determi-
nant is called the “Jacobian” J :

J ≡
∣∣∣∣
∂~r

∂~u

∣∣∣∣ ≡

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u1

∂x

∂u2

∂x

∂u3

∂y

∂u1

∂y

∂u2

∂y

∂u3

∂z

∂u1

∂z

∂u2

∂z

∂u3

∣∣∣∣∣∣∣∣∣∣∣∣

If you would rather differentiate the new coordinates with respect to the old,
the determinant will give the inverse of J .

Now suppose you take a little “block” du1du2du3 in the artificial parameter
space. In physical space, that little block will correspond to a little paral-
lelepiped with sides

d~r1 ≡
∂~r

∂u1

du1 d~r2 ≡
∂~r

∂u2

du2 d~r3 ≡
∂~r

∂u3

du3

The volume of this small parallelepiped, call it dV is given by the scalar triple
product of its three sides, which equals the determinant of these three sides:

dV = d~r1 · (d~r2 × d~r3) =

∣∣∣∣
∂~r

∂u1

∂~r

∂u2

∂~r

∂u3

∣∣∣∣ du1du2du3

But the determinant above is just the Jacobian J ! So it follows that if you
would rather integrate some function f in new coordinates instead of physical
ones, you must simply add a Jacobian:

∫∫∫
f dxdydz =

∫∫∫
f |J | du1du2du3
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11.1.2 Orthogonal coordinates

Orthogonal coordinates are a special case of the new coordinates discussed in
the previous subsection. For orthogonal coordinates, the little parallelepiped
in physical space corresponding to a little block du1du2du3 in coordinate space
has orthogonal sides. So it too is a little block, rather than just a little paral-
lelepiped.

Since the three sides are proportional to the derivatives ∂~r/∂u1, ∂~r/∂u2, and
∂~r/∂u3, these derivatives must be orthogonal for orthogonal coordinates. That
means that if you write them as magnitudes h1, h2, and h3 times unit vectors
ı̂1, ı̂2, and ı̂3,

∂~r

∂u1

≡ h1ı̂1
∂~r

∂u2

≡ h2ı̂2
∂~r

∂u3

≡ h3ı̂3

then these three unit vectors are orthogonal at each point. So you can use them
as a local orthogonal coordinate system. And write any vector ~v at the point
in the form

~v = v1ı̂1 + v2ı̂2 + v3ı̂3

You can then convert the gradient, divergence, and curl operators to the
new coordinates. These formulas will involve the magnitudes, called “metric
indices” h1, h2, and h3. Since you can find these formulae in any mathematical
handbook, they will not be discussed here.

But often you want to find other derivatives in the new coordinates. To do
so, you must know how to find the derivatives of the unit vectors ı̂1, ı̂2, and
ı̂3. These formulae are not soeasy to find, so they will be given here. For any i
equal to 1, 2, or 3, and any j equal to 1, 2, or 3,

∂ı̂i
∂uj

=
1

hi

∂hj

∂ui

ı̂j if j 6= i
∂ı̂i
∂ui

=
1

hi

∂hi

∂ui

ı̂i −
3∑

k=1

1

hk

∂hi

∂uk

ı̂k

The derivation is in {D.1}.
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Chapter 12

Gaussian Elimination

12.1 Elimination Procedure

To do Gaussian (or forward) elimination in this class, the general procedure
consists of four basic steps. Take the initial “submatrix” to look at to be the
complete given matrix. Then:

GE I If there is only one row left in the submatrix currently being looked at,
you are done with Gaussian elimination. And so you are if there are no
more nonzero coefficients in the submatrix.

GE II In the submatrix currently being looked at, identify the first column
that still has a nonzero coefficient. Any earlier columns no longer appear
anywhere, and should be dropped from the submatrix being looked at.

GE III In the submatrix currently being looked at, use the first row to elimi-
nate the first coefficient from the subsequent rows. Normally, you do that
by subtracting suitable multiples of the first row from the subsequent ones.
Step GE III can be described as “creating zeros below the pivot.” Note
that this is only possible if the coefficient in the first column of the first
row, called the pivot, is nonzero. In general, before doing the actual step
GE III, you may need to exchange the current first row with a later one
that will produce a better pivot. The next section will explain that in
more detail.

GE IV Drop the first row and the first column from the submatrix being looked
at. With the so-reduced submatrix, repeat the process starting from step
GE I.

This process will give rise to a so-called “echelon form” of the matrix. That
is a special case of an upper triangular (if square) or upper trapezoidal (if not
square) matrix.
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Additional note: the eliminations in GE II can be done in a single step for
all rows below the pivot. You do not have to show each row using a separate
matrix. You must however explicitly show the multiplier(s) used.

12.2 Partial Pivoting

Partial pivoting is defined as interchanging the first row of the submatrix cur-
rently being looked at with a subsequent one. Its purpose is to replace the
current pivot by a more desirable one. In particular, partial pivoting must be
used if otherwise the pivot would be zero.

More generally, partial pivoting must be used to select the equation with
the most desirable pivot. In particular

• In a numerical solution of systems of equations on a computer, the
main objective is to minimize the effect of round-off errors. Here
you should select the row having the pivot with the largest absolute
value. (This assumes that the equations are scaled in a consistent,
reasonable way.)

• In hand computations with integer matrices in homework or an exam
in this class, the objective is to avoid fractions in the algebra. So
you try to select a pivot which is ±1.
Note that there may not be such a pivot. In that case, you may

be still be able to avoid fractions by partial pivoting. Or else you
might be able to avoid them by multiplying the row being replaced
by an integer greater than 1 instead of 1.
If that works, it should normally be done. However, if you want to

identify matrices L and U in the LU theorem, you can only multiply
the row being replaced by 1. Otherwise the theorem does not work.
So you may have to live with fractions.

12.3 Back substitution

To solve an echelon system resulting from Gaussian elimination, start with the
last equation and work backwards to the first. At any stage,

• If all the coefficients of the unknowns are zero, and the right hand
side too, the equation is trivial. Ignore it.

• If all the coefficients of the unknowns are zero, and the right hand
side is not, there is no way to satisfy it. So there is no solution to
the given system of equations. Note so explicitly.

• In all other cases, solve the equation for the pivot variable (the
variable with the pivot, i.e. with the first nonzero coefficient.) Take
the other terms to the right hand side and substitute in anything
you already learned in solving the previous equations below it.
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12.4 LU Theorem

If you put minus the multipliers in a Gaussian elimination without partial piv-
oting in a lower triangular matrix L, with values 1 on the main diagonal, then

LU = A (12.1)

That is the LU theorem.
After L and U have been found through Gaussian elimination, you can solve

A~x = ~b for any given right hand side vector ~b as follows: The system to solve
is according to the theorem LU~x = ~b. Temporarily call U~x = ~y. Solve L~y = ~b
using simple forward substitution. With ~y now known, U~x = ~y can be solved
using back substitution as before:

L~y = ~b U~x = ~y (12.2)

In case partial pivoting was needed, remember the row order interchanges
you did and do the same interchanges with the coefficients of ~b before solving as
above. You also need to do the row exchanges on the forming matrix L while
doing the GE. LU will then be the matrix App, equal to matrix A except with
its rows in the final order produced by all the row interchanges.

For large n × n matrices the number of computer “operations” (defined as
1 multiplication and 1 addition) to find L and U is approximately 1

3
n3. After

that, to find a ~x given a ~b takes only about n2 operations.
Some warnings. Normally speaking:
1. Never ever use Cramer’s rule for anything but the tiniest of matrices.

Multiplying out a determinant takes about (n+1)! operations, which
is gigantically larger than 1

3
n3 for everything except the tiniest n.

Not to mention the possible round-off error growth with so many
operations. And the risk of overflow and underflow (i.e. numbers
getting outside the range that they can be stored on a computer.)

2. If you find the inverse matrix A−1, you can simply find any ~x as
A−1~b. But that is normally a bad idea. One reason is that it takes
n3 operations to find A−1, three times more than to find L and U .
And to evaluate A−1~b still takes n2 operations. Also the additional
operations tend to increase round-off error, [2].

3. A band matrix is a matrix in which the nonzero elements are re-
stricted to a relatively narrow band around the main diagonal. Never
ever use an LU decomposition library routine designed for a full ma-
trix to solve a system with a band matrix. The waste in storage and
computer effort to store all these zeros, and compute with them,
would be gigantic. Use an LU decomposition subroutine designed
for a band matrix.



64 CHAPTER 12. GAUSSIAN ELIMINATION

4. Never ever find the inverse of a band matrix if you can help it. The
inverse will be a full matrix. However, L and U will still be band
matrices. (Partial pivoting may increase U a bit to outside the band
of A, by up to the width of L.)

12.5 Row Canonical Form

To reduce a matrix to “row canonical” form, (AKA “row reduced echelon”
form, or “reduced row-echelon” form, or “Gauss-Jordan” form), first reduce it
to echelon form using Gaussian elimination as described in section 12. Then,
starting from the last equation with a nonzero coefficient of an unknown,

1. Use the equation to eliminate the first unknown with a nonzero co-
efficient in the equation, (i.e. the pivot unknown), from the previous
equations (i.e. create zeros above the pivot). Do not worry about
fractions anymore; they cannot normally be avoided.

2. Divide the equation by the pivot so that the pivot becomes 1.

3. Go to the previous equation, if any, and repeat the process.

Note: you can do both steps 1 and 2 above in each stage at the same time.
You do not have to show each row nor the final scaling using a separate matrix.
You must however explicitly show the multiplier(s) used.

Note: in this class you may not reduce a matrix to row canonical unless
you are explicitly told so or the given class procedure requires it. Normally you
must stop after you did the Gaussian elimination (producing normal echelon
form with pivots that in general are not 1). That is because this is the standard
and most efficient way to do it.

You may however proceed to row-canonical when finding the inverse of a
matrix using the Gaussian Elimination method described later. You must pro-
ceed to row-canonical to find a simplified basis of the row space of a matrix, or
of the column space, (starting from the transpose matrix), as described later.

12.6 Null Spaces and Solution Spaces

To find the null space of a matrix, reduce it to echelon form as described earlier.
To refresh your memory, the first nonzero elements in the rows of the echelon
form are the pivots. Solve the homogeneous system by back substitution as also
described earlier. To refresh your memory, you solve for the pivot variables.
The variables without pivots cannot be solved for and become parameters with
arbitrary values in the null space, multiplying “basis vectors”. The coefficients
inside the basis vectors come from the solved variables or from writing triviali-
ties.
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For example, if your unknowns are (x1, x2, x3, x4, x5, x6) and your echelon
matrix is 



0 2 4 6 8 6
0 0 0 5 0 0
0 0 0 0 2 4
0 0 0 0 0 0




then the last equation is trivial and you get from the third

2x5 + 4x6 = 0 =⇒ x5 = −2x6

then from the second
x4 = 0

then from the first

2x2 + 4x3 + 6(0) + 8(−2x6) + 6x6 = 0 =⇒ x2 = −2x3 + 5x6

To get the null space (i.e. the full set of vectors (x1, x2, x3, x4, x5, x6) that
produce zero when premultiplied by the original A), the variables (x1, x3, x6)
without pivots go in the right hand side as arbitrary constants that can be
anything:

null space:




x1

x2

x3

x4

x5

x6




null space

= x1




1
0
0
0
0
0




+ x3




0
−2
1
0
0
0




+ x6




0
5
0
0
−2
1




The coefficients for the pivot variables (x2, x4, x5) in the vectors in the right hand
side come from the solved equations, and those for (x1, x3, x6) from trivialities.

To get a basis for the null space, you can use the constant vectors in the
right hand side:

a basis of the null space:




1
0
0
0
0
0




,




0
−2
1
0
0
0




, and




0
5
0
0
−2
1




(By definition any vector in the null space is a linear combination of the above
three vectors. And it is easy to see that the three are linearly independent.)

If the above basis would contain fractions, you should consider multiplying
them by some nonzero constants to clean up. Note that that will of course affect
the given expression for the null space.
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To find a solution space is almost the same as finding the null space, except
that you will use an augmented matrix to include the given nonzero right hand
side. The right hand side will produce an additional vector in the solution space
that is not multiplied by any unknown. Therefore the solution space is not a
vector space (assuming that the given right hand side is not zero) and has no
basis.



Chapter 13

Inverse Matrices

13.1 Finding inverses using GE

Note: if you are required to find an inverse using minors in this class, do not
use any GE, even for attractive simplifications.

Note: If a matrix is orthonormal, its inverse must be found using a transpose
in this class.

Finding the inverse of a matrix is usually a bad idea. But if you do need it,
you may use the following trick:

1. Create an augmented matrix in which the n right hand side column
vectors are the columns of the unit matrix.

2. Reduce the matrix to row canonical form using Gaussian elimination
as described earlier. In other words

(A|I) GE−→ (ARowCan|BRed)

3. For a nonsingular matrix A, ARowCan will be a unit matrix and BRed

will be the desired A−1. (For a singular matrix, one of the pivots
will be found to be zero in the reduction to echelon form, and there
is no inverse matrix.)

Note that what you are really doing in the above is solving the system of
equations AA−1 = I for the columns of A−1. The only trick is that if you reduce
the matrix all the way to a unit matrix, the solution A−1 becomes the same as
the right hand side of the reduced system.

Also note that the most efficient way to find the inverse, in terms of oper-
ations, is still LU decomposition. Normally this would take 1

3
n3 operations to

find L and U and then n3 operations to find the n columns of A−1. But the
right hand sides to the U~y = ~b systems are unit vectors, which are mostly zeros.
If you use this to avoid computing coefficients in y that are automatically zero,
you can reduce the operations by 1

3
n3.
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13.2 Finding inverses using minors

Note: if you are required to find an inverse using GE in this class, do not use
any minors, even on 2× 2 matrices.

Note: If a matrix is orthonormal, its inverse must be found using a transpose
in this class.

In this class, if you need to find an inverse matrix using the method of
minors,

• Write the transpose matrix.
• Form a matrix of the minors of each of the elements of the transpose
matrix, with a checkerboard sign pattern. (Positive on the main
diagonal.)

• Divide by the determinant.
• Evaluate.

13.3 Finding inverses using transposing

A matrix is orthonormal if its columns are mutually orthogonal and of length 1.
For an orthonormal square matrix, its inverse must be found using a transpose
in this class. This is mainly important, in this class, for the transformation
matrices that diagonalize symmetric matrices.



Chapter 14

Eigenvalues and Eigenvectors

14.1 Finding Eigenvalues

In this class, to find the eigenvalues of an n× n matrix,
1. Form the matrix A − λI. That means, add −λ to each diagonal

elements. (Don’t forget zero diagonal elements.)
2. Find the determinant of that matrix using the method of minors.

(Gaussian elimination is too messy here and should not be used.)
3. Set this determinant to zero. For an n× n matrix, the determinant

can always be written in the form

|A| = ±(λ− λ1)(λ− λ2) . . . (λ− λn)

where λ1, λ2, . . . , λn are the eigenvalues. They are found as the roots
(or zeros) of the determinant. There are always n eigenvalues. But
these n eigenvalues do not necessarily correspond to n different num-
bers. For example, for some matrix λ2 might be the same number
as λ4. In that case, that number is called a “double eigenvalue”. If
three of the eigenvalues are the same number, that number is called
a “triple eigenvalue,” etcetera.

For an n × n matrix, the determinant is always a polynomial of degree n,
call it pn(λ). Now finding the roots of quadratics, n = 2, is easy. But if the
dimension of the matrix n = 3, you have to solve a cubic equation. For that
the general solution is very and hard to apply, especially if you do not know
complex variables. For n = 4, the general solution is even worse, and for n =
5 or more, there is no general expression for the roots at all. (It has in fact
been proved that such an expression is impossible to find.) To deal with such
problems, here are some tricks:

• Do not be too quick to multiply out. Maybe you can recognize a
common factor λ − λi in all terms before multiplying out. In that
case, λi is one of your eigenvalues. To find the remaining eigenvalues,
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take the factor λ− λi out of the entire expression and look at what
is left.

• If you can guess a root λi (by trying, say, 0, ±1, ±2, . . . , and seeing
whether the determinant is zero for that value of λ), then you can
write the original characteristic polynomial pn(λ) as (λ−λi)pn−1(λ)
where pn−1(λ) is one degree less that pn(λ). So its roots are easier
to find. You find pn−1(λ) by long division of pn(λ) by (λ− λi).

• Sometimes a fourth order polynomial is really just a quadratic when
written in terms of λ2, like (λ2)2 − a(λ2)− b. In that case, first find
the values of λ2, then from those the values of λ.

14.2 Eigenvectors of nonsymmetric matrices

To find the eigenvectors of a nonsymmetric matrix,

1. Find the eigenvalues of the matrix as described.

2. For each distinct eigenvalue λi, find the basis of the null space of
A − λiI. This basis forms a complete set of eigenvectors ~ei for the
eigenvalue. The method for finding nullspaces was discussed earlier.

There is always at least one eigenvector. However, for a multiple eigenvalue,
the number of eigenvectors might be less than the multiplicity of the eigenvalue.
If so, the matrix is defective. (This is not to be confused with singular. A matrix
is singular if an eigenvalue is zero, making its determinant zero.) For example,
a matrix is defective if a double eigenvalue has only one eigenvector. Or a triple
eigenvector only one or two.

14.3 Eigenvectors of symmetric matrices

Real symmetric matrices (or more generally, complex Hermitian matrices) al-
ways have real eigenvalues, and they are never defective. Their eigenvectors
can, and in this class must, be taken orthonormal. (Mutually orthogonal and
of length 1.)

For real symmetric matrices, initially find the eigenvectors like for a non-
symmetric matrix. However, after that, you must make the eigenvectors or-
thonormal in this class.

• For eigenvectors belonging to single eigenvalues, orthogonality to all
the other eigenvectors is automatic. Therefore it is enough to just
divide the eigenvector by its length:

~ei = ~eBAD
i /|~eBAD

i | (14.1)

Clean up, and that is it.
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• However, eigenvectors belonging to a multiple eigenvalue are usually
not mutually orthogonal if correctly found using the class procedure
(as basis of the A−λiI null space). You must make them orthogonal.
The most general method to do that is using the Gram-Schmidt

procedure. This works as follows. Start with the nonorthogonal
eigenvectors corresponding to the multiple eigenvalue,

~eBAD
1 , ~eBAD

2 , ~eBAD
3 , . . .

obtained using the same procedure as for nonsymmetric matrices.
For an eigenvalue of multiplicity m, there will be exactly m of these
eigenvectors (since symmetric matrices can never be defective). I
am assuming here that you have numbered these eigenvectors as 1,
2, . . . . If not, just replace 1, 2, . . . by i1, i2, . . . .
You create your first good eigenvector ~e1 as before, by simply

dividing ~eBAD
1 by its length:

~e1 = ~eBAD
1 /|~eBAD

1 |
Now you need to make the remaining vectors in the set of m

orthogonal to ~e1. You do that by removing from each vector its
vector component in the direction of ~e1, as follows:

~eBAD,2
2 = ~eBAD

2 − (~eBAD
2 · ~e1)~e1 ~eBAD,2

3 = ~eBAD
3 − (~eBAD

3 · ~e1)~e1 . . .

Vectors ~eBAD,2
2 , ~eBAD,2

3 , . . . are now orthogonal to ~e1.
Now you create your second good eigenvector ~e2 by simply dividing

~eBAD,2
2 by its length

~e2 = ~eBAD,2
2 /|~eBAD,2

2 |
If there are still vectors left, you need to make each orthogonal to

~e2. In the same way as before

~eBAD,3
3 = ~eBAD,2

3 − (~eBAD,2
3 · ~e2)~e2 . . .

Now you create your third good eigenvector ~e3 by simply dividing
~eBAD,3
3 by its length

~e3 = ~eBAD,3
3 /|~eBAD,3

3 |
If there are still vectors ~eBAD,3

4 , . . . left, you now have to make
them orthogonal to ~e3. Then you can find ~e4 by dividing ~eBAD,4

4 by
its length.
Continue like this for multiplicities greater than 4. The general

formula is

~eBAD,new
j = ~eBAD,old

j − (~eBAD,old
j · ~ei)~ei for i = j+1, j+2, . . . ,m

(14.2)
where ei is the last good eigenvector obtained so far and j > i.
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Change of Basis

15.1 General Procedure

Normally, you use “Cartesian coordinates” when dealing with vectors. That is
based on “Cartesian basis vectors” ı̂, ̂, k̂, . . .. For example, in two dimensions,

ı̂ =

(
1
0

)
̂ =

(
0
1

)

These Cartesian basis vectors are shown in red in figure 15.1(a). Using these
two basis vectors, you can write any vector ~v in the form

~v = v1ı̂+ v2̂

This is illustrated graphically in figure 15.1(b). Note how, starting from the
origin, if you first move over v1ı̂ and then over v2̂ you reach the end point of
vector ~v. Now v1 and v2 are ordinary numbers that are called the “components”,
or “coefficients,” or “coordinates” of vector ~v.

Therefore, in this way, you are never have to deal with more vectors that ı̂
and ̂. All the rest is just ordinary numbers.

But sometimes it is convenient to use a different basis than the obvious ı̂, ̂
one. For example, you might know that in dealing with plane stresses, it is often
convenient to rotate the coordinate system to the “principal axes.” In principal
axes, there are no shear stresses, just normal stresses. But if you rotate the
coordinate system, ı̂ and ̂ become different vectors, call them ı̂′ and ̂′. The
point however is that in using these new basis vectors ı̂′ and ̂′, your physical
problem has simplified.

As we will see later, to simplify a problem, the desired new vectors are not
always orthonormal (orthogonal and of length 1) like ı̂′ and ̂′ in the example
above. In general, the new basis vectors, we will call them ~p1 and ~p2, can be
anything, as long as they are linearly independent. As long as that is true, you
can still write any arbitrary vector ~v as

~v = v′1~p1 + v′2~p2
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(a)

~v

ı̂

̂
~p1

~p2

(b)

~v

ı̂

̂
~p1

~p2

v1ı̂

v1ı̂

v2̂v2̂

(c)

~v

ı̂

̂
~p1

~p2

v′1~p1

v′1~p1

v′2~p2

Figure 15.1: Illustration of a change of basis in two dimensions. (a) The stan-
dard basis ı̂, ̂, a new basis ~p1, ~p2, and any arbitrary vector ~v. (b) Any vector
~v can be written as ~v = v1ı̂ + v2̂. (c) However, the same vector can also be
written as ~v = v′1~p1 + v′2~p2. That uses the new basis.
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where v′1 and v′2 are still ordinary numbers. They are called the coordinates of
~v in the new basis ~p1, ~p2. It is illustrated graphically in figure 15.1(c).

However, in general the coordinates v′1 and v′2 in the new basis are not the
same as the coordinates v1 and v2 in the old basis ı̂, ̂. So, if you want to use the
new basis to your advantage, you will normally have to know how to compute
v′1 and v′2 if you know v1 and v2 and/or vice-versa. That is the problem that
this section will address.

First, to find the old coordinates v1 and v2 given the new ones v′1 and v′2 is
easy. Just write the above equation as a row-column multiplication:

~v =
(
~p1 ~p2

)( v′1
v′2

)

Then write that out in terms of the old Cartesian coordinates:
(

v1
v2

)
=
(
~p1 ~p2

)( v′1
v′2

)

or more concisely,

~v =
(
~p1 ~p2

)
~v ′

where a prime on a vector means that its coordinates are written out in terms
of the new basis, and no prime means they are written out in terms of the old
basis. According to the above, to get the old coordinates from the new ones,
just put ~p1 and ~p2 in a matrix, call it P ,

P =
(
~p1 ~p2

)
(15.1)

and multiply by that matrix. Do note that the ~p1 and ~p2 that you put in P
must be written out in terms of the old Cartesian coordinates. But what else
could you do?

So you get the following transformation formulae between coordinates

~v = P~v ′ ~v ′ = P−1~v (15.2)

with P as above. Note that while P computes the old coordinates from the
new ones, it is called “the transformation matrix from old to new”. It does not
make any sense, but that is what mathematicians call it. Just remember, “old
to new” really means old from new.

The final thing you need to know is what happens to matrices. If a matrix
A converts a vector ~v to a vector ~w in terms of Cartesian coordinates, then A′

should convert ~v ′ to ~w ′ in terms of the new coordinates. Since

A~v = ~w =⇒ AP~v ′ = P ~w ′ =⇒ P−1AP~v ′ = ~w ′
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the desired matrix A′ is seen to equal P−1AP .
So the transformation rules for matrices are

A = PA′P−1 A′ = P−1AP (15.3)

That is much like the ones for vectors, except there is an additional trailing
P−1, respectively P .

While we used a two dimensional example, you can do all of the above in
any number of dimensions. You just add more basis vectors to transformation
matrix P .

15.2 Diagonalization of nonsymmetric matri-

ces

If a matrix A is not defective, you can use its eigenvectors as new basis. It turns
out that in that basis the matrix simplifies to a diagonal matrix

A′ =




λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
...

. . .


 (15.4)

Since this diagonal matrix has the eigenvalues on the main diagonal, (in the
order that you arranged the corresponding eigenvectors), it is often written as
Λ instead of A′.

Needless to say, this simplification is a tremendous help if you are doing
analytical or numerical work involving the matrix.

The quickest was to see why A′ is diagonal like above is to note that in terms
of the new basis, A~v produces a new vector ~w ′ according to

~w ′ = A′~v ′ = A′(v′1~e1 + v′2~e2 + . . .+ v′n~en) = v′1λ1~e1 + v′2λ2~e2 + . . .+ v′nλn~en

since ~e1, ~e2, . . . are eigenvectors of A. So the coefficients of ~w ′ are related to
those of ~w ′ as v′1λ1, v

′
2λ2, . . . , v

′
nλn. And that is just what multiplying by the

diagonal matrix A′ above accomplishes.
Recall from section 15.1 that the transformation matrix P for change of basis

to the eigenvectors must equal the matrix E of eigenvectors. You therefore have
for any vector ~v and matrix M that you want to transform from new coordinates
to old or vice-versa:

~v = E~v′ ~v′ = E−1~v M = EM ′E−1 M ′ = E−1ME (15.5)

Here the primes mean the vector or matrix as it appears in the new basis of
eigenvectors.
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In summary, a nondefective matrix becomes diagonal when its eigenvectors
are used as basis. The main diagonal contains the eigenvalues, ordered like the
corresponding eigenvectors in E.

15.3 Diagonalization of symmetric matrices

For symmetric matrices the same observations apply as for nonsymmetric ma-
trices in the previous section. But there are some further considerations.

Most importantly, the eigenvectors, if found using the class procedure, are or-
thonormal. So you can consider the eigenvectors ~e1, ~e2, . . . to be a rotated Carte-
sian basis. To make this clearer to other people, you should rename ~e1, ~e2, . . .
to ı̂′, ̂′, . . ..

The most important other thing to remember is that the transformation
matrix

E = (̂ı′ ̂′ . . .)

is now orthonormal. So be sure to use section 13.3 to find its inverse.
Note further that if the determinant of the transformation matrix E is neg-

ative, the rotated coordinate system is also left-handed instead of right-handed.
It corresponds to a mirroring of a coordinate besides the rotation. If this bothers
you, multiply one of the eigenvectors by minus one.
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Chapter 16

Laplace Transformation

16.1 Partial Fractions

Partial fraction expansion simplifies fractions of the form

T (s)

B(s)

where T (s) and B(s) are polynomials in some variable s. This is of importance,
for example, in integration of such fractions and in Laplace transformation. This
section explains the procedure.

First, in case T (s) has a degree equal or higher thanB(s), you should perform
long division to take the ratio apart into powers of s plus a remainder. That
remainder is again a fraction of the form T (s)/B(s), but the new T (s) is of a
degree less than B(s).

Now the only thing you still have to know is now how to deal with a ratio
T (s)/B(s) when the degree of T (s) is less than that of B(s).

The first thing you will need to do is factor B(s). Assume it is a polynomial
of some degree n, in other words

B(s) = C(sn + bn−1s
n−1 + . . . b2s

2 + b1s+ b0)

where C is some nonzero constant and the bi for i = n−1, . . . , 2, 1, 0 are n
additional constants. You can simply take C out of the entire ratio T (s)/B(s)
before proceeding. From now on, it will be assumed that you have done that,
so that there is no longer a C in the above expression to worry about. It is
then known from complex variable theory that B(s) can always be written in
the form

B(s) = (s− s1)(s− s2)(s− s3) . . . (s− sn)

Here the n constants si, (i = 1, 2, . . . , n), are the locations, or roots, where B(s)
is zero. So B(si) = 0 for i = 1, 2, . . . , n. Note that some of these roots may
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coincide. In other words some of the si may be equal to each other. For example

s3 + s2 − 5s+ 3 = (s− 1)(s− 1)(s+ 3)

has s1 = s2 = 1 and s3 = −3.
There is a further complication. Some of the roots si may be complex. For

example, a quadratic with a negative discriminant has complex roots instead of
real ones. However, assuming that the polynomial B(s) is real, (for real s), you
would probably not want to deal with complex numbers. You can avoid that
because for real B(s), the complex roots come in “complex-conjugate pairs.”
That means that for every complex root si there is a second root sj so that
(s−si)(s−sj) is a real quadratic with roots si and sj. So a real B(s) can always
be written as a product of real factors linear in s and real factors quadratic in
s.

For example, you might have a B(s) that can be written as

B(s) = (s− 4)(s− 3)3(s2 − 2s+ 5)(s2 + 4s+ 13)2

That would be a polynomial of degree 10, (1 + 3 + 2 + 4 = 10). For this B(s),
any desired ratio T (s)/B(s) can be written as

T (s)

B(s)
=

C1

s− 4
+

C2

s− 3
+

C3

(s− 3)2
+

C4

(s− 3)3
+

C5s+ C6

s2 − 2s+ 5
+

C7s+ C8

s2 + 4s+ 13
+

C9s+ C10

(s2 + 4s+ 13)2

The right hand side is the partial fraction expansion of the ratio.
Note that the individual terms in the partial fraction expansion are much

simpler than the original ratio. The original ratio has a polynomial of degree
10 in the bottom. And a polynomial of a degree up to 9 in the top. So if you
want to do anything with the given ratio, it will become much easier if you use
the right hand side above to do it. That is why you want to do partial fraction
expansions.

That leaves two key questions to be answered:

1. In general, how do you know what terms there are in the right hand side?

2. How do you find the values of all these coefficients C1, C2, C3, . . .?

The answer to the first question is as follows;
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1. For every factor (s− si) that appears k times in B(s), there are terms in
the right hand side of the form

Ci,1

s− si
+

Ci,2

(s− si)2
+ . . .+

Ci,k

(s− si)k

Check it out for the factors (s − 4) (single) and (s − 3) (triple) in the
example given earlier. (What you want to call the constants is of course
up to you, as long as each has a unique name.)

2. For every factor (s2 + ais + bi) that appears k times in B(s), there are
terms in the right hand side of the form

Ci,1s+ Ci,2

s2 + ais+ bi
+

Ci,3s+ Ci,4

(s2 + ais+ bi)2
+ . . .+

Ci,2k−1s+ Ci,2k

(s2 + ais+ bi)k

Check it out for the factors (s2−2s+5) (single) and (s2+4s+13) (double)
in the example above.

The second question was how to find all these constants. The method you
must use in this class is to crunch it out:

1. Bring all the terms in the partial fraction expansion over the common
denominator B(s).

2. Multiply out the top. This must equal the given T (s). So the net co-
efficient of each power of s must match the corresponding coefficient in
T (s). That gives you your equations for your unknown coefficients. Use
Gaussian elimination to solve them.

For the example, its partial fraction expansion becomes, when brough over
the common denominator B(s):

C1(s− 3)3(s2 − 2s+ 5)(s2 + 4s+ 13)2

+C2(s− 4)(s− 3)2(s2 − 2s+ 5)(s2 + 4s+ 13)2

+C3(s− 4)(s− 3)(s2 − 2s+ 5)(s2 + 4s+ 13)2

+C4(s− 4)(s2 − 2s+ 5)(s2 + 4s+ 13)2

+(C5s+ C6)(s− 4)(s− 3)3(s2 + 4s+ 13)2

+(C7s+ C8)(s− 4)(s− 3)3(s2 − 2s+ 5)(s2 + 4s+ 13)
+(C9s+ C10)(s− 4)(s− 3)3(s2 − 2s+ 5)

(s− 4)(s− 3)3(s2 − 2s+ 5)(s2 + 4s+ 13)2

Multiply out the top, (don’t make any mistakes, of course), then equate the net
coefficients of the s0, s, s2, . . . , s8 and s9 powers to the corresponding coefficients
in the given T (s). That gives 10 equations for the 10 unknowns C1, C2, . . .C10.
Solve using Gaussian elimination. (Cramer’s rule is not recommended.) That
will be fun!



84 CHAPTER 16. LAPLACE TRANSFORMATION

Note: Of course, if B(s) is not real, there is no point in using quadratics.
Just expand in linear factors of the form s− si (with si now complex) only.

Note: there are more intelligent ways of finding the coefficients than crunch-
ing it out as we must do in this class. For example, consider once more the
example:

T (s)

B(s)
=

C1

s− 4
+

C2

s− 3
+

C3

(s− 3)2
+

C4

(s− 3)3
+

C5s+ C6

s2 − 2s+ 5
+

C7s+ C8

s2 + 4s+ 13
+

C9s+ C10

(s2 + 4s+ 13)2

If you multiply the expansion in the right hand side by the single factor (s− 4)
and then evaluate it at s = 4, you get C1. (All the other terms are zero at
s = 4 because of the multiplication by (s − 4).) The bottom line is therefore
that if you multiply the left hand side by (s − 4) and then evaluate it at s =
4, you get C1 too. And that is doable because the left hand side is given. (To
evaluate at s = 4, you either need to divide out the common factor (s− 4) from
top and bottom or use l’Hopital once. Dividing out the common factor from
top and bottom is a simple matter of a long division of the bottom if you have
it in unfactored form.) To find C4, multiply by (s − 3)3 and evaluate at s =
3. To find C3, multiply by (s − 3)3, differentiate the result once, and evaluate
at s = 3. Etcetera. Especially if you want just a single coefficient, this can be
much more convenient. Or you can use it to test the correctness of a few sample
coefficients.

16.2 Completing the square

Completing the square simply means that you write a quadratic

ax2 + bx+ c

as

a
[(

x+
b

2a︸ ︷︷ ︸
shifted

x

)2
+

c

a
− b2

4a2︸ ︷︷ ︸
new

constant

]

If you multiply out, you see that it is the same.
One place where you often need this is in Laplace transforms. Laplace

transforms are often given in terms of a quadratic s2+K whereK is an arbitrary
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Properties of the Laplace Transform

Property f(t) f̂(s)

P1: Inversion
1

2πi

∫ c+i∞

c−i∞
f̂(s)est ds

∫ ∞

0

f(t)e−st dt

P2: Linearity C1f1(t) + C2f2(t) C1f̂1(s) + C2f̂2(s)

P3: Dilation f(ωt) ω−1f̂(s/ω)

P4: Differentiation f (n)(t) snf̂(s)− sn−1f(0+)− . . .− f (n−1)(0+)

P5: Differentiation tnf(t) (−1)nf̂ (n)(s)

P6: Shift H(t− τ)f(t− τ)

H(t) =
{ 0 t < 0

1 t > 0

e−τsf̂(s)

P7: Shift eσtf(t) f̂(s− σ)

P8: Convolution

∫ t

0

f(t− τ)g(τ) dτ

Do not write as f ∗ g

f̂(s)ĝ(s)

Special Laplace Transform Pairs

f(t) f̂(s) f(t) f̂(s)

S1: 1
1

s
S8: sin(ωt)

ω

s2 + ω2

S2: tn
n!

sn+1
S9: cos(ωt)

s

s2 + ω2

S3: eσt
1

s− σ
S10: t sin(ωt)

2ωs

(s2 + ω2)2

S4:
1√
πt

1√
s

S11: t cos(ωt)
s2 − ω2

(s2 + ω2)2

S5:
1√
πt

e−k2/4t 1√
s
e−k

√
s S12: sinh(ωt)

ω

s2 − ω2

S6:
k√
4πt3

e−k2/4t e−k
√
s S13: cosh(ωt)

s

s2 − ω2

S7: erfc
(
k/2

√
t
) 1

s
e−k

√
s S14: δ(t− τ) e−τs

Table 16.1: Properties of the Laplace Transform. (k, τ, ω > 0, n = 1, 2, . . .)
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constant. But you might have as2 + bs + c instead of something of the form
s2 + K. However, you can write the part inside the square brackets above as
s2+K if you use the shift theorem to account for the b/2a inside the parentheses.
And the additional factor a is trivial to account for.



Chapter 17

More on Systems

17.1 Solution of systems using diagonalization

You should know by now how to solve a system of ordinary differential equations
of the form

~̇u = A~u+ ~f ~u(0) = ~g

where unknown vector ~u and given vector ~g depend on time, but ~f is a given
constant vector and A a given constant matrix. (Yes, I will use ~u instead of ~x
here.) The dot of course indicates the time derivative.

However, suppose that ~̇u would be replaced by the second order derivative
~̈u? Like in

~̈u = A~u+ ~f ~u(0) = ~g ~̇u(0) = ~h

That happens in mechanics when the forces only depend on position (no fric-
tion). Note that for this second order system we also need the initial velocities
~̇u(0).

Of course, you can convert the above system to a double-size first order one.
But suppose you want to keep the system size the same? Well, you can solve
the system directly using the basis of eigenvectors of matrix A, assuming it is
not defective. And the relevant matrix A is typically a real symmetric one in
these applications, so never defective.

I will now show how the solution procedure works. First of course you must
find the eigenvalues and eigenvectors of A:

λ1 λ2 . . . λn

~e1 ~e2 . . . ~en

But you always needed to do that.
Next you write every vector in the problem in terms of the eigenvectors:

~u = u′
1~e1 + u′

2~e2 + . . .+ u′
n~en

87
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~f = f ′
1~e1 + f ′

2~e2 + . . .+ f ′
n~en

~g = g′1~e1 + g′2~e2 + . . .+ g′n~en

~h = h′
1~e1 + h′

2~e2 + . . .+ h′
n~en

Here the primes indicate coefficients of the vectors in the basis of eigenvectors.
Note that the u′

i and f ′
i in general depend on time but the g′i and h′

i are constants,
for any i from 1 to n.

You will need to figure out what the coefficients of the given vectors ~f and
~g are now. Note that the above equations can be written in matrix form as

E




f ′
1

f ′
2
...
f ′
n


 = ~f E




g′1
g′2
...
g′n


 = ~g E




h′
1

h′
2
...
h′
n


 = ~h E ≡

(
~e1, ~e2, . . . ~en

)

Matrix E, of course, is our transformation matrix to the basis of eigenvectors.
In any case, the above equations must be solved to find the f ′

i , g
′
i, and h′

i. (In
doing that, remember that for a real symmetric matrix, you take the eigenvectors
orthonormal, after which the inverse matrix E−1 is just the transpose one, ET.)

Next remember that in the basis of the eigenvectors, matrix A becomes a di-
agonal one, with diagonal values equal to the eigenvalues. Therefore the original
system of ordinary differential equations simplifies to decoupled equations:

ü′
1 = λ1u

′
1 + f ′

1 u′
1(0) = g′1 u̇′

1(0) = h′
1

ü′
2 = λ2u

′
2 + f ′

2 u′
2(0) = g′2 u̇′

n(0) = h′
n

...

ü′
n = λnu

′
n + f ′

n u′
n(0) = g′n u̇′

n(0) = h′
n

You should be able to solve each of these scalar second order equations easily.
Finally you can find the solution vector ~u at any desired time by summing:

~u = u′
1~e1 + u′

2~e2 + . . .+ u′
n~en ≡

n∑

i=1

u′
i~ei

Of course, you could also solve the first order system that way. Compared
to the class procedure, that has one big advantage. In the class procedure,
we solved a system of equations for the variation of parameters, and one for
the initial conditions. In the above method, the matrix of the two systems of
equations to solve is the same, E, so you can use a single augmented matrix
with two right hand sides (being ~f and ~g). (And if A is symmetric. it is easier
still, because you only need to multiply by ET.)
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17.2 Solving Partial Differential Equations

✻
y

y = 0

y = ℓ

✲ ✲ ✲

✲ ✲ ✲

✲ ✲ ✲

u u u

u u u

u u u

Figure 17.1: Laminar viscous flow in a long duct.

Consider unsteady viscous laminar flow of, say, water, in a long and thin
horizontal two-dimensional duct. The velocity u depends on the time and the
vertical position y, so u = u(t; y). However, for a very long duct, it does not
depend on the streamwise coordinate x.

According to fluid mechanics, the velocity develops according to the equation

u̇ = ν
∂2

∂y2
u+ f

Here f is some given function of t and y accounting for forces like gravity or
electromagnetic ones. The equation above is called a partial differential equation
because there are derivatives with respect to two variables; not just t but also
y. To solve it, you also need an initial condition:

u(0; y) = g

where g is some given function.
Note that so far, the above system looks almost exactly like the first or-

der system of ordinary differential equations in the previous section. However,
where the system of ordinary differential equations has vectors, the scalar par-
tial differential equation above has functions of y. The only other difference is
that where the system of ordinary differential equations had some matrix A,
the partial differential equation above has an “operator”

L ≡ ν
∂2

∂y2

But that is no big difference: when you apply a matrix A on a vector ~v, you get
a new vector A~v. In exactly the same way, if you apply L above on a function
F (y), you get a new function of y equal to νF ′′(y). It is the same thing.

There is however one thing really different for the partial differential equa-
tion; it has boundary conditions in y. The fluid must be at rest at the walls of
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the duct. With the walls at y = 0 and y = ℓ, (with ℓ the height of the duct),
that means

y = 0: u(t; 0) = 0 y = ℓ: u(t; ℓ) = 0

(It is like the first and the last component of vector ~u would have to be zero.)
Still, you can solve the partial differential equation much like the system of

ordinary differential equations in the previous section. I will now show you how.
First, we need the eigenfunctions of the operator L. Now a simple second-

order derivative operator has eigenfunctions that are sines and cosines. So
here the eigenfunctions could be sines or cosines of y. But the eigenfunctions
must satisfy the above boundary conditions for u too. And these boundary
conditions better be homogenous! (I will tell you in the next section what to
do if the boundary conditions for u at y = 0 and y = ℓ are not homogeneous.)
Fortunately, the ones above are homogeneous; there are no terms independent
of u. So we can proceed. The cosines of y are out: cosines are 1 at y = 0, not
0. The sines are always 0 at zero, so that is OK. But they must also be 0 at y
= ℓ, and that only happens for

Y1 = sin(πy/ℓ) Y2 = sin(2πy/ℓ) Y3 = sin(3πy/ℓ) . . .

λ1 = −νπ2/ℓ2 λ2 = −ν22π2/ℓ2 λ3 = −ν32π2/ℓ2 . . .

You find the eigenvalues by simply computing LYi for i = 1, 2, 3, . . .. That also
verifies that the Yi are really eigenfunctions like I told you.

(Note that sin(−πx/ℓ) = − sin(πx/ℓ), so that is not an additional indepen-
dent eigenfunction. That is just like −~e1 would not be an additional eigenvector
in the previous section.)

Next you write everything in terms of these eigenfunctions:

u = u1Y1 + u2Y2 + u3Y3 + . . .

f = f1Y1 + f2Y2 + f3Y3 + . . .

g = g1Y1 + g2Y2 + g3Y3 + . . .

I can leave out the primes of the previous section, because nobody ever writes
the components of a function of y. Allow me to write the first of the expansions
above out showing the arguments of the functions:

u = u1(t)Y1(y) + u2(t)Y2(y) + u3(t)Y3(y) + . . .

I do that so that you can see why the solution method we are using is called
“separation of variables” (the one for a partial differential equation, not for an
ordinary one.) Each term is separated in a function of t times a function of y.

Once again, you have to compute these coefficients f1, f2, . . . and g1, g2, . . ..
But how do you do that? You can hardly invert an infinite “matrix” E =
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(Y1, Y2, Y3, ...) of eigenfunctions like in the previous section. Well, for an operator
like L, just a constant multiple of the second derivative, there is a trick: you
can integrate to find them. In particular,

fi =

∫ ℓ

y=0
Yi(y)f(t; y) dy

∫ ℓ

y=0
Y 2
i (y) dy

gi =

∫ ℓ

y=0
Yi(y)g(y) dy

∫ ℓ

y=0
Y 2
i (y) dy

for all i = 1, 2, 3, . . .

If you are astonished by that, don’t be. The second derivative operator is a
real symmetric one, so in the vector case you would find the ~f ′ = ET ~f . So you
would find the f ′

i as the dot product of the rows of ET, the eigenvectors, times

the given column vector ~f . In the eigenfunction case, the dot-product summa-
tion becomes integration over y. And the bottom factors in the ratios above are
just correction factors for the fact that I did not normalize the eigenfunctions
in any way. You can see why the justification for the equations above is called
the orthogonality property.

Much like in the previous section, the basis of eigenfunctions makes L di-
agonal, with the eigenvalues on the main diagonal. So the partial differential
equation becomes a system of independent equations for the coefficients of u:

u̇1 = λ1u1 + f1 u1(0) = g1

u̇2 = λ2u2 + f2 u2(0) = g2

u̇3 = λ3u3 + f3 u3(0) = g3

...
...

These equations are no more difficult to solve than for the case of ordinary
differential equations.

Afterwards, you can find u at any time t and position y you want by sum-
ming:

u(t; y) =
∞∑

i=1

ui(t)Yi(y)

Of course, you cannot normally sum infinitely many terms, even on a computer.
You will need to instruct the computer to stop at some large value of i, call it
I. The same holds in case you cannot do the earlier integrals for the fi and
gi analytically; then you will need to do them numerically, up to some large I.
And you may even have to solve the ordinary differential equations numerically.
(Note that a first order linear equation can be reduced to an integral, so you
would not need to use an ODE solver from your library.)
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17.3 More details on the extension

If your advisor actually asks you to do the above thing, your problem might of
course be more complicated than my one.

One problem would be if the boundary conditions on y are not homoge-
nous. For example, if the top wall of the duct in the previous section moved
horizontally with a given speed U(t), you would have the boundary conditions

y = 0: u(t; 0) = 0 y = ℓ: u(t; ℓ) = U(t)

and the second one is not homogenous. The trick then is to write u as something
(anything) that satisfies the boundary conditions, and a remainder ũ. In this
case, a good choice would be

u = U
y

ℓ
+ ũ

If you replace u everywhere in the PDE and its initial and boundary conditions
by the expression above, you get a problem for ũ. That problem will have
homogeneous boundary conditions, so you are back in business, now for solving
for ũ.

The next thing is finding those eigenfunctions. If L is a constant times the
second derivative, the eigenfunctions are sines and cosines. Then you look at
the boundary conditions to figure out just which ones. But suppose you have
something like

L ≡ a
∂2

∂y2
+ b

∂

∂y
+ c

What then? (Note that the coefficients a, b and c cannot depend on t; otherwise
the usual method of separation of variables does not work. But they could and
often do, depend on y)

In the simplest case that b = 0 and a and c are constants, the eigenfunctions
are still sines and cosines. The constant c will just change the eigenvalues. So
that is relatively trivial.

In any other case, you will need to solve the basic eigenvalue problem LY =
λY , an ordinary differential equation, symbolically. But if a, b and/or c depend
on y, I never taught you how to do that! Then you will need to search through
mathematical handbooks. Look under Bessel functions, Gamma function, er-
ror function, orthogonal polynomials such as those of Legendre and Hermite,
etcetera. Note that you often need to play around a bit with your equation to
get it in a form that you can find in the tables. Or look a bit deeper; common
conversions are often mentioned somewhere.

There is now also another problem. The orthogonality property no longer
applies in the form used in the previous section. There is a theorem, called the
“Sturm-Liouville” theorem, that says that you have to find a positive solution
r to the differential equation

dar

dy
= br
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Then you have to push this r, a function of y, inside each of the orthogonality
integrals in the previous section as an additional factor:

fi =

∫ ℓ

y=0
Yi(y)f(t; y)r(y) dy

∫ ℓ

y=0
Y 2
i (y)r(y) dy

gi =

∫ ℓ

y=0
Yi(y)g(y)r(y) dy

∫ ℓ

y=0
Y 2
i (y)r(y) dy

If you are in two spatial dimensions and time, you will have separate Ly and
Lz operators. Taking Ly as the simpler operator, after you switch to the basis
of eigenfunctions of Ly, the equations for the ui will still contain both t and
z. You will now need to find the eigenfunctions of the Lz operator. Note that
you may be forced to include the Ly eigenvalue λi inside the definition of the
Lz operator. For example, that happens in polar coordinates, (flow in a pipe),
where “y” is the angular coordinate and “z” the radial one. The net description
of u then involves terms of the form uij(t)Yi(y)Zij(z) that must be summed over
both i and j. And the orthogonality integrals become double integrals over both
y and z. All a whole lot of work, but not fundamentally different from what I
told you.

As far as I can think of right now, the above covers all there is to say
about the method of separation of variables. Not extremely difficult, but it sure
requires a graduate student with a lot of time to carefully get all the details
right.

Let me finally warn you about some common mistakes. One mistake that I
see a lot is where the student leaves out an eigenfunction with eigenvalue 0. You
need all the eigenfunctions. Remember that say an eigenfunction 1 is indeed a
function: it is the function that is 1 at every position y. Another mistake that
I see a lot is that a student tries to treat f = 1 or g = 1 as a number. It is a
function, and you still need to write it as f1Y1 + f2Y2 + . . . or g1Y1 + g2Y2 + . . ..
And do the integrals. Then there are the boundary conditions. If the original
problem has a boundary condition at some y-boundary that Au + B∂u/∂y =
C, then you should subtract a function that satisfies that boundary condition
as described above. And then you should discover that the remainder ũ satisfies
the boundary condition Aũ+B∂ũ/∂y = 0. Your eigenfunctions better satisfies
that homogeneous boundary condition too, or forget it. Don’t try to define an
eigenfunction expansion for a time-like variable that has initial conditions. If
you are tempted to do that, instead try a Laplace transform in time. That is
another way to solve a lot of simple partial differential equations. For separation
of variables as explained here, you really want boundary conditions for the
eigenfunctions.
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Chapter 18

Introduction

18.1 Basic Concepts

18.1.1 The prevalence of partial differential equations

Partial differential equations are equations involving derivatives with respect to
more than one independent variable.

Partial differential equations are the basic equations in many areas of science
and engineering. Some examples:

Fluid mechanics The basic equations that govern the inviscid flow of simple
idealized substances are called the Euler equations. The basic equations
that govern the viscous flow of simple substances like air and water under
normal conditions are called the Navier-Stokes equations. Both are partial
differential equations. Nonlinear ones, unfortunately. However, they do
become linear in many special cases of great interest.

Heat transfer The equations of heat conduction and convection are partial dif-
ferential equations. Radiation may be described by Maxwell’s equations,
which are also partial differential equations. However, often radiation can
be more simply described by so-called boundary integral methods. In the
most basic cases, the partial differential equations describing convection
are linear.

Solid mechanics The equations that govern simple solids are partial differen-
tial equations. Often the interest is in steady problems. The equations
for simple relatively stiff solids are linear.

Dynamics The dynamics of flexible solids is governed by partial differential
equations. The equations for simple relatively stiff solids are linear.

Electromagnetics and optics The Maxwell equations that govern basic elec-
tromagnetic phenomena are partial differential equations. They are linear
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in vacuum. Simplified partial differential equations govern the special
cases of electrostatics and magnetostatics.

Geometry Many geometrical issues such as minimal surfaces and developable
surfaces are governed by partial differential equations. The equation for
minimal surfaces may be reduced to a very simple linear one.

That did not even touch on such areas as biology and economics that are
also awash in partial differential equations.

18.1.2 Definitions

Here is a list of some basic definitions used for partial differential equations:

Partial differential equations are equations that involve derivatives with re-
spect to more than one independent variable. The simplest partial differ-
ential equation that you can write is:

ut = ux

In that case u(x, t) would be unknown, or dependent variable. That is the
function you want to find. The independent variables would be x and t.
People usually think of a spatial coordinate when they use x, and time
when they use t.

It may be noted that equations that involve only derivatives with respect
to one independent variable are called “ordinary differential equations.”
Equations that also involve integrals are called “integro-differential equa-
tions.”

Partial derivatives are derivatives with respect to one independent variable,
keeping the other variables constant. The figure below illustrates the
definition of partial derivatives:

(ux)P ≡
(
∂u

∂x

)

P

= lim
∆x→0

uQ − uP

∆x
(ut)P ≡

(
∂u

∂t

)

P

= lim
∆t→0

uR − uP

∆t

·
Q

·
P

·R
∆x✲✛

∆t✻❄

x

t
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A simple numerical approximation of a partial derivative will just elimi-
nate the limit process. In that case ∆x and ∆t are merely taken to be
small compared to the typical scale of the problem.

Order The order of a partial differential equation is the order of the highest
derivative. Generally speaking, the highest derivatives are most responsi-
ble for the nature of the solutions.

Degree The degree of a partial differential equation is the highest power to
which the dependent variable appears in the equation.

Consider for example the Burgers’ equation

ut + uux = 0

It is the simplest nonlinear model for the equations of fluid mechanics, and
for other systems involving shock formation. It is of order 1 and degree 2.

Linear partial differential equations are equations of first degree. The terms
that are of the first degree in the unknown are called the homogeneous
part. The remaining terms that do not involve the unknown are called
the inhomogeneous part.

Consider the following Poisson equation governing steady heat conduction
in a plate with external heat addition:

−κ(uxx + uyy) = x2y3 + sin(x) cos(y)

Here u is the temperature, κ the heat conduction coefficient, and the right
hand side represents the external heat added per unit area. This equation
is first degree (in u.) The left hand side, linear in u is the homogeneous
part and the right hand side, independent of u, is the inhomogenous part.

The following equation describes steady heat conduction in a plate without
external heat addition, but with a heat conduction coefficient that depends
on temperature:

κ(u)(uxx + uyy) + κ′(u)u2
x + κ′(u)u2

x = 0

This equation is nonlinear. It is of infinite degree, not second degree,
because the Taylor series of κ intruduces all powers of u. However, this
equation is still linear in terms of the highest, second order, derivatives
uxx and uyy. (Not counting lower order derivatives.) Therefore it is called
“quasi-linear.”

The domain Ω is usually taken to be the spatial region in which the partial
differential equation applies. For unsteady heat conduction in a sphere,
the domain Ω is the sphere and time is an additional coordinate.
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The boundary δΩ is where the domain stops. Boundary points are immedi-
ately adjacent to both points inside the domain and points outside it. The
boundary is also often indicated by S (for surface). Typically, Ω indicates
the domain without the boundary points and Ω the domain including the
boundary points.

For unsteady heat conduction in a sphere of radius a, the boundary is
all points with spherical coordinate r equal to a. It is the surface of the
sphere. For this example Ω is all points r < a and Ω is all points r 6 a.

Boundary conditions are conditions on the solution that apply at points on
the boundary.

Initial conditions are conditions on the solution that apply at the starting
time. Almost always, the starting time is taken to be the zero of time.

Singularities You cannot do much in partial differential equations without
having to deal with singularities. There might be singularities in the
solution, in the initial and boundary conditions, or in the shape of the
boundary. Some typical singularities, in a rough order from relatively
mild to more severe, are

• Locations where all derivatives exist, but the function does not have
a Taylor series with a nonzero radius of convergence. For example,
that happens for the function e−1/x2

at x = 0.

• Locations where higher order derivatives have singularities. For ex-
ample, the function |x|3/2 has an infinite second order derivative at
x=0. That means it has infinite radius of curvature at x = 0. In
general, the lower the order of the derivative involved, the stronger
the singularity.

• Kinks: Locations where the first derivative jumps from one finite
value to another. For example, the function |x| =

√
x2 has a kink at

x = 0.

• Cusps: where the function itself is still continuous, but the derivative
jumps from −∞ to ∞ or vice-versa. For example,

3
√
x2 has a cusp

at x = 0

• Jumps: where the function jumps from one finite value to another.
For example, the Heaviside function H(x), which is 0 for negative x
and 1 for positive x, has a jump at x = 0.

• Spikes: where the function is infinite at a single point. An important
example is the Dirac delta function δ(x), which is the derivative of
the Heaviside function. The delta function is a single infinite spike at
x = 0 and the area under the spike is 1. If you take derivatives of the



18.1. BASIC CONCEPTS 101

delta function, you get increasingly singular functions. For example,
the first derivative is the more singular “dipole.”

• Poles: where the function goes to infinity. For example, the function
1/x has a “simple pole” at x = 0. The higher the negative power of
x, the more singular the function. For example 1/x2 is more singular
than 1/x.

18.1.3 Typical boundary conditions

To get a meaningful solution to a partial differential equation, you will need
initial and/or boundary conditions. Initial conditions are normally straightfor-
ward. Boundary conditions vary a lot, however.

There are some very simple types of boundary condition that you must know
by heart:

Dirichlet The value of the unknown u itself is given on the boundary:

u = f on δΩ

Here f is some given function of the position on the surface.

Neumann The derivative ∂u/∂n of the unknown in the direction normal to
the boundary is given. Here n is the coordinate normal to the boundary:

∂u

∂n
= f on δΩ

If the boundary is oblique, the following formula can be used to relate the
derivative in the direction normal to the boundary to the partial deriva-
tives of u in Cartesian coordinates:

∂u

∂n
= ~n · ∇u ∇ = ı̂

∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

Here ~n is a unit vector that is normal to the boundary at the considered
point.

Note that if u itself is prescribed on the boundary, it already implies the
value of derivative along the boundary. That is why only the derivative
normal to the boundary is included in this list of the most basic boundary
conditions.

Mixed A linear combination of u and ∂u/∂n is given on the boundary. This
is also called a “radiation” or “Robin” boundary condition.

αu+ β
∂u

∂n
= f on δΩ

Here α, β, and f are all given functions of the position on the surface. Such
boundary conditions are often used in simple wave propagation problems
to indicate that no waves enter the domain from outside.
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18.2 The Standard Examples

There are a few standard examples of partial differential equations. You must
know these by heart.

18.2.1 The Laplace equation

The Laplace equation governs basic steady heat conduction, among much else.

ℓ x

h

y

Rectangular Plate

partial differential equation:
steady heat conduction

uxx + uyy = 0 for all x and y
(the Laplace equation)

Boundary condition:
meets ice water
u = 0 at x = 0
(Dirichlet)

Boundary condition:
given temperature
u = f(y) at x = ℓ

(Dirichlet)

Boundary condition: insulated
uy = 0 at y = 0

(Neuman)

Boundary condition: given heat flow
uy = g(x) at y = h

(Neuman)

Figure 18.1: An example Laplace equation problem.

An example problem is shown in figure 18.1. Physically it is steady heat
conduction in a rectangular plate of dimensions ℓ × h. The unknown u in
this example is the temperature. The independent variables are the Cartesian
coordinates x and y. The domain Ω is the two-dimensional interior of the plate.
The boundary δΩ is the one-dimensional perimeter of the plate. (The boundary
might still be indicated by S instead of δΩ even though here it is not a surface.)

The Laplace equation also describes ideal flows, unidirectional flows, mem-
branes, electrostatics and magnetostatics, complex functions, and countless
other problems.

In any number of dimensions, the Laplace equation reads

Laplace equation: ∇2u = 0 (18.1)

In particular, in three dimensions and Cartesian coordinates

uxx + uyy + uzz = 0

For coordinates that are not Cartesian, the Laplacian ∇2 can be found in table
books.
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Some important properties of the Laplace equation are:

• Steady state problems: The Laplace equation normally describes processes
that are in a steady state situation.

• Boundary-value problems: The Laplace equation needs “boundary-value
problems.” At every point on the boundary, one boundary condition
should be prescribed. For example, consider the example problem fig-
ure 18.1. On the vertical boundaries, the temperature is given. That is
a Dirichlet boundary condition. On the horizontal boundaries, the heat
flow out of the boundary is given. Now the heat flow is proportional to the
gradient of the temperature. In particular, the heat flow in the vertical
direction is proportional to uy. So the horizontal boundaries have Neu-
mann boundary conditions; the derivative of u in the direction normal to
these boundary is given.

• Infinite propagation speed: Sometimes the solution of the Laplace equation
may still depend parametrically on time. For example, the Laplace equa-
tion applies to unsteady ideal flows of incompressible fluids. The reason
that the Laplace equation can apply to such flows is that the incompress-
ibility assumption implies an infinite speed of sound. If the boundary
conditions are somewhere changed, the flow field instantly adapts to the
new conditions everywhere.

• Unlimited region of influence: The Laplace equation has an unlimited re-
gion of influence. In terms of the example that means that if you change
the temperature a bit somewhere on the boundary, it will affect the tem-
perature to some extent everywhere inside the plate.

• Smoothness: The solutions to the Laplace equation are smooth. Even if
you prescribe singular values for the solution on the boundary, the solution
is still perfectly smooth in the interior of the domain. In particular, any
point in the interior has infinitely many continuous derivatives, as well as
a Taylor series with a finite radius of convergence. {D.2}

• Maximum-minimum principle: The Laplace equation has the property
that the maximum and minimum of u always occur on the boundary.
For example, in the problem figure 18.1 the temperature in the interior
of the plate can nowhere be higher than the highest temperature on the
boundary. {D.3}

• Mean value theorem: Suppose u is defined on and within some spherical
surface and satisfies the Laplace equation. Then the average of u on the
spherical surface is the same as the value of u at the center of the sphere.
{D.3}
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(For domains that extent to infinity, various rules above assume that you
consider the infinite domain as the limit of a finite one.)

The Laplace equation is the basic example of what is called an “elliptic” par-
tial differential equation. Solutions of the Laplace equation are called “harmonic
functions.”

18.2.1 Review Questions

1. Derive the Laplace equation for steady heat conduction in a two-dimen-
sional plate of constant thickness δ. Do so by considering a little Cartesian
rectangle of dimensions ∆x×∆y. A sketch is shown below:

✲

✻

✲
✻

✲

✻

✲

✻

✲✛

✻

❄

∆x

∆yA C

B

D

qx,A

qx,B

qy,A

qy,B

qx,A +
∂qx
∂x

∆x

qy,A +
∂qy
∂x

∆x

qx,B +
∂qx
∂y

∆y

qy,B +
∂qy
∂y

∆y

Assume Fourier’s law:

~q = (qx, qy) qx = −k
∂u

∂x
qy = −k

∂u

∂y

Here u is the temperature, assumed independent of z. Also, k is the
heat conduction coefficient of the material. The vector ~q is the heat flux
density. Vector ~q is in the direction of the heat flow. Its magnitude |~q|
equals the heat flowing per unit area normal to the direction of flow.
If you want the heat flow Q̇ through an area element dS that is not

normal to the direction of heat flow, the expression is

Q̇ = ~q · ~n ds

Here ~n is the unit vector normal to the surface element dS. Positive Q̇
means a heat flow through the surface element in the same direction as
~n.
Assume that no heat is added to the little rectangle from external

sources.
Solution stanexl-a

2. Derive the Laplace equation for steady heat conduction using vector anal-
ysis. Assume Fourier’s law as given in the previous question. In vector
form

~q = −k∇u

http://www.eng.fsu.edu/~dommelen/aim/solman/stanexl-a.html
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Assume that no heat is added to the solid from external sources.
Solution stanexl-b

3. Consider the Laplace equation within a unit circle:

uxx + uyy = 0 for x2 + y2 < 1

The boundary condition on the perimeter of the circle is

u = (y2 + 1)x for x2 + y2 = 1

To find the value of u at the point (0.1,0.2), can I just plug in the
coordinates of that point into the boundary condition? If not, what
is the correct value of u at the point, and what would I get from the
boundary condition?
Also answer the above questions for the following problem:

uxx + uyy = 0 for x2 + y2 < 1

The boundary condition on the perimeter of the circle is

u = 2 + 3x+ 5y for x2 + y2 = 1

Find the value of u at the point (0.1,0.2). Fully defend your solution.
Solution stanexl-b1

4. Suppose you have a Laplace equation problem where the boundary is
symmetric around the y-axis, like, say, in the previous two problems. In
general, such a symmetric boundary means that if (x, y) is a boundary
point, then so is (−x, y). Also assume that u is given as an antisym-
metric function of x on this boundary; u(−x, y) = − − u(x, y) for any
boundary point. Show that in that case, u is antisymmetric function of
x everywhere, i.e. u(−x, y) = −− u(x, y) everywhere.
Then show that this means that the solution u will be zero on the y

axis.
Also explain why the above would no longer be true if you had a first

order x derivative in the PDE, like for example uxx + uyy + ux = 0.
Solution stanexl-b2

5. Consider the Laplace equation within a unit circle, but now in polar
coordinates:

urr +
1

r
ur +

1

r2
uθθ = 0 for r < 1

The boundary condition on the perimeter of the circle is

u(1, θ) = f(θ)

where f is a given function.
The solution is the Poisson integral formula

u(r, θ) =
1− r2

2π

∮
f(θ̄) dθ̄

1− 2r cos(θ̄ − θ) + r2

http://www.eng.fsu.edu/~dommelen/aim/solman/stanexl-b.html
http://www.eng.fsu.edu/~dommelen/aim/solman/stanexl-b1.html
http://www.eng.fsu.edu/~dommelen/aim/solman/stanexl-b2.html
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Now suppose that function f(θ) is increased slightly, by an amount δf ,
and only in a very small interval θ1 < θ < θ2.

Does the solution u change everywhere in the circle, or only in the im-
mediate vicinity of the interval on the boundary at which f was changed.
What is the sign of the change in u if δf is positive?

Solution stanexl-b3

6. • Show that if u is a harmonic function in a finite domain, and positive
on the boundary, then it is positive everywhere in the domain.

• Show by example that this does not need to be true for an infinite
domain.

• Let u, v, and w be harmonic functions. Show that if u 6 v 6 w on
the boundary of a finite domain, then u 6 v 6 w everywhere inside
the domain.

Solution stanexl-b5

7. Consider the following Laplace equation problem in a unit square:

y

x
�
�
�
��

�
�

�
��

uxx + uyy = 0

u(x, y) = 0??

u(x, y) = 1??

B.C. u(x, 0) = 1
(Dirichlet)

B.C. uy(x, 1) = 0
(Neumann)

B.C.
u(0, y) = 0
(Dirichlet)

B.C.
ux(1, y) = 0
(Neumann)

The problem as shown has a unique solution. It is relevant to a case
of heat conduction in a square plate, with u the temperature. Someone
proposed that the solution should be simple: in the upper triangle the
solution u(x, t) is 0, and in the lower triangle, it is 1.

Thoroughly discuss this proposed solution. Determine whether the
boundary conditions and initial conditions are satisfied. Is the partial
differential equation satisfied in both triangles?

Explain why all isotherms except 0 and 1 coincide with the 45◦ line.
And why the zero and 1 isotherms are indeterminate.

Finally discuss whether the solution is right.

Solution stanexl-c

8. If for the problem of the previous question, the proposed solution is
wrong, then so are the described isotherms.

To get a clue about the correct solution and isotherms, consider the
following simpler problem. In this problem the top and right boundaries

http://www.eng.fsu.edu/~dommelen/aim/solman/stanexl-b3.html
http://www.eng.fsu.edu/~dommelen/aim/solman/stanexl-b5.html
http://www.eng.fsu.edu/~dommelen/aim/solman/stanexl-c.html
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have been distorted into a quarter circle:

BC: u(x, 0) = 1 u(0, y) = 0
∂u

∂n
= 0 on x2 + y2 = 1

Solve this problem. Then neatly draw the u = 0, 0.25, 0.5, 0.75, and 1
isotherms for this problem.

Also neatly draw u versus the polar angle θ at r = 0.5. In a separate
graph, draw the solution proposed in the previous section, u = 1 for y <
x and u = 0 for y > x, again against θ at r = 0.5.

Now go back to the problem of the previous question and very neatly
sketch the correct u = 0, 0.25, 0.5, 0.75, and 1 isotherms for that problem.
Pay particular attention to where the 0.25, 0.5, and 0.75 isotherms meet
the boundaries and under what angle.

Solution stanexl-d

9. Return once again to the problem of the second-last question.

The correct solution to this problem, that you would find using the
so-called method of separation of variables, is:

u(x, y) =
∞∑

n=1
n odd

4

πn cosh(12nπ)
sin(12nπx) cosh(

1
2nπ(1− y))

Verify that this solutions satisfies both the partial differential equation
and all boundary conditions.

Now shed some light on the question why this solution is smooth for
any arbitrary y > 0. To do so, first explain why any sum of sines of the
form

f(x) =
∞∑

n=1

cn sin
(
1
2nπx

)

is smooth as long as the sum is finite. A finite sum means that the
coefficients cn are zero beyond some maximum value of n.

Next, you are allowed to make use of the fact that the function is still
smooth if the coefficients cn go to zero quickly enough. In particular, if
you can show that

lim
n→∞

nkcn = 0

for every k, however large, then the function f(x) is infinitely smooth.

Use this to show that u above is indeed infinitely smooth for any y >
0. And show that it is not true for y = 0, where the solution jumps at
the origin.

Solution stanexl-e

18.2.2 The heat equation

The heat equation governs basic unsteady heat conduction, among much else.

http://www.eng.fsu.edu/~dommelen/aim/solman/stanexl-d.html
http://www.eng.fsu.edu/~dommelen/aim/solman/stanexl-e.html
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Bar

ℓ x

t

partial differential equation:
unsteady heat conduction
ut = κuxx for all x and t

(the heat equation)

Boundary condition:
given temperature

u = g1(t) at x = 0
(Dirichlet)

Boundary condition:
given heat flux

ux = g2(t) at x = ℓ
(Neumann)

Initial condition:
given initial temperature

u = f(x) at t = 0

Figure 18.2: An example heat equation problem.

An example problem is shown in figure 18.2. Physically it is unsteady heat
conduction in a bar of length ℓ. The unknown u is the temperature. The
independent variables in this case are the coordinate x along the bar and the
time t. The domain Ω in this example is the bar. Mathematically, that is the
line segment 0 6 x 6 ℓ with ℓ the length of the bar. The boundary δΩ consists
in this case of a mere two points: x = 0 and x = ℓ.

The heat equation also describes unsteady viscous unidirectional flows and
many other diffusive phenomena.

In any number of dimensions, the heat equation reads

Heat equation: ut = κ∇2u (18.2)

Here t is time and κ the heat conduction constant. In particular, in three
dimensions and Cartesian coordinates

ut = κ (uxx + uyy + uzz)

Some important properties of the heat equation are:

• Transient problems: The heat equation normally describes processes that
evolve in time.

• Initial-value or initial/boundary-value problems: The heat equation needs
initial-value problems or initial/boundary-value problems. The example
figure 18.2 is an initial/boundary-value problem. The initial temperature
is given. In addition, there is a Dirichlet boundary condition, (given tem-
perature T0), at x = 0. There is also a Neumann boundary condition,
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(zero heat flux out of the boundary so ux = 0), at x = ℓ. If you let the
ends of the bar go to infinity, you get a pure initial-value problem. (How-
ever, in reality there are still some constraints at infinity. In particular
the temperature should not become too singular at infinity.)

• Infinite propagation speed: If you change the initial temperature or the
boundary temperature a bit, it immediately changes the solution every-
where. More precisely, at any time after the change, the temperature will
be different everywhere. Very little different maybe, but different.

• The region of influence is limited by time: If the boundary conditions are
changed, it only changes the solution at later times.

• Smoothness: The solutions are smooth. Even if you prescribe a singular
initial temperature distribution, the solution will be smooth for all later
times. In particular, for later times the temperature distribution will have
infinitely many continuous derivatives. A similar observation holds for
boundary conditions.

• Maximum-minimum principle: The maximum and minimum of the solu-
tion must occur initially and/or on the boundaries.

• Dissipative: Assuming that the boundary conditions are steady, the solu-
tion will eventually approach a steady state.

The heat equation is the basic example of what is called a “parabolic” partial
differential equation.

18.2.2 Review Questions

1. This is a continuation of a corresponding question in the subsection on
the Laplace equation. See there for a definition of terms.

Derive the heat equation for unsteady heat conduction in a two-di-
mensional plate of thickness δ, Do so by considering a little Cartesian
rectangle of dimensions ∆x×∆y.

In particular, derive the heat conduction coefficient κ in terms of the
material heat coefficient k, the plate thickness t, and the specific heat of
the solid Cp.

Solution stanexh-a

2. This is a continuation of a corresponding question in the subsection on
the Laplace equation. See there for a definition of terms.

Derive the heat equation for unsteady heat conduction using vector
analysis.

Solution stanexh-b

http://www.eng.fsu.edu/~dommelen/aim/solman/stanexh-a.html
http://www.eng.fsu.edu/~dommelen/aim/solman/stanexh-b.html
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String
u

ℓ x

t

partial differential equation:
simple wave propagation
utt = a2uxx for all x and t

(the wave equation)

Boundary condition:
zero deflection

u = 0 at x = 0
(Dirichlet)

Boundary condition:
zero deflection

u = 0 at x = ℓ
(Dirichlet)

Initial conditions:
given initial deflection
u = f(x) at t = 0

given initial velocity
ut = g(x) at t = 0

Figure 18.3: An example wave equation problem.

18.2.3 The wave equation

This equation governs basic vibrations, among much else.
An example problem, vibrations of a string, is shown in figure 18.3. The

unknown u is the transverse deflection of the string. The independent variables
are again x and t like for the heat equation example. The domain Ω is again
the x-interval along the string and the boundary δΩ is the two end points.

The heat equation also describes acoustics, steady supersonic flow, water
waves, optics, electromagnetic waves, and many other basic phenomena charac-
terized by wave propagation.

In any number of dimensions, the wave equation reads

Wave equation: utt = a2∇2u (18.3)

Here t is time and a the constant wave propagation speed. In particular, in
three dimensions and Cartesian coordinates

utt = a2 (uxx + uyy + uzz)

Some important properties of the wave equation are:

• Transient problems: The wave equation normally describes processes that
evolve in time.

• Initial-value or initial/boundary-value problems: Like the heat equation,
the wave equation needs initial-value problems or initial/boundary-value
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problems. However, it needs two initial conditions instead of one, since
the equation is second order in time. For the example figure 18.2, that
means that both the initial transverse deflection u and the initial trans-
verse velocity ut of each point of the string must be given. A string would
normally be fixed at its end points, producing Dirichlet boundary condi-
tions. However, the same equation as in the example also governs acoustics
in a pipe, and either Dirichlet or Neumann boundary conditions may be
relevant to the ends of the pipe.

• Finite propagation speed: Effects propagate with the wave speed a.

• The region of influence is limited by the wave speed: Suppose that a bound-
ary or initial condition is somewhere changed a bit. The change will not
affect the solution at other locations until a wave traveling from the point
of the change at speed a has had time to reach them.

• Propagation of singularities: If singular initial or boundary conditions
are prescribed, the wave equation will not smooth them out. Instead
singularities will usually be propagated in one or more directions with the
wave propagation speed a.

• No maximum or minimum principles: For the example, if the string has
zero initial deflection but a nonzero initial velocity, the deflection will grow
in time.

• Energy conservation: The wave equation preserves the sum of potential
and kinetic energy of the string motion. So, if the wave equation was
exact, the string would keep vibrating forever.

The wave equation is the basic example of what is called a “hyperbolic”
partial differential equation.

18.2.3 Review Questions

1. Derive the wave equation for small transverse vibrations of a string by
considering a little string segment of length ∆x.

Solution stanexw-a

2. Maxwell’s equations for the electromagnetic field in vacuum are

∇ · ~E =
ρ

ǫ0
(1) ∇ · ~B = 0 (2)

∇× ~E = −∂ ~B

∂t
(3) c2∇× ~B =

~

ǫ0
+

∂ ~E

∂t
(4)

Here ~E is the electric field, ~B the magnetic field, ρ the charge density,
~ the current density, c the constant speed of light, and ǫ0 is a constant

http://www.eng.fsu.edu/~dommelen/aim/solman/stanexw-a.html
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called the permittivity of space. The charge and current densities are
related by the continuity equation

∂ρ

∂t
+∇ · ~ = 0 (5)

Show that if you know how to solve the standard wave equation, you
know how to solve Maxwell’s equations. At least, if the charge and current
densities are known.
Identify the wave speed.
Solution stanexw-b

3. Consider the following wave equation problem in a unit square:

t

x
�
�
�
��

�
�

�
��

utt = a2uxx

u(x, y) = 0??

u(x, y) = 1??

I.C. u(x, 0) = 1 ut(x, 0) = 0

B.C.
u(0, t) = 0
(Dirichlet)

B.C.
ux(1, t) = 0
(Neumann)

This is basically identical to a Laplace equation problem in the first
subsection. Like that problem, the above wave equation problem has a
unique solution. It is relevant to a case of acoustics in a tube, with u the
pressure. Someone proposed that the solution should be simple: in the
upper triangle the solution u(x, t) is 0, and in the lower triangle, it is 1.
Thoroughly discuss this proposed solution. Determine whether the

boundary conditions and initial conditions are satisfied. Is the partial
differential equation satisfied in both triangles? Finally discuss whether
the solution is right. Consider the value of the wave speed a in your
answer.
Sketch the isobars of the correct solution. In particular, sketch the u

= 0 0.25, 0.5, 0.75, and 1 isobars, if possible. Sketch both the case that
a = 1 and that a =

√
2.

Solution stanexw-c

4. Return again to the problem of the last question. Assume a = 1.
The correct solution to this problem, that you would find using the

so-called method of separation of variables, is:

u =
∞∑

n=1
n odd

4

πn
sin(12nπx) cos(

1
2nπt)

Verify that this solutions satisfies both the partial differential equation
and all boundary and initial conditions.

http://www.eng.fsu.edu/~dommelen/aim/solman/stanexw-b.html
http://www.eng.fsu.edu/~dommelen/aim/solman/stanexw-c.html
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Explain that it produces the moving jump in the solution as given in
the previous question.

The discontinuous solution given in the previous question is right in
this case. It is right because it is the proper limiting case of a smooth
solution that everywhere satisfies the partial differential equation. In
particular, if you sum the above sum for u up to a very high, but not
infinite value of n, you get a smooth solution of the partial differential
equation that satisfies all initial and boundary conditions, except that
the value of u at t = 0 still shows small deviations from u = 1. The more
terms you sum, the smaller those deviations become. (There will always
be some differences right at the singularity, but these will be restricted
to a negligibly small vicinity of x = 0.)

Solution stanexw-e

5. Find the possible plane wave solutions for the two-dimensional wave equa-
tion

utt = a2uxx + a2uyy

What is the wave speed?

Also find the possible standing wave solutions. Assume homogeneous
Dirichlet or Neumann boundary conditions on some rectangle 0 < x < ℓ,
0 < y < h. What is the frequency?

Repeat for the generalized equation

utt = a21uxx + a22uyy + b2u

where a1, a2, and b are positive constants.

Solution stanexw-f

18.3 Properly Posedness

Properly posedness is really quite unique to partial differential equations. Or-
dinary differential equations can be hard to solve if they involve very different
time scales. For example, that is an issue in many chemical reactions.

But for partial differential equations, “hard to solve” becomes “impossible to
solve.” That happens even for apparently very simple linear partial differential
equations with constant coefficients.

This section has a look at some of the issues involved.

18.3.1 The conditions for properly posedness

In words, a properly posed problem in partial differential equations can be
described as follows: it is a problem that has a unique solution that is physically
reasonable.

Phrased more mathematically, a problem is properly posed if:

http://www.eng.fsu.edu/~dommelen/aim/solman/stanexw-e.html
http://www.eng.fsu.edu/~dommelen/aim/solman/stanexw-f.html
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1. A solution exists. Of course. Note it can be much harder to show that a
decent solution exists for partial differential equations than for ordinary
differential equations. For example, it has not yet been achieved for the
unsteady three-dimensional Navier-Stokes equations of viscous flows of
simple fluids.

2. The solution is unique. Of course.

3. Small changes in the data produce correspondingly small changes in the
solution. The “data” are here such things as the initial or boundary
conditions or an inhomogeneous term in the equation.

Requirement 3 above is the one that makes the solution physically reason-
able. Physically, nothing is exactly known. There are always some errors in the
data, however accurate they may be. If these negligible errors can produce a
significant change in the solution, then all bets are off that the solution obtained
is the right one.

You may wonder what “correspondingly small” in condition 3 really means.
The true answer is that it varies. However, generally it is taken to mean that
changes in the solution are no more than proportional to the changes in the
data that cause these changes. And there must be some overall upper bound to
the constant of proportionality that is independent of the details of the change
in data.

That still requires that suitable measures of the magnitude of the changes
in data and solution are defined. That however is beyond this discussion.

One thing should be emphasized. It is not partial differential equations that
are properly or improperly posed. It is problems that are properly or improperly
posed. Before you know what boundary and initial conditions are specified for
your partial differential equation, you cannot say anything meaningful about
properly posedness.

The following subsections give a few typical examples of how improperly
posed problems arise. It illustrates that if you try to solve some partial differ-
ential equation numerically, you better know what sort of equation it is. Or you
can get into major problems.

18.3.1 Review Questions

1. Show that the Dirichlet boundary-value problem for the Poisson equation
on a finite domain,

∇2u = f on Ω u = g on δΩ

has unique solutions. You cannot have two different solutions u1 and u2
to this problem.

Solution ppc-a

http://www.eng.fsu.edu/~dommelen/aim/solman/ppc-a.html
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2. Assuming that the Dirichlet boundary-value problem for the Laplace
equation on a finite domain,

∇2u = 0 on Ω u = f on δΩ

is solvable, show that it depends continuously on the data.
Solution ppc-b

3. Repeat the previous two questions for the Dirichlet initial / boundary
value problem for the heat equation,

ut = κ∇2u on Ω u = f on δΩ u = g at t = 0

Solution ppc-c

18.3.2 An improperly posed parabolic problem

This subsection will discuss an improperly posed problem involving the heat
equation. Recall that the heat equation is an example of a parabolic equation.

Consider first a very standard properly posed problem for the heat equation.
The problem is heat conduction in a bar. The unknown is the temperature. The
ends of the bar are kept at zero temperature.

The below figure shows some computed temperature profiles in a bar at
various times.

u

x

t = 0
0.02
0.25
0.5
0.75
1

At the initial time t = 0 the initial condition was assumed to be piecewise
linear. There is then a singularity, a kink, at the center of the bar. A kink
corresponds to a jump in the derivative. But the heat equation smooths away
singularities. At any later time, even as small as 0.02 in the nondimensional
units used in this problem, the temperature profile is perfectly smooth, with all
derivatives continuous.

This problem was properly posed. Improperly posedness arises for the “back-
ward heat equation”. Physically the backward heat equation is the heat equa-
tion solved backwards in time. Mathematically, the backward heat equation
takes the form

uτ = −κuxx

where the new independent variable τ increases when the time t decreases.

http://www.eng.fsu.edu/~dommelen/aim/solman/ppc-b.html
http://www.eng.fsu.edu/~dommelen/aim/solman/ppc-c.html
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Note that the backward heat equation is equivalent to solving the normal
heat equation forwards in time, but with a negative heat conduction coefficient.
A negative heat conduction coefficient violates the second law of thermodynam-
ics, so it is not really surprising that you get into trouble with the mathematics.

Suppose that you take the temperature profile u at time t = 1 in the figure
above as the initial condition for the backward heat equation. Then you compute
the solution of the backward heat equation up to τ = 1. That should give you
back the singular temperature profile at time zero. And it will, if you manage to
do it exactly. The backward heat equation has a unique solution for the chosen
initial condition in the interval from τ = 0 to τ = 1.

But now suppose that you use the singular profile u at time zero as the initial
condition for the backward heat equation. Then you try again to compute the
solution of the backward heat equation up to τ = 1. It will not work. You
will not be able to find a solution for any value of τ greater than zero. The
reason is easy to understand. Suppose that you did find a solution u at τ = 1.
Physically that would be a temperature distribution in the bar at time t = −1.
But if a temperature distribution at time t = −1 existed, even a singular one,
then the temperature distribution would be smooth for all times greater than
−1. The heat equation smooths away singularities. But the solution at times
greater than −1 is not nonsingular, because we know it is singular at time zero.
So a solution at time −1 can simply not exist.

Now let’s return to the problem that did have a unique solution. That
was when we started the backward heat equation solution from the smooth
temperature profile at t = 1. There is still a major physical problem with the
solution. Physically, (and also in typical numerical solutions), the initial profile
will not be exact to infinitely many digits at all locations. There will always
some error. Suppose in particular that the actual profile has a very slight kink.
It can be so tiny that you cannot see the error in the profile under a microscope
if you plot it versus the exact one. But if there is a kink, there is no longer a
solution to the backward wave equation. There cannot be a solution at earlier
times if there is a singularity, however invisible the kink may be.

In physics your data, here being the temperature profile, are never truly
exact. So you have no way of saying which one is the right answer, the unique
solution or a complete lack of any solution at all. If the data have any imper-
fection, it is the latter.

The bottom line is that even though the backward heat equation can have
unique solutions for some problems, these solutions are only meaningful if you
have a problem that is mathematically exact. So the initial/boundary-value
problem for the backward heat equation is improperly posed. Even though it
may have unique solutions.

The pure initial-value problem is similarly improperly posed.
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18.3.3 An improperly posed elliptic problem

A typical improperly posed problem for the Laplace equation is shown in figure
18.4. Physically, it might correspond to heat conduction in a rectangular plate.
For mathematical convenience, the horizontal size of the plate has been rescaled
to length π.

y

h

x

uyy = −uxx

u(x, 0) = f(x) uy(x, 0) = 0

B.C.
u(0, y) = 0

B.C.
u(π, y) = 0

Figure 18.4: An improperly posed Laplace problem.

What is wrong in figure 18.4 is that both the temperature and the heat flow
are specified at the lower boundary y = 0. That is wrong because the Laplace
equation needs exactly one boundary condition at each point of the boundary,
not two. It is also wrong that no boundary condition at all is given on the top
boundary y = h.

Mathematically speaking, you might say that figure 18.4 is an initial / boun-
dary-value problem for the Laplace equation, with y playing the part of time.
And initial / boundary-value problems for the Laplace equation are not allowed.
Note however that figure 18.4 would be perfectly fine if the partial differential
equation was uyy = uxx instead of uyy = −uxx. That would be a wave equation
with a unit wave velocity, and initial/boundary-value problems are just what
you want for wave equations. In short, a single sign in the partial differential
equation makes all the difference.

The primary problem with initial/boundary-value problems for the Laplace
equation is that they do not meet the third requirement for properly posedness.
The effect of small changes in the data on the solution can be much larger than
the small changes. For the example figure 18.4, that should be taken to mean
that the solution u inside the plate can be much larger than the given value
f(x) of u at the lower boundary.

That can be seen as follows. Consider the following type of solution:

u(x, y) = sin(nx) cosh(ny)

where n is a natural number, one of 1, 2, 3, . . . For a homework, you can verify
that the above is a perfectly valid solution to the problem figure 18.4 when f(x)
= sin(nx). It also happens to be unique.
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Now note that the “data”, the values of f(x), are no greater than 1 in
magnitude. On the other hand, in the interior of the plate, u can reach values
up to cosh(nh). For any given value of n that is a finite number. But there is
no universal bound to it. You can make cosh(nh) as large as you want by just
taking n large enough. The value of cosh(1) is only about 1.5, but cosh(100)
is already about 1043. In short, the size of u can exceed the size of f by any
arbitrarily large factor.

18.3.3 Review Questions

1. Show that the given solution

u(x, y) = sin(nx) cosh(ny)

for natural n does indeed satisfisfy the Laplace equation

uyy + uxx = 0

and the boundary conditions

u(x, 0) = sin(x) uy(x, 0) = 0 u(0, y) = 0 u(π, y) = 0

Solution ppe-a

2. For the Laplace equation

uyy + uxx = 0

with boundary conditions

u(x, 0) = f(x) uy(x, 0) = 0 u(0, y) = 0 u(π, y) = 0

the “separation of variables” solution is

u(x, y) =
∞∑

n=1

fn sin(nx) cosh(ny)

Here the “Fourier coefficients” fn must chosen so that they satisfy

f(x) =
∞∑

n=1

fn sin(nx)

Check this solution.

Can you immediately see that this separation of variables solution is
probably no good?

Solution ppe-b

3. For the Laplace equation

uyy + uxx = 0

http://www.eng.fsu.edu/~dommelen/aim/solman/ppe-a.html
http://www.eng.fsu.edu/~dommelen/aim/solman/ppe-b.html
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with boundary conditions

u(x, 0) = f(x) uy(x, 0) = 0 u(0, y) = 0 u(π, y) = 0

assume that f(x) is the triangular profile:

f(x) = x if x ≤ 1
2π f(x) = π − x if x ≥ 1

2π

The “separation of variables” solution for this problem is

u(x, y) =
∞∑

n=1

fn sin(nx) cosh(ny)

where the “Fourier coefficients” fn must chosen so that they satisfy

f(x) =
∞∑

n=1

fn sin(nx)

where f(x) is the triangular profile described above.

Plot this separation of variables solution for y = 0 and for a few values
greater than zero like y = 1, y = 0.5, y = 0.25. Then comment on whether
a solution u exists at y = 0 and for y > 0.

This example should illustrate that typical improperly posed problems
might have solutions if the data are perfectly smooth and their Taylor
series have finite radii of convergence. But if there is a singularity, like
the kink in the triangular profile, all bets are off.

You might know that if you talk about instability of ordinary differen-
tial equations, you wonder about what happens to the solution for infinite
time. But in this problem you do not let the “time” coordinate y go to in-
finity. The problem is not large y, but large “wave number” n. The large
wave number problem is really unique to partial differential equations.
(If you had a system of infinitely many ordinary differential equations,
you might also run into it.)

Include your code, if any.

Solution ppe-c

4. Continuing the previous question, show analytically that for the supposed
solution

u(x, y) =
∞∑

n=1

4

πn2
sin
(
n1
2π
)
sin(nx) cosh(ny)

the sum does not converge for any x if y > 0.

Also show analytically that at the halfway point x = 1
2π, the values

that you get while summing increase monotonically to infinity.

Solution ppe-d

5. Show that the Laplace equation

∇2u = 0 inside Ω

http://www.eng.fsu.edu/~dommelen/aim/solman/ppe-c.html
http://www.eng.fsu.edu/~dommelen/aim/solman/ppe-d.html
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with the Neumann boundary condition

∂u

∂n
= 1 on δΩ

has no solution. That makes it an improperly posed problem. To focus
your thoughts, you can take an example domain Ω to be the inside of a
sphere, and δΩ as its surface.
Explain the lack of solution in physical terms. To do so, consider

this a steady heat conduction problem, with u the temperature, and the
gradient of u the scaled heat flux.
Generalize the derivation to determine the requirement that

∇2u = f inside Ω

with the Neumann boundary condition

∂u

∂n
= g on δΩ

has a solution.
Solution ppe-e

6. Show that if the Poisson equation

∇2u = f inside Ω

with the Neumann boundary condition

∂u

∂n
= g on δΩ

has a solution, it is not unique.
Solution ppe-f

18.3.4 Improperly posed hyperbolic problems

A typical improperly posed problem for the wave equation is shown in figure
18.5. Physically, it might correspond to transverse vibrations of a string over
a finite time interval. For mathematical convenience, the length of the string
has been rescaled to length π. Also, the time has been rescaled to eliminate the
wave speed c from the wave equation. The scaled final time has been written as
Tπ, again for mathematical convenience, but the value of T can be anything.

What is wrong in figure 18.5 is that instead of specifying the initial position
and velocity of the string, the initial and final position of the string are given.
That is wrong because the wave equation is an evolution equation. It requires
initial conditions, not final conditions.

Mathematically speaking, you might say that figure 18.5 is an boundary-
value problem for the wave equation, with t playing the part of a spatial coor-
dinate. Boundary-value problems for the wave equation are not allowed. Note

http://www.eng.fsu.edu/~dommelen/aim/solman/ppe-e.html
http://www.eng.fsu.edu/~dommelen/aim/solman/ppe-f.html
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t

Tπ

x

utt − uxx = 0

u(x, 0) = 0

u(x, Tπ) = f(x)

B.C.
u(0, t) = 0

B.C.
u(π, t) = 0

Figure 18.5: An improperly posed wave equation problem.

however that figure 18.5 would be perfectly fine if the partial differential equa-
tion was utt + uxx = 0 instead of utt − uxx = 0. That would be the Laplace
equation, and boundary-value problems are just what you want for the Laplace
equation. In short, a single sign in the partial differential equation makes all
the difference.

The given problem has special solutions of the form

u = sin(nx) sin(nt)

where n is an integer. For such a solution

f(x) = sin(nTπ) sin(nx)

The reason for the fact that figure 18.5 produces an improperly posed prob-
lem depends on the value of T . Consider first the possibility that T is a rational
number. A rational number is a number that can be written as

T =
m1

m2

where m1 and m2 are integers.
For such a rational T , the solution to the problem figure 18.5 is not unique.

The quickest way to see that is to take the function f(x) in the given problem
zero. Then one solution to the problem is obviously u = 0. So any nonzero
solution means that the solution is not unique. And you get a nonzero solution
by taking n = m2 or any whole multiple of m2 in the special solutions given
above.

Since the solution is not unique, the problem violates the second condition
for properly posed problems.

Not all numbers are rational numbers, however. In fact, in some sense there
are infinitely many more irrational numbers than rational ones. One simple
example is

√
2. Irrational numbers can however be approximated to arbitrary
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accuracy by rational ones. For example, consider
√
2 to 10 digits accuracy:

√
2 ≈ 1.414213562 =

1414213562

1000000000

The same way, any irrational T value is arbitrarily close to rational ones,
and for rational ones the problem figure 18.5 is improperly posed. So surely
you would not expect the boundary value problem to be properly posed for an
irrational T value. What happens in this case is that the criterion 3 for properly
posedness is violated. Consider again the special solutions above. In the interior
of the rectangle, the solution u = sin(nx) sin(nt) clearly has magnitude 1. (Or
something comparable to 1, if you want to use an average magnitude as mea-
sure.) The data f(x) = sin(nTπ) sin(nx) however have magnitude sin(nTπ).
So, if you can find values for n that make sin(nTπ) arbitrarily small, you have
shown that criterion 3 is violated. The magnitude of u would be much larger
than the magnitude of f . Try solving the corresponding homework question
only if you are really good in math.

Finally, you might argue that initial/boundary-value problems are not really
required for the wave equation. Since x appears in the wave equation exactly
like t does, surely you should be able to provide two “initial conditions” at x
= 0 instead of t = 0. And provide one “boundary condition” at t = 0 and one
“boundary condition” at t = Tπ. Physically that is not an initial/boundary-
value problem; it might be called an initial/final/single-doubled-boundary-value
problem.

You have a good point there. The stated problem is indeed properly posed,
as you say. However, that trick only works in one-spatial dimension. For the
wave equation in two spatial dimensions,

utt = c2 (uxx + uyy)

trying to specify “initial conditions” at x = 0 will produce an improperly posed
problem. To see why, simply consider solutions that are independent of time.
For such solutions, initial conditions at x = 0 would produce an initial value
problem for the Laplace equation in x and y. That is improperly posed.

18.3.4 Review Questions

1. Show that the given solution

u(x, y) = sin(nx) sin(nt)

with n = m2 does indeed satisfisfy the wave equation

utt = uxx

and the boundary conditions

u(x, 0) = 0 u(0, t) = 0 u(π, t) = 0 u(x,
m1

m2
π) = 0
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How about twice that solution? Ten times? How about if n = 2m2?
How about if n = 10m2? So how many solutions are there really to this
single problem?

Solution pph-a

2. For the brave. Show without peeking at the solution that the problem
for irrational T is improperly posed by showing that you can make

sin(nTπ)

arbitrarily small by choosing suitable values of n. Then for these values
of n, the solution

u =
1

sin(nTπ)
sin(nx) sin(nt)

becomes arbitrarily large in the interior although is is no larger than 1
on the boundary. So the problem for irrational T is improperly posed
too, but not because the solution is not unique, but because small data
(f , i.e. u on the top boundary) do not produce correspondingly small
solutions in the interior.

Solution pph-b

18.4 Energy methods

Energy methods derive some sort of system “energy” from a partial differential
equation. That energy may then be used to derive such things as existence
and/or uniqueness of the solution, and whether it depends continuously on the
data.

18.4.1 The Poisson equation

Consider the following very general Poisson equation problem:

∇2u = f in Ω Au+ B
∂u

∂n
= g on δΩ

This includes the Laplace equation; just take f = 0. It includes Dirichlet bound-
ary conditions, (take B = 0), and Neumann boundary conditions, (take A =
0).

The objective in this subsection is to show that solutions to this problem
are unique as long as A and B do not have opposite sign. Assuming that the
problem has a solution in the first place, there is only one.

To prove that, it must be proved that any two solutions u1 and u2 of the
same problem cannot be different. That they must be the same. In other words,
it must be proved that the difference v = u1 − u2 between any two solutions u1

and u2 is zero.

http://www.eng.fsu.edu/~dommelen/aim/solman/pph-a.html
http://www.eng.fsu.edu/~dommelen/aim/solman/pph-b.html
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The proof starts with deriving the equations satisfied by the difference v.
Since by assumption u1 and u2 are both solutions of the same problem:

∇2u2 = f in Ω Au2 + B
∂u2

∂n
= g on δΩ

∇2u1 = f in Ω Au1 + B
∂u1

∂n
= g on δΩ

If you subtract these two problems from each other, and replace u2 − u1 by
v, you get

∇2v = 0 in Ω Av + B
∂v

∂n
= 0 on δΩ

Note that both the partial differential equation and the boundary condition are
homogeneous. That illustrates an important point:

The difference between two solutions of a linear problem always sat-
isfies the homogeneous problem.

Now we must prove that v is zero. That will mean that the difference between
u1 and u2 is zero. And that will in turn imply that u1 and u2 must be the same;
different solutions are not possible.

To prove that v is zero, the trick is to multiply the Laplace equation for v
by −v and integrate over the entire domain Ω:

−
∫

Ω

v∇2v dV = 0

Now note that, (assuming three dimensions, with (x, y, z) = (x1, x2, x3)),

v∇2v = v

3∑

i=1

∂2v

∂x2
i

=
3∑

i=1

∂

∂xi

(
v
∂v

∂xi

)
−

3∑

i=1

(
∂v

∂xi

)2

= ∇ · (v∇v)− (∇v)2

(If you do not believe the second equals sign, just differentiate out the product
immediately to the right of it.) Plugging this into the equation above gives

−
∫

Ω

∇ · (v∇v) dV +

∫

Ω

(∇v)2 dV = 0

And now apply the divergence (or Gauss or Ostrogradski) theorem on the first
integral to get

−
∫

δΩ

v
∂v

∂n
dS +

∫

Ω

(∇v)2 dV = 0 (18.4)

Note that the second integral is physically a potential energy in some important
cases, like for a membrane under tension.

Now consider some special cases, starting with the simplest one:
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• The Dirichlet problem: For the Dirichlet problem, v is zero on the bound-
ary. So the first integral is zero. What is left is

∫

Ω

(∇v)2 dV = 0

This can only be true if ∇v = 0 everywhere. For assume the opposite, that
∇v was nonzero in some vicinity. In that case (∇v)2 would be positive
in that vicinity. So the vicinity would give a positive contribution to the
integral. To get zero for the complete integral, that positive contribution
would have to be cancelled by a negative contribution elsewhere. But
(∇v)2 cannot be negative, so negative contributions to the integral are
impossible.

So ∇v must be zero everywhere, and that means that v must equal some
constant C everywhere. That includes that v must be C on the boundary.
But v = 0 on the boundary, so C must be zero. So v is everywhere zero. So
the difference between any two solutions u1 and u2 of the original problem
must be everywhere zero. That means that the solutions must be equal,
different solutions are not possible. So the solution is unique.

• The Neumann problem: For the Neumann problem, the first integral in
(18.4) must again be zero, now because ∂v/∂n is zero on the boundary.
So just like for the Dirichlet case above, v must everywhere be equal to
some constant C. However, this constant does not have to be zero in this
case. The Neumann boundary condition is satisfied regardless of what C
is.

So solutions of the Neumann problem are not unique. However, different
solutions differ only by a constant, nothing more than that.

• The mixed problem with A and B of the same sign: For the mixed problem,
you can use the boundary condition to write ∂v/∂n on the boundary in
terms of v. That gives:

A

B

∫

δΩ

v2 dS +

∫

Ω

(∇v)2 dV = 0 (18.5)

If A and B are of the same sign, you can use this to show that the solution
is unique.

To do that, note that in that case the final integral must again be zero.
The final integral cannot be negative because it is an integral of a square.
And the final integral cannot be positive; otherwise the first term in the
sum above would have to be negative to make their sum zero. And the
first term cannot be negative because it too is an integral of a square.
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Since the second integral is zero, v must again be some constant C. And
since A is nonzero at at least some point, (otherwise it would be the
pure Neumann problem), it follows from the boundary condition that the
constant is zero. So like the Dirichlet problem, the solution is unique.

• Varying boundary conditions: You could have a problem where, say, on
parts of the boundary a Dirichlet condition is satisfied, on other parts a
Neumann condition, and on still other parts a mixed condition.

In that case, the first, surface, integral in (18.4) is a sum over all these
parts. As long as you can show that the combined integral is zero or
negative, v must be zero and the solution is unique. (Except that in the
pure Neumann case, the solution is indeterminate by a constant.)

• The eigenvalue problem: The eigenvalue problem for the Laplacian oper-
ator is

∇2u = λu in Ω Au+ B
∂u

∂n
= 0

where the solution u must be nonzero. Using the same steps as before for
v, you get

−
∫

δΩ

u
∂u

∂n
dS +

∫

Ω

(∇u)2 dV + λ

∫

Ω

u2 = 0 (18.6)

From this it can be seen that for Dirichlet boundary conditions, or mixed
boundary conditions with A and B of the same sign, the eigenvalues λ can
only be negative. For Neumann boundary conditions, the eigenvalues can
only be negative or zero. The zero eigenvalue must correspond to constant
u.

18.4.1 Review Questions

1. Show that the Poisson equation

∇2u = f

with boundary conditions

uy(x, 1) = g1(x) uy(x, 0) = g2(x)

u(0, y) = g3(y) u(1, y) + ux(1, y) = g4(y)

has unique solutions.
Solution emp-a

2. Using the arguments given in the text, uniqueness can not be shown for
the Poisson equation

∇2u = f

with boundary conditions

uy(x, 1) = g1(x) uy(x, 0) = g2(x)

http://www.eng.fsu.edu/~dommelen/aim/solman/emp-a.html
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u(0, y) = g3(y) u(1, y)− ux(1, y) = g4(y)

Of course, just because you cannot prove uniqueness does not mean it is
not true. But show that this problem never has unique solutions. If it
has a solution at all, there are infinitely many different ones.
Solution emp-b

18.4.2 The heat equation

For the heat equation, similar arguments can be made as for the Laplace equa-
tion. This subsection briefly indicates the general lines.

Like for the Laplace equation in the previous subsection, the difference v be-
tween any two solutions of a heat equation problem must satisfy the homogenous
problem. That problem is here

vt = κ∇2v in Ω Av + B
∂v

∂n
= 0 on δΩ v = 0 at t = 0

Multiply the partial differential equation by v and integrate like for the
Laplace equation to get

d

dt

∫

Ω

1
2
v2 dV −

∫

δΩ

κv
∂v

∂n
dS +

∫

Ω

κ (∇v)2 dV = 0 (18.7)

Now consider conditions like those for the Laplace equation; Dirichlet or
Neumann boundary conditions, or mixed boundary boundary conditions where
A and B have the same sign. For those the final two terms cannot by negative.
So the first term cannot be positive. So the “energy integral”

∫

Ω

1
2
v2 dV

cannot increase in time. Because of the initial condition, it starts at zero. If
it cannot grow, it cannot become greater than zero. (And it cannot become
less than zero because it is the integral of a positive quantity.) So the energy
integral must stay zero for all time. And that is only possible if v is everywhere
zero for all time. If v was somewhere nonzero, the energy integral would be
positive.

If the difference between two solutions is always zero, different solutions are
not possible. Solutions are unique.

Under the same conditions on the boundary conditions, you can see that
one condition for properly posedness is satisfied: small changes in the initial
conditions produce small changes in the solution. To see this, allow a nonzero
initial condition for v in the arguments above. The energy integral for v at a
later time is still never larger than the energy integral of the initial condition
for v. And the energy integral is a measure for the magnitude of v: if you divide
the energy integral by half the volume of the domain and take a square root, it
gives the root mean square value of v.

http://www.eng.fsu.edu/~dommelen/aim/solman/emp-b.html
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18.4.3 The wave equation

For the wave equation, similar arguments can be made as for the Laplace and
heat equations. This subsection briefly indicates the general lines.

Like in the previous two subsections, the difference v between any two solu-
tions of a wave equation problem must satisfy the homogenous problem. That
problem is here

vtt = a2∇2v in Ω Av + B
∂v

∂n
= 0 on δΩ v = vt = 0 at t = 0

Multiply by vt and integrate over Ω as before using the divergence theorem
to get

d

dt

∫

Ω

1
2
v2t dV −

∫

δΩ

a2vt
∂v

∂n
dS +

d

dt

∫

Ω

1
2
a2 (∇v)2 dV = 0 (18.8)

Now consider conditions like those for the Laplace equation; Dirichlet or
Neumann boundary conditions, or mixed boundary boundary conditions where
A and B have the same sign. Under such conditions the surface integral term
cannot be negative. So the time derivative of the “energy integral”

∫

Ω

1
2
v2t +

1
2
a2 (∇v)2 dV

is never positive; the energy integral cannot increase. So it must stay at its initial
value of zero. So the spatial derivatives of v, as well as its time derivative, must
be zero for all time. So v must be a constant. And the initial condition says
that that constant is zero. So v is zero everywhere for all time.

If the difference between two solutions is always zero, different solutions are
not possible. Solutions are unique.

It may be noted that physically, the first term in the energy equation is
typically kinetic energy, and the second potential energy. If you generalize the
problem for v to still have homogeneous boundary conditions, but inhomoge-
neous initial conditions, you can derive energy conservation. In particular for
homogeneous Dirichlet or Neumann boundary conditions, the total energy is
preserved. For mixed boundary conditions where A and B have the same sign,
the energy can only decrease. If A and B have opposite sign, the problem is
unstable in the sense that the energy will increase. You can also use this to
show that small changes in the initial conditions produce small changes in the
solution for appropriate boundary conditions.



18.5. VARIATIONAL METHODS [NONE] 129

18.5 Variational methods [None]

18.6 Classification

18.6.1 Introduction

Classification groups partial differential equations with similar properties to-
gether.

One set of partial differential equations that has a unambiguous classification
are 2D second order quasi-linear equations:

auxx + 2buxy + cuyy = d

where a = a(x, y, u, ux, uy), b = b(x, y, u, ux, uy), c = c(x, y, u, ux, uy), and d =
d(x, y, u, ux, uy).

The classification for these equations is:

• b2 − ac > 0: hyperbolic

• b2 − ac = 0: parabolic

• b2 − ac < 0: elliptic

Example

Question: Classify the equation

yuxx − 2uxy + exuyy + u = 3

Solution:

Identify the coefficients and find the discriminant:

a = y, b = −1, c = ex ⇒ b2 − ac = 1− yex

So it is parabolic for

1− yex = 0 ⇒ y = e−x,

It is elliptic if y is greater than the value above and hyperbolic if y is less.

Graphically:
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Example

Question: Classify the potential equation for compressible flow for an airfoil:

(a2 − φ2
x)φxx −−2φxφyφxy + (a2 − φ2

y)φxx = 0

Here a is the speed of sound, not to be confused with the a in the generic partial
differential equation. Also φx and φy are the velocity components u and v in
the x and y directions. Discuss the associated physics.

Solution:

The discriminant is
(φxφy)

2 − (a2 − φ2
x)(a

2 − φ2
y)

or in terms of velocity and speed of sound:

u2v2 − (a2 − u2)(a2 − v2)

Multiplying out gives
a2[a2 − (u2 + v2)]

Note that the term within square brackets is positive if the magnitude of the
speed of sound is greater than the magnitude of the velocity. That is subsonic
flow, with a Mach number

M =

√
u2 + v2

a
less than 1. The equation is then elliptic. Conversely, if the flow velocity is
greater than the speed of sound, supersonic flow, then the equation is hyperbolic.

Consider a picture of transonic flow around an airfoil:

The subsonic region does indeed behave elliptic. There are smooth solutions
and an unlimited region of dependence. Numerically, this region must be solved
through simultaneous global solution.

The supersonic region behaves hyperbolic. There are singularities like expansion
fans and shocks. The propagation of Mach lines is given by the so-called Mach-
angle. The solution can numerically be found station by station using a marching
scheme.

18.6.2 Scalar second order equations

The general n-dimensional second order quasi-linear second order equation is:

a11ux1x1
+ a12ux1x2

+ a13ux1x3
+ . . .

a21ux2x1
+ a22ux2x2

+ a23ux2x3
+ . . .

a31ux3x1
+ a32ux3x2

+ a33ux3x3
+ . . .

...
...

...
. . . = d
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The coefficients are not quite unique: since the order of differentiation can be
reversed, a coefficient like a12 is equivalent to a21. The coefficients will be made
unique by requiring that they form a symmetric matrix A. That means, for
example, that a12 = a21.

In index notation, the n-dimensional equation can then be written as:

∑

i

∑

j

aij
∂2u

∂xi∂xj

= d (18.9)

where the coefficients aij = aij(x1, x2, . . . , xn, u, ux1
, ux2

, . . . , uxn
) form a sym-

metric matrix A and d = d(x1, x2, . . . , xn, u, ux1
, ux2

, . . . , uxn
).

Example

Question: Find matrix A for the generic two-dimensional equation

auxx + 2buxy + cuyy = d

Solution: Writing the equation in n-dimensional form gives:

a11uxx + a12uxy + a21uxy + a22uyy = d

Comparing with the equation above, a11 = a, a12 = a21 = b, and a22 = c. So
the matrix A is here:

A =

(
a b
b c

)

Classification is based on the eigenvalues of A:

• parabolic if any eigenvalues are zero; otherwise:

• elliptic if all eigenvalues are the same sign;

• hyperbolic if all eigenvalues except one are of the same sign;

• ultrahyperbolic, otherwise.

The reason for this classification will be explained later, in section 18.7.4.

Example

Question: Figure out why that is consistent with what we defined for the
two-dimensional case,

A =

(
a b
b c

)
which should be





hyperbolic if b2 − ac > 0
parabolic if b2 − ac = 0
elliptic if b2 − ac < 0
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Solution: From linear algebra it is known that the determinant of a matrix
equals the product of its eigenvalues. In this case there are two eigenvalues.
Their product is the determinant:

λ1λ2 =

∣∣∣∣
a b
b c

∣∣∣∣ = ac− b2

According to the n-dimensional classification scheme, the equation is parabolic
if an eigenvalue is zero. But then the product ac − b2 of the eigenvalues will
be zero. So b2 − ac is zero too, and that also makes the equation parabolic
according to the two-dimensional classification scheme.

According to the n-dimensional classification scheme, the equation is elliptic
when the two eigenvalues are of the same sign. But then the product of the
eigenvalues is positive, ac − b2 > 0. That makes b2 − ac negative in agreement
with the two-dimensional classification.

The only remaining possibility is that the eigenvalues are of opposite sign. That
makes their product ac − b2 negative, again in agreement with the two-dimen-
sional classification.

Example

Question:

The equation
utt −∇ · (p∇u) + qu+ rut = f

is a generic wave equation, with u the displacement from equilibrium. The first
term is the substance acceleration at a point. The second term represents net
force per unit volume due to elastic distortion. In it, p could be the Young’s
modulus. The third term would be a distributed force that wants to keep the
substance in the equilibrium location. The forth term would be a viscous damp-
ing. The right hand side represents a distributed force per unit volume. Classify
this equation.

Solution:

Write out the equation using the definition of nabla:

∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

Then
∇u ≡ grad u = ı̂ux + ̂uy + k̂uz

while for any vector ~v,

∇ · ~v ≡ div ~v = v1x + v2y + v3z
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The equation is therefore

utt − (pux)x − (puy)y − (puz)z + qu+ rut = f

Now identify the highest derivatives of u:

utt − puxx − puyy − puzz + . . . = f

Find the coefficient matrix A

A =




−p 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 1




The eigenvalues are λ1 = λ2 = λ3 = −p and λ4 = 1. Since all eigenvalues except
one are of the same sign, it is hyperbolic.

18.6.2 Review Questions

1. The equation
ut −∇ · (p∇u) + qu = f

is a generic unsteady heat conduction equation, with u the temperature
relative to the surroundings. The first term is the rate of temperature
change at a point. The second term represents heat accumulation at the
point due to conduction of heat. In it, p is the heat conduction coefficient.
The third term would in be an approximation to the heat radiated away to
the surroundings, either in two-dimensions or for a transparant medium.
The right hand side represents heat that is explicitly added from other
sources. Classify this equation. Also classify the steady version, i.e. the
equation without the ut term.
Solution clasnd-a

18.7 Changes of Coordinates

Changes of coordinates are a primary way to understand, simplify, and some-
times even solve, partial differential equations.

18.7.1 Introduction

It is possible to simplify many partial differential equation problems by using
coordinate systems that are special to the problem:

• In unsteady pipe flows, use the lines along which sound waves propagate
(characteristic lines) as coordinate lines to simplify the partial differential
equation.

http://www.eng.fsu.edu/~dommelen/aim/solman/clasnd-a.html
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• In steady supersonic flows, use the Mach lines along which disturbances
propagate (characteristic lines) as coordinate lines to simplify the partial
differential equation.

• In problems with anisotropic properties, rotate your coordinate system
along the principal or physical directions.

• In problems with spherical symmetry, spherical coordinates are usually
easier than Cartesian ones.

• ...

18.7.2 The formulae for coordinate transformations

Assume the purpose is to address a problem in an n-dimensional space. The
coordinates in this space form a vector

~x = (x1, x2, . . . , xn)

For example, we may have a problem in three-dimensional Cartesian coordinates
x, y, and z. Then x1 = x, x2 = y, and x3 = z, and ~x is the position vector ~r.
Or we might have a problem in four-dimensional space-time, in which case x1

= x, x2 = y, x3 = z, and x4 = t.
The idea is now to switch to some new set of independent coordinates

~ξ = ξ1, ξ2, . . . , ξn

that simplify the problem. Of course, these new coordinates will have to be
some sort of functions of the old ones,

ξ1 = ξ1(x1, x2, . . . , xn) ξ2 = ξ2(x1, x2, . . . , xn) . . . ξn = ξn(x1, x2, . . . , xn)
(18.10)

and vice-versa.
The change of coordinates is characterized by Jacobian matrices

J ≡ ∂~x

∂~ξ
J −1 ≡ ∂~ξ

∂~x
(18.11)

These matrices are inverses of each other, as the above notation indicates. The
determinant |J | is the Jacobian J of the transformation from ~x to ~ξ. It is used
in converting volume integrals. In particular

dx1dx2 . . . dxn = Jdξ1dξ2 . . . dξn

The complete Jacobian matrices describes how a small change in ~ξ relates
to the corresponding change in ~x, and vice versa:

d~x = J d~ξ d~ξ = J −1d~x (18.12)
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Note that while J is called the transformation matrix from ~x to ~ξ, it really
allows you to compute d~x from d~ξ; the opposite of what you would expect.

In index notation, the components of the Jacobian matrices are

(
J
)
ik
=

(
∂~x

∂~ξ

)

ik

≡ ∂xi

∂ξk

(
J −1

)
ki
=

(
∂~ξ

∂~x

)

ki

≡ ∂ξk
∂xi

(18.13)

For any values of i and k between 1 and n. Note that the first index is the one
of the top vector, and the second index the one of the bottom vector.

The purpose is now to simplify second order quasi-linear partial differential
equations using coordinate transforms. As noted in the previous section, second
order quasi-linear equations are of the form

n∑

i=1

n∑

j=1

aij
∂2u

∂xi∂xj

= d

The set of independent coordinates ~x= (x1, x2, . . .) is to be replaced by a cleverly

chosen different set ~ξ = (ξ1, ξ2, . . .) to simplify the equation.
Of course, before you can do anything clever like that, you have to first

know what happens to the partial differential equation when the coordinates
are changed. It turns out that the form of the equation remains the same in
the new coordinates:

n∑

k=1

n∑

l=1

a′ij
∂2u

∂ξk∂ξl
= d′

The coefficients akl do again form a symmetric matrix, call it A′. However, the
matrix A′ is different from the matrix A in the original coordinates. Also, the
right hand side d′ is different from d.

The expression for the new matrix A′ can be written in either matrix notation
or index notation:

A′ = J −1AJ −T a′kl =
n∑

i=1

n∑

j=1

∂ξk
∂xi

aij
∂ξl
∂xj

(18.14)

Here −T means the transpose of J −1. The transpose matrix has the columns
of J −1 as its rows.

The expression for the new right hand side d′ is best written in index nota-
tion:

d′ = d−
n∑

k=1

(
n∑

i=1

n∑

j=1

aij
∂2ξk

∂xi∂xj

)
∂u

∂ξk
(18.15)

Using equations (18.14) and (18.15) above, you can figure out what the new
matrix and right hand side are. However, that may not yet be enough to fully
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transform the problem to the new coordinates. Recall that the coefficients aij
and d might involve first order derivatives with respect to x1, x2, . . .. These
derivatives must be converted to derivatives with respect to ξ1, ξ2, . . .. To do
that, use:

∂u

∂~x
=

∂u

∂~ξ

∂~ξ

∂~x

∂u

∂xi

=
n∑

k=1

∂u

∂ξk

∂ξk
∂xi

(18.16)

in vector and index notation respectively.
That may still not be enough, because the resulting equation will probably

still contain x1, x2, . . . themselves. You will also need to express these in terms
of ξ1, ξ2, . . . to get the final partial differential equation completely in terms of
the new coordinates.

But that is it. You are now done. At least with the partial differential
equation. There might also be boundary and/or initial conditions to invert.
That can be done in a similar way, but we will skip it here.

One additional point should be made. If you follow the procedure as outlined
above exactly, you will have to express ξ1, ξ2, . . . in terms of x1, x2, . . ., and
differentiate these expressions. You will also need to express x1, x2, . . . in terms
of ξ1, ξ2, . . . to get rid of x1, x2, . . . in the equations. That is a lot of work. Also,
if you are, say, switching from Cartesian to sperical coordinates, the expressions
for the spherical coordinates in terms of the Cartesian ones are awkward. You
would much rather just deal with the expressions of the Cartesian coordinates
in terms of the spherical ones.

Now differentiating the x1, x2, . . . with respect to the ξ1, ξ2, . . . will give you
matrix J instead of J −1. But you can invert the matrix relatively easily using
the method of minors. While that is a bit of work, you also save a lot of work
because you no longer have to convert x1, x2, . . . in the results to ξ1, ξ2, . . . and
clean up the mess.

To convert d into d′, as described above, you will need to evaluate the second
order derivatives of ξ1, ξ2, . . . in it. Do that as

∂2ξk
∂xi∂xj

=
n∑

l=1

∂

∂ξl

(
∂ξk
∂xi

)
∂ξl
∂xj

Take the two first order derivatives at the end of this expression from the inverse
matrix that you already computed.

Derivation {D.4} gives the derivation of the various formulae above.

18.7.3 Rotation of coordinates

The purpose of this section is to simplify second order partial differential equa-
tions by rotating the coordinate system to a different orientation. This allows
you to simplify the matrix A of the partial differential equation considerably.
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In particular, in this way you can bring the new matrix A′ into the form of a
“diagonal” matrix:

A′ =




λ1 0 0 . . .
0 λ2 0 . . .
0 0 λ3 . . .
...

...
...

. . .


 ≡ Λ (18.17)

So the partial differential equation simplifies in the new coordinates to:

λ1uξ1ξ1 + λ2uξ2ξ2 + . . .+ λnuξnξn = d′ (18.18)

There are no longer any mixed derivatives. And the remaining coefficients of
the PDE are the eigenvalues of the original matrix A.

One limitation to the procedure in this section should be stated right away.
It concerns the case that the matrix A is not constant, but varies from point
to point. For such a partial differential equation, you can select a point, any
point you like, and bring the equation in the above diagonal form at that one
selected point. At other points there will then still be mixed derivatives in the
transformed equation.

To figure out how to convert a partial differential equation to the above
diagonal form, first a brief review of linear algebra is needed. First recall that
in three dimensions, you can define “basis vectors” ı̂ = (1, 0, 0), ̂ = (0, 1, 0),
and k̂ = (0, 0, 1). And you can write any other three dimensional vector in
terms of these three basis vectors, like for example 3ı̂ − 2̂ + 4k̂. Similarly in
n dimensions you can define n basis vectors ı̂1 = (1, 0, 0, . . .), ı̂2 = (0, 1, 0, . . .),
. . . ı̂n = (. . . , 0, 0, 1).

Next, a simple linear transformation of coordinates (which leaves the origin
unchanged) takes the form, by definition,

~x = P~ξ ~ξ = P−1~x (18.19)

Here P is a matrix that is called the transformation matrix from ~x to ~ξ. (Al-

though it really computes ~x from ~ξ.)
Matrix P consists of the “basis vectors” of the new coordinate system, viewed

from the old coordinate system. So for the special case that the transformation is
a simple rotation of the coordinate system, matrix P consists of the rotated basis
vectors ı̂1, ı̂2, . . . , ı̂n, call them ı̂′1, ı̂

′
2, . . . , ı̂

′
n, viewed from the original coordinate

system. (Conversely, P−1 consists of the original basis vectors ı̂1, ı̂2, . . . , ı̂n when
viewed from the new coordinate system.) The important thing to remember is
that for the special case of coordinate rotation, the inverse of P is just its
transpose:

Coordinate system rotation: P−1 = PT (18.20)
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Note further that for linear transformations, the Jacobian matrices are just

J =
∂~x

∂~ξ
= P J −1 =

∂~ξ

∂~x
= P−1

So the expression of the previous subsection for the new matrix A′ becomes in
terms of P :

A′ = J −1AJ −T = P−1AP−T

Now it is known from linear algebra that this becomes the diagonal matrix
Λ given at the start of the subsection if you take P−T as the matrix E of
eigenvectors of A′. (If A varies from point to point, that means more specifically
the eigenvectors of the selected point.) But for a rotation of coordinates, P−T

= PTT is just P . So the needed coordinate transform is

~x = E~ξ ~ξ = ET~x (18.21)

where the eigenvectors of A are the columns of matrix E. The eigenvalues
in diagonal matrix A′ = Λ will be in the same order as the corresponding
eigenvectors in E.

Warning: you must normalize the eigenvectors (divide them by their length)
because the basis vectors ı̂1, ı̂2, . . . , ı̂n are all of length one. And first you must
make sure every one is orthogonal to all the others. Fortunately, that is normally
automatic. However, if you have a double eigenvalue, any two corresponding
eigenvectors are not necessarily orthogonal; you must explicitly make them so.
Similarly, for a triple eigenvalue, you will need to create three corresponding
orthogonal eigenvectors. And then divide each by its length. (To check whether
vectors are orthogonal, check that their dot product is zero.)

Some books, like [3], do not bother to normalize the eigenvectors to length
one. In that case the coordinate transformation is not just a rotation, but also
a stretching of the coordinate system. The matrix A′ is still diagonal, but the
values on the main diagonal are no longer the eigenvalues of A. Also, it becomes
messier to find the old coordinates in terms of the new ones. You would have
to find the inverse of P−1 using minors. Using orthonormal rather than just
orthogonal eigenvectors is recommended.

You might wonder, if A varies from point to point, why can we not simply
set

J ≡ ∂~x

∂~ξ
= E

at every point, where matrix E consists of the eigenvectors of A at that point.
That would make A′ diagonal at every point, instead of just a selected point.
Unfortunately however, this does not work, because it is equivalent to n2 scalar
differential equations for the n scalar components of ~x. If the number of equa-
tions is larger than the number of unknowns, there is normally no solution.
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Do recall that you will also have to transform the right hand side d to the
new coordinates. However, the second formula in (18.21) implies that the right
hand side d is the same in the transformed equation as in the original one:
x′
1, x

′
2, . . . are linear in x1, x2, . . ., so their second order derivatives in (18.15) are

zero.
You will need the first formula in (18.21), in terms of its components, to get

rid of any coordinates x1, x2, . . . in the right hand side d in favor of x′
1, x

′
2, . . ..

Also, if d contains derivatives with respect to the unknowns x1, x2, . . ., you
will need to convert those using (18.16) of the previous subsection. To get the
derivatives x′

1, x
′
2, . . . with respect to x1, x2, . . . while doing so, write out the

second formula in (18.21) in terms of its components.

Example

Question: Classify the equation

3uxx − 2uxy + 2uyy − 2uyz + 3uzz + 12uy − 8uz = 0

and put it in canonical form.

Solution:

3uxx − 2uxy + 2uyy − 2uyz + 3uzz + 12uy − 8uz = 0

Identify the matrix:

A =




3 −1 0
−1 2 −1
0 −1 3




To find the new coordinates (transformation matrix), find the eigenvalues and
eigenvectors of A:

The eigenvalues are the roots of |A− λI| = 0:

|A− λI| =

∣∣∣∣∣∣

3− λ −1 0
−1 2− λ −1
0 −1 3− λ

∣∣∣∣∣∣
= (3− λ)2(2− λ)− (3− λ)− (3− λ)

Hence λ1 = 1, λ2 = 3, λ3 = 4.

The eigenvectors are solutions of (A − λI)~v = 0 that are normalized to length
one. For λ1 = 1, writing matrix A− λ1I and applying Gaussian elimination on
it produces




2 −1 0
−1 1 −1
0 −1 2







2 −1 0
0 1 −2
0 −1 2







2 −1 0
0 1 −2
0 0 0




which gives the normalized eigenvector

~v1 =




1
2
1


 /

√
6



140 CHAPTER 18. INTRODUCTION

For λ2 = 3,




0 −1 0
−1 −1 −1
0 −1 0







−1 −1 −1
0 −1 0
0 −1 0







−1 −1 −1
0 −1 0
0 0 0




which gives the normalized eigenvector

~v2 =




1
0

−1


 /

√
2

For λ3 = 4,




−1 −1 0
−1 −2 −1
0 −1 −1







−1 −1 0
0 −1 −1
0 −1 −1







−1 −1 0
0 −1 −1
0 0 0




which gives the normalized eigenvector

~v3 =




1
−1
1


 /

√
3

The new equation is:

uξξ + 3uηη + 4uθθ + 12uy − 8uz = 0

However, that still contains the old coordinates in the first order terms. Use
the transformation formulae and total differentials to convert the first order
derivatives: 


x
y
z


 =




1√
6

1√
2

1√
3

2√
6

0 − 1√
3

1√
6

− 1√
2

1√
3







ξ
η
θ




and its inverse




ξ
η
θ


 =




1√
6

2√
6

1√
6

1√
2

0 − 1√
2

1√
3

− 1√
3

1√
3







x
y
z




The partial derivatives of (ξηθ) with respect to (x, y, z) can be read off from the
final matrix. So

uy = uξ
2√
6
− uθ

1√
3

uz = uξ
1√
6
− uη

1√
2
+ uθ

1√
3

Hence in the rotated coordinate system, the partial differential equation is:

uξξ + 3uηη + 4uθθ +
16√
6
uξ +

8√
2
uη −

20√
3
uθ = 0



18.7. CHANGES OF COORDINATES 141

18.7.3 Review Questions

1. Simplify the partial differential equation

10uxx + 6uxy + 2uyy = ux + x+ 1

by rotating the coordinate system. Classify the equation. Draw the
original and rotated coordinate system and identify the angle of rotation.
Solution rotcoor-a

18.7.4 Explanation of the classification

The previous subsection showed how partial differential equations can be sim-
plified by rotating the coordinate system. Using this procedure it is possible
to understand why second order partial differential equations are classified as
described in section 18.6.2.

From the above, it already starts to become clearer why the classification of
second order partial differential equations is in terms of the eigenvalues A. If two
different second order partial differential equations have the same eigenvalues of
their matrix A, then you can simply rotate the coordinate system to make their
matrices A equal. And the highest order derivatives make the biggest difference
for the physical behavior of the system. For short-scale effects, which include
singularities, the highest order derivatives dominate. For them, the right hand
side d is relatively unimportant. And since the highest order terms are now
equal for the two partial differential equations, they must behave very similarly.
So they should be classified as being in the same group.

Rotation of the coordinate system reduces a partial differential equation of
the form

n∑

i=1

n∑

j=1

aij
∂2u

∂xi∂xj

= d

to
λ1ux′

1
x′

1
+ λ2ux′

2
x′

2
+ . . .+ λnux′

nx
′

n
= d

where λ1, λ2, . . . are the eigenvalues of the matrix A that has coefficients aij.
That immediately explains why only the eigenvalues of matrix A are of

importance for the classification. Rotating the mathematical coordinate system
obviously does not make any difference for the physical nature of the solutions.
And in the rotated coordinates, all that is left of matrix A are its eigenvalues.

The next question is why the classification only uses the signs of the eigen-
values, not their magnitudes. The reason is that the magnitude can be scaled
away by stretching the coordinates. That is demonstrated in the next example.

Example

Question: The previous example reduced the elliptic partial differential equa-
tion

3uxx − 2uxy + 2uyy − 2uyz + 3uzz + 12uy − 8uz = 0

http://www.eng.fsu.edu/~dommelen/aim/solman/rotcoor-a.html
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to the form

uξξ + 3uηη + 4uθθ +
16√
6
uξ +

8√
2
uη −

20√
3
uθ = 0

Reduce this equation further until it becomes as closely equal to the Laplace
equation as possible.

Solution:

The first step is to make the coefficients of the second order derivatives equal in
magnitude. That can be done by stretching the coordinates. If

ξ = ξ̄ η =
√
3η̄ θ = 2θ̄

then

uξ̄ξ̄ + uη̄η̄ + uθ̄θ̄ +
16√
6
uξ̄ +

8√
6
uη̄ −

10√
3
uθ̄ = 0

Note that all that is left in the second order derivative terms is the sign of the
eigenvalues.

You can get rid of the first order derivatives by changing to a new independent
variable v. To do so, set u = v eaξ̄+bη̄+cθ̄. Plug this into the differential equation
above and differentiate out the product. Then choose a, b, and c so that the
first derivatives drop out. You will find that you need:

a = − 8√
6

b = − 4√
6

c =
5√
3

Then the remaining equation turns out to be:

vξ̄ξ̄ + vη̄η̄ + vθ̄θ̄ −
65

3
v = 0

It is not exactly the Laplace equation because of the final term. But the final
term does not even involve a first order derivative. It makes very little difference
for short-scale phenomena. And short scale phenomena (such as singularities)
are the most important for the qualitative behavior of the partial differential
equation.

As this example shows, the values of the nonzero eigenvalues can be normal-
ized to 1 by stretching coordinates. However, the sign of the eigenvalues cannot
be changed. And neither can you change a zero eigenvalue into a nonzero one,
or vice-versa, by stretching coordinates.

You might wonder why all this also applies to partial differential equations
that have variable coefficients aij and d. Actually, what d is does not make
much of a difference. But generally speaking, rotation of the coordinate system
only works if the coefficients aij are constant. If they depend on position, the
eigenvectors ı̂′1, ı̂

′
2 . . . at every point can still be found. So it might seem logical

to try to find the new coordinates x′
1, x

′
2, . . . from solving ∂~x′/∂~x = (̂ı′1, ı̂

′
2, . . .)

T .
But the problem is that that are n2 equations for only n unknown coordinates.
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If the unit vectors are not constant, these equations normally mutually conflict
and cannot be solved.

The best that can normally be done for arbitrary A is to select a single point
that you are interested in. Then rotate the coordinate system to diagonalize the
partial differential equation at that one point. In that case, A is diagonal near
the considered point. And that is enough to classify the equation at that point.
For, the most important feature that the classification scheme tries to capture
is what happens to short scale phenomena. Short scale phenomona will “see”
the locally diagonal equation. So the classification scheme continues to work.

18.7.4 Review Questions

1. Convert the equation

11ux′x′ + uy′y′ =
3√
10

ux′ − 1√
10

uy′ +
3√
10

x′ − 1√
10

y′ + 1

to be as close as possible to the Laplace equation.
Solution expclass-a

18.8 Two-Dimensional Coordinate Transforms

More powerful simplifications by changing coordinates are possible in 2D.
Assume that in terms of coordinates x and y, we have a partial differential

equation:
auxx + 2buxy + cuyy = d

Then, if we transform to new coordinates, call them ξ and η, we will get a new
partial differential equation of the form: ξ, η

a′uξξ + 2b′uξη + c′uηη = d′

The idea is again to choose the new coordinates ξ and η so that the new partial
differential equation is as simple as possible.

For example, for a hyperbolic equation, you may like coordinates ξ and η
such that a′ and c′ are zero. To find out for what coordinates ξ and η that is
the case, expressions for the new coefficients a′, b′, c′ and d′ in terms of the new
coordinates are needed. These can be found by writing out the general trans-
formation formulae from section 18.7.2 for the special case of two dimensions.
You get, {D.5}:

a′ = a (ξx)
2 + 2b (ξx) (ξy) + c (ξy)

2

b′ = a (ξx) (ηx) + b (ξx) (ηy) + b (ξy) (ηx) + c (ξy) (ηy)

c′ = a (ηx)
2 + 2b (ηx) (ηy) + c (ηy)

2

d′ = d− (aξxx + 2bξxy + cξyy) uξ − (aηxx + 2bηxy + cηyy) uη

(18.22)

http://www.eng.fsu.edu/~dommelen/aim/solman/expclass-a.html
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18.8.1 Characteristic Coordinates

Characteristic coordinates are coordinates so that the the uξξ and uηη derivatives
are eliminated. That leaves only the uξη derivative, greatly simplifying the
partial differential equation. It reduces to the two-dimensional canonical form:

2b′uξη = d′ (18.23)

The first thing is to find out how this may be achieved. In terms of the co-
efficients of the transformed equation as discussed above, a′ and c′ must vanish.
The condition a′ = 0 requires, according to the given formulae:

a (ξx)
2 + 2b (ξx) (ξy) + c (ξy)

2 = 0

That can be considered to be a partial differential equation for ξ. A nonlinear
first order equation, to be sure. Similarly for c′ to vanish,

a (ηx)
2 + 2b (ηx) (ηy) + c (ηy)

2 = 0

Note that ξ and η must satisfy the exact same equation, but they must be
different solutions. Otherwise they are not valid independent coordinates.

To solve the equation for ξ (η goes the same way), divide by (ξy)
2:

a

(
−ξx
ξy

)2

− 2b

(
−ξx
ξy

)
+ c = 0

and note that, from your calculus or thermo,

−ξx
ξy

=

(
dy

dx

)

ξ is constant

So the lines of constant ξ should satisfy the ordinary differential equation

dy

dx
=

b±
√
b2 − ac

a

We can achieve this by taking ξ to be the integration constant in the solution
of this ordinary differential equation! Integration constants are, like the word
says, constant for solutions.

By taking the other sign for the square root, you can get a second indepen-
dent coordinate η.

Bottom line, to get characteristic coordinates, solve the plus and minus sign
ordinary differential equations above, and equate the integration constants to ξ
and η.

A couple of notes:
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1. Since integration constants are not unique, the characteristic coordinates
are not. But the lines of constant ξ and η are unique, and are called
characteristic lines or characteristics.

2. Elliptic equations do not have characteristics, because the square root in
the ordinary differential equation would be imaginary. The coordinates
ξ and η must be real; you do not want to deal with partial differential
equations in complex coordinates.

3. Parabolic equations have only one family of characteristic lines. That is
because the square root is zero, so taking the other root does not make a
difference.

Example

Question: Use characteristic coordinates to reduce the wave equation in multi-
dimensional canonical form

utt − a2uxx = 0

to its equivalent two-dimensional canonical form. Then solve it.

Solution:

First find the characteristics by solving the ordinary differential equation given
above:

dx

dt
=

b±
√
b2 − ac

a
= ±a

Note that the final a is the wave propagation speed, not the coefficient a in the
generic second order equation.

The solution is simple:

x = at+ ξ x = −at+ η

where ξ and η are the integration constants (as well as the characteristic coor-
dinates). So the lines x − at = constant are one set of characteristic lines, and
the lines x+ at = constant are the other set.

Now find the coefficient d′. The coefficient d was zero, and the second order
derivatives of ξ and η in the formula for d′ are also zero, so d′ is zero too. So
the wave equation in characteristic coordinates is

uξη = 0 (18.24)

Note that b′ could be divided out, so there is no need to figure out what it is.

The wave equation can now easily be solved. Integration with respect to η gives

uξ = f(ξ)

where the integration constant f can be any arbitrary function of ξ. Integrating
with respect to ξ gives the final solution:

u = f1(ξ) + f2(η)
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Here f1 is an antiderivative of f , so it is arbitrary just like f . The additional
integration constant f2 is an arbitrary function of η.

However, you would surely want the solution in terms of the physical coordinates
x and t, rather than the mathematical characteristic coordinates. So substitute
for ξ and η using the obtained equations for the characteristics. That gives the
final solution:

u = f1(x− at) + f2(x+ at) (18.25)

That is the general solution of the wave equation. In order to solve a particular
problem, you will still need to figure out what f1 and f2 are using whatever the
initial and boundary conditions are. One special case, in which the x-range is
doubly infinite, will be solved in detail later.

Example

Question: Find and sketch the characteristics of the equation

uxx + yuyy = 0

Solution:

Figure out the coefficients in the the characteristic equation by looking at the
partial differential equation:

dy

dx
=

b±
√
b2 − ac

a
= ±√−y

Note that there are only characteristics for negative y. For positive y the equa-
tion is elliptic. And for zero y there will only be one direction for the character-
istics, horizontal.

Use separation of variables to solve. In other words, take the y factors to one
side and the x-factors to the other side:

d− y√−y
= ±dx ⇒ 2

√−y = ±(x− C)

Squaring both sides to get rid of the square root gives

y = − 1
4 (x− C)2

These are parabolae.
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Example

Question: Reduce the equation

eyuxx + 2exuxy − e2x−yuyy = 0

to two-dimensional canonical form.

Solution:

Two-dimensional canonical form means characteristic form. Find the ordinary
differential equation for the characteristics:

dy

dx
=

b±
√
b2 − ac

a
= (1±

√
2)ex−y

Solve it using separation of variables:

eydy = (1±
√
2)exdx ⇒ ey = (1±

√
2)ex + C

The integration constants are the new coordinates:

ξ = (1 +
√
2)ex − ey η = (1−

√
2)ex − ey

Work out the partial differential equation in these coordinates using the formulae
given at the start of this section:

b′ = a (ξx) (ηx) + b (ξx) (ηy) + b (ξy) (ηx) + c (ξy) (ηy) = −4e2x+y

d′ = d− (aξxx + 2bξxy + cξyy)uξ − (aηxx + 2bηxy + cηyy)uη

so
d′ = −

[
(1 +

√
2)ex+y + e2x

]
uξ −

[
(1−

√
2)ex+y + e2x

]
uη

The partial differential equation becomes

8ex+yuξη =
[
(1 +

√
2)ey + ex

]
uξ

[
(1−

√
2)ey + ex

]
uη

Get rid of x and y completely using the equations for the characteristics:

ex =
1

2
√
2
(ξ − η) ey = −1−

√
2

2
√
2

ξ − 1 +
√
2

2
√
2

η

The resulting partial differential equation is

(ξ − η)[(1−
√
2)ξ + (1 +

√
2)η]uξη = (1 +

√
2)ηuξ + (1−

√
2)ξuη

It does not look easily solvable.

Example

Question: Find the characteristic coordinates of the equation

sin2(x)uxx + 2 cos(x)uxy − uyy = 0
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Solution:

Find the ordinary differential equation for the characteristics:

dy

dx
=

b±
√
b2 − ac

a
=

cos(x)± 1

sin2(x)

Solve it:

y = − 1

sin(x)
± cotg(x) + C

The characteristic coordinates are the integration constants:

ξ = y +
1

sin(x)
+ cotg(x) η = y +

1

sin(x)
− cotg(x)

It does not look like the partial differential is going to be very simple.

18.8.2 Parabolic equations in two dimensions

In the parabolic case there is only one equation for the characteristics because
the discriminant b2 − ac is zero:

dy

dx
=

b

a

So you can only find one characteristic coordinates, call it η.
You will need to take the other coordinate something else, say ξ = x. You

want to take something simple, but it should be independent of the other coor-
dinate.

The partial differential equations then simplifies to the two-dimensional
canonical form

a′uξξ = d′ (18.26)

You may be surprised by that. In choosing η, all we did was make the coef-
ficient c′ zero. We did not explicitly make b′ zero. But b′ is zero automatically.
The reason is that the physical properties of partial differential equations do
not change just because you use different coordinates. A parabolic equation
should stay parabolic; there are fundamental differences between the physical
behaviors of parabolic, elliptic, and hyperbolic equations. And the equation
above would not be parabolic if b′ was nonzero.

Example

Question: Reduce the equation

xuxx + 2
√
xyuxy + yuyy − uy = 0

to two-dimensional canonical form.

Solution:
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Write the equation for the characteristics

dy

dx
=

b±
√
b2 − ac

a
=

√
y

x

The square root is zero, so the equation is parabolic.

Solve the equation and call the integration constant η:

dy√
y
=

dx√
x

⇒ √
y =

√
x+ η

So take the new coordinates as

ξ = x η =
√
y −

√
x

The final partial differential equation then becomes

−4ξuξξ =

[
1√
ξ
+

3

η +
√
ξ

]
uη

18.8.3 Elliptic equations in two dimensions

Characteristic lines are solutions to the ordinary differential equation

dy

dx
=

b±
√
b2 − ac

a

Elliptic equations have no real characteristics, because the square root is imagi-
nary. However, elliptic equations can still be simplified, assuming that the above
ordinary differential equation can be solved analytically.

Take either sign of the square root. Solve the equation and call the integra-
tion constant, say, ξ̃. Then write this integration constant in the form

ξ̃ = ξ + iη (18.27)

where ξ and η are real and i =
√
−1. In other words, take ξ = ℜ(ξ̃) and η =

ℑ(ξ̃).
Using ξ and η as the new coordinates, it turns out that the partial differential

equation takes the two-dimensional canonical form:

a′uξξ + a′uηη = d′ (18.28)

You may note that this is quite similar to what you can get from rotating the
coordinate system, as in the previous section. However, the above procedure
works even if the coefficients a, b, and c of the original partial differential equa-
tion are not constants.

There are significant limitations on this procedure, however, {D.6}
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Example

Question: Reduce the equation

uxx + (1 + y)2uyy = 0

to two-dimensional canonical form.

Solution:

Write the equation for the characteristics

dy

dx
=

b±
√
b2 − ac

a
= ±i(1 + y)

This is complex, so the equation is elliptic.

Solve using separation of variables

dy

1 + y
= i dx ⇒ ln |1 + y| − ix = ξ̃

The new coordinates can therefore be chosen as

ξ = ln |1 + y| η = −x

In terms of these coordinates, the equation becomes

a′uξξ + a′uηη = d′

The new partial differential equation becomes

uξξ + uηη = −uξ

18.8.3 Review Questions

1. Convert the equation

10uxx + 6uxy + 2uyy = ux + x+ 1

to two-dimensional canonical form.
Using rotation and stretching of the coordinates you would get

uξξ + uηη =
3√
110

uξ −
1√
10

uη +
3
√
11√
10

ξ − 1√
10

η + 1

Do you get the same equation? Should you? Comment.
Solution 2dcanel-a

http://www.eng.fsu.edu/~dommelen/aim/solman/2dcanel-a.html


Chapter 19

Green’s Functions

The purpose of this chapter is to find solutions of linear partial differential equa-
tions in integral form. That is done using so-called Green’s functions. Green’s
functions are solutions to the partial differential equations under forcing by
spikes. By integrating such solutions together, arbitrary forcing can be han-
dled.

19.1 Introduction

The purpose of this section is to introduce the Green’s function ideas.

19.1.1 The one-dimensional Poisson equation

This subsection will consider a very simple problem, the Poisson equation in
one-dimensional infinite space. The solution will be obtained using a Green’s
function approach.

In general, the Poisson equation reads

∇2u = f

where f is a given function and u the unknown to be found. In one-dimensional
infinite space that becomes

uxx = f(x) −∞ < x∞

Of course, this equation is trivial to solve. That makes it such a good example
to understand the Green’s function approach.

It may be noted that the solution is not quite unique; adding A+Bx to any
solution, with A and B constants, produces another solution. Therefore, solving
the problem will simply be taken to be finding a solution, whichever one.

Figure 19.1 shows a sketch of an arbitrary given function f(x).

151
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x

f(x)

Figure 19.1: Chopping a one-dimensional function up into spikes.

The basic idea of a Green’s function approach is to chop the function
into narrow spikes and solve for each spike separately.

xξ

✲ ✛∆ξ

❄

✻

f(ξ)

∆u(x; ξ)

Figure 19.2: Contribution of one spike to the solution.

Consider an arbitrary example spike, shown in grey in figure 19.1. Figure
19.2 shows this one spike separately. The solution due to this one spike, call
it ∆u, is shown in red. The total solution can be obtained by summing the
solutions for all the spikes together:

u =
∑

all spikes

∆u

To be sure, solving the problems for the spikes exactly is just as difficult as
solving the original problem. But if the spikes are narrow, approximations can
be made. Before doing so however, consider the exact solution ∆u in figure 19.2
more closely. Note that the solution is linear everywhere except in the narrow
region of the spike. That is because it satisfies the Poisson equation

∆uxx = ∆f

Here ∆f is the single-spike function, shown in green in figure 19.2. It is zero
everywhere outside the single spike, because the other spikes are emitted. So
outside the single spike, the second derivative of ∆u is zero. And if its second
derivative is zero, then ∆u is linear.
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The slope does change from one side of the spike region to the other. In
fact, integration of the equation above produces

∆ux,after −∆ux,before =

∫

spike

f(ξ′) dξ′

Note that the integral is the spike area. So the slope changes by an amount
equal to the spike area. Since the spike area is small for small ∆ξ, so is change in
slope. Figure 19.2 shows a sketch how the solution ∆u looks. It took the slopes
equal and opposite at both sides. That keeps the maximum slope as small as
possible.

If we approximate the spike area as f(ξ)∆ξ, where ξ is the center point of
the spike, we get

∆ux,after −∆ux,before ≈ f(ξ)∆ξ

Now first consider an idealized spike problem. In this idealized spike prob-
lem, the spike is given a unit area. Then the limit is taken that the width of the
spike becomes zero. (In that limit, the height of the spike must go to infinity
to keep the area constant.) The limiting infinitely narrow, infinitely high, spike
is called the “Dirac delta function” δ(x− ξ).

The corresponding solution ∆u is called the “Green’s function” G(x; ξ). It
is equal to

G(x; ξ) = 1
2
|x− ξ| (19.1)

That is easily checked. Indeed, it is linear at both sides of point ξ. And for x
> ξ, the absolute signs do nothing, so the slope is 1

2
. For x < ξ, the absolute

signs produce a minus sign so the slope is −1
2
. That makes the total change in

slope 1, the area of the delta function, as it should.

xξ

δ(x− ξ)f(ξ)∆ξ

G(x; ξ)f(ξ)∆ξ

Figure 19.3: Approximation of the spike by an infinitely narrow one.
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Back to the original spike of small area f(ξ)∆ξ. We can approximate its
solution in terms of the Green’s function above as

∆u ≈ G(x; ξ)f(ξ)∆ξ

Since the Green’s function has a unit change in slope, multiplying by the spike
area gives the correct change in slope. The idea is shown in figure 19.3. We
replace the narrow spike by an infinitely narrow one, but still with the same
area. That gives essentially the same solution as in figure 19.2. (There will be
small deviations. In particular, the solution for the infinite thin spike will be
linear right up to the point ξ while the original was somewhat rounded. But
these differences can be neglected.)

The total solution u to the original problem is obtained by summing the
contribution of all the spikes:

u =
∑

all spikes

∆u ≈
∑

all spikes

G(x, ξ)f(ξ)∆ξ

To make this exact, we take the limit that the width ∆ξ of the spikes becomes
zero. In that limit, the summation becomes integration. The exact solution of
the Poisson equation is therefore:

uxx = f(x) −∞ < x < ∞ =⇒ u(x) =

∫ ∞

ξ=−∞
G(x; ξ)f(ξ) dξ (19.2)

where G(x; ξ) = 1
2
|x− ξ|. You can verify this solution by splitting the integral

into two and integrating by parts. It is somewhat messy to do so, however.

Example

Question: Find Green’s function approximations to the solution u of the
Poisson problem

uxx = −2xe−x2 −∞ < x < ∞
Use various spike widths ∆ξ. Verify that you do seem to get the exact solution
when ∆ξ → 0 as claimed above.

Solution:

Figure 19.4 shows some results obtained using matlab. First of all, this problem
has an exact solution √

π

2
erf(x)

where erf is the so-called error function. This exact solution is indicated by the
blue dots in figure 19.4.

The question is now, how good is a Green’s function approximation for this
problem?

The right hand side in the Poisson problem is negligibly small outside the range
−3 < x < 3, so no spikes are needed outside that range. In the top left graph,
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Figure 19.4: Green’s function solution of an example one-dimensional Poisson
equation.
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the interval −3 < x < 3 was chopped up into two “spikes.” Each spike was
approximated by a delta function spike at its center as described above. Then
the two Green’s function solutions of these spikes were added to give the red
solid line. You can see the locations of the delta functions from the kinks in this
solution. Obviously, this Green’s function solution is not accurate.

It gets better if the interval −3 < x < 3 is divided up into 5 narrower spikes,
and each one is approximated by a delta function spike. The solution for that
is shown in the top right graph of figure 19.4. The next graph shows that
for 10 spikes, the Green’s function solution is quite close to the exact solution.
However, there are still visible kinks at the locations of the delta function spikes.
At 20 spikes, the kinks are virtually invisible.

19.1.1 Review Questions

1. Solve the Poisson equation

uxx = −2
sinhx

cosh3 x

numerically using Green’s functions. Experiment with numerical param-
eters and show convergence.

Include your code.

Solution gf1d-a

2. Show that

ũ(x) =

∫ ∞

ξ=−∞
1
2 |x− ξ|f(ξ) dξ

is a solution to

uxx = f(x) −∞ < x < ∞

You can assume that function f(ξ) becomes zero rapidly at large ξ. (If
you want, you can assume it is zero beyond some value ξmax of |ξ|.) Find
out what function ũ is relative to some given second anti-derivative u0 of
f .

Solution gf1d-b

19.1.2 More on delta and Green’s functions

Figure 19.5 shows the definition of the one-dimensional delta function. Note
that the function value of δ(x− ξ) is zero at all points except at the single point
ξ. At that single point however, the function value is infinite.

Of course, infinite function values are invalid mathematics. The delta func-
tion is not a properly defined function. The best way to deal with that as an
engineer is to mentally not make the delta function infinitely narrow. Instead
think of a delta function as an extremely narrow, extremely high spike that inte-
grates to 1. Mathematicians have better but more complicated ways of dealing
with the problem, {A.1}.

http://www.eng.fsu.edu/~dommelen/aim/solman/gf1d-a.html
http://www.eng.fsu.edu/~dommelen/aim/solman/gf1d-b.html
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δ(x− ξ)
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❄

height:
1

ε

Figure 19.5: Approximate Dirac delta function δε(x− ξ) is shown left. The true
delta function δ(x − ξ) is the limit when ε becomes zero, and is an infinitely
high, infinitely thin spike, whose bottom is shown right.

Usually delta functions are used as inhomogeneous terms in differential equa-
tion problems. The solutions to these problems are called Green’s functions.
Fortunately, it turns out that while the delta function is not well defined, the
Green’s function typically is. In the limit that the width of the delta function
becomes zero, the Green’s function stays a perfectly good function.

For example, the Green’s function of the Poisson equation in one dimension
formally satisfies

∂2G(x; ξ)

∂x2
= δ(x− ξ) −∞ < x < ∞

You can make this equation meaningful by replacing the delta function by the
approximate delta function of figure 19.5 and then taking the limit that the
width ε becomes zero. In that limit, the right hand side becomes the poorly
defined delta function. However, as discussed in the previous section, G(x; ξ)
becomes 1

2
|x− ξ|. That is a mathematically completely legal function.

Another thing to note is that Green’s functions in infinite domains are usu-
ally not unique. The most general Green’s function for the Poisson equation in
one dimension is

G(x; ξ) = 1
2
|x− ξ|+ A+ Bx

where A and B are arbitrary constants. The final two terms are a solution of
the homogeneous equation.

You would typically like the Green’s function to be zero at large distances.
But for the one dimensional Green’s function above, (as well as for the two-di-
mensional equivalent, for that matter), there is no way to do it. There is no
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way to choose A and B so that G is zero at both ±∞. The best you can do is
make the derivatives at ±∞ as small as possible. If B is nonzero, the derivative
at either −∞ or ∞ is greater than 1

2
in magnitude. So you take B zero so that

neither derivative exceeds 1
2
in magnitude. There is nothing defensible that you

can take for the constant A, so you take it also zero.
It may be noted that in wave propagation problems, trying to make the

wave function as small as possible typically does not work. Instead you take the
Green’s function so that at large distances it describes waves that move away
to infinity. Green’s functions that describe waves that come in from infinity are
physically undesirable.

19.2 The Poisson equation in infinite space

(Book, section 8.2)

19.2.1 Overview

This section works out the Green’s function idea for the Poisson equation

∇2u = f

in infinite space. In two dimensions, this can be understood to be heat conduc-
tion in an infinite plate, with u the temperature and −f the heat added to the
plate per unit surface area. In three dimensions, the heat could be generated
internally, due to chemical or nuclear reactions, say, or be due to absorbed ra-
diation passing through the body. Or f can be understood to be charge density
in electro-statics, with u being the potential. In the fluid dynamics of viscous
unidirectional flows, f would be the pressure gradient. In various numerical
schemes for viscous incompressible flows, u could be pressure and f velocity
terms, or in two dimensions u could be streamfunction and f vorticity.

In this section, the Green’s function in infinite two-dimensional space will be
derived. For discussion purposes, the problem will be assumed to be heat con-
duction in a plate, but the mathematical solution does not depend on what the
physical meaning is. In the homework you will derive the Green’s function for
the Poisson equation in infinite three-dimensional space; the analysis is similar
but the result will be quite different.

First of all, a Green’s function G for the above problem is by definition a
solution when function f is a delta function. A delta function is an infinitely
narrow spike that integrates to one. We will write ~x for the point at which the
temperature is desired. Further ~ξ is the position of the delta function.

In two dimensions ~x = (x, y) and ~ξ = (ξ, η). Also, the two-dimensional delta
function can be written in terms of one-dimensional ones as

δ2(~x− ~ξ) = δ(x− ξ)δ(y − η)
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In any number of dimensions, the Green’s function solution of the Poisson
equation with a delta function as right hand side will be written as

G(~x; ~ξ)

(Since it is a constant coefficient problem, the Green’s function will simplify to

G(~x − ~ξ), and even further to G(|~x − ~ξ|) because the problem is rotationally
symmetric.)

In terms of the Green’s function, the solution u to the Poisson equation with
an arbitrary right hand side f can be written as

u(~x) =

∫

all ξ

G(~x; ~ξ)f(~ξ) dV~ξ (19.3)

Here dV~ξ stands for a “volume” integral over all components of vector ~ξ. In two
dimensions that becomes

u(x, y) =

∫ ∞

−∞

∫ ∞

−∞
G(x, y; ξ, η)f(ξ, η) dξdη (19.4)

The “volume” is here really an area.
It will be found that the Green’s function for the two-dimensional infinite-

domain Poisson problem is:

G(~x; ~ξ) =
1

2π
ln d where d =

∣∣∣~x− ~ξ
∣∣∣ =

√
(x− ξ)2 + (y − η)2 (19.5)

The physical meaning of d is the distance between the point ~ξ = (ξ, η) where
the heat is added and the point ~x = (x, y) at which the temperature is desired.

Similarly, you will find in the homework that the Green’s function for the
three-dimensional infinite-domain Poisson problem is:

G(~x; ~ξ) =
−1

4πd
where d =

∣∣∣~x− ~ξ
∣∣∣ =

√
(x− ξ)2 + (y − η)2 + (z − θ)2

(19.6)
Therefore the two-dimensional temperature distribution u(x, y) correspond-

ing to a general distribution of added heat f(ξ, η) is:

u(x, y) =

∫∫
f(ξ, η)

2π
ln
√

(x− ξ)2 + (y − η)2 dξdη (19.7)

while the three-dimensional temperature distribution is

u(x, y, z) =

∫∫∫ −f(ξ, η)

4π
√
(x− ξ)2 + (y − η)2 + (z − θ)2

dξdηdθ (19.8)
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Given an added-heat distribution f , you can find the temperature distri-
bution u by doing the corresponding integral. Especially if you only want the
temperature at a few points, this can be quite effective. (If you want the tem-
perature at essentially all points, a “multigrid” numerical method that directly
solves the partial differential equation is far more efficient. However, there
are so-called “fast-summation” methods, like the one by Van Dommelen and
Ründensteiner, that can do the integrals very fast too, especially if the region
of heat addition is limited.)

The physical meaning of the Green’s function varies with setting. In heat
transfer, it is the solution for a point heat source, in electrostatics a point
charge, in gravitation a point mass, in potential flows a point source of fluid, in
two-dimensional vortex flows a point vortex, etcetera.

19.2.2 Loose derivation

To verify the two-dimensional Green’s function G given in the previous section,
the solution to the Poisson equation must be found in which f is a delta function
spike at some point ~ξ.

However, dealing with infinite functions like delta functions is a very ab-
stract and fishy problem. Therefore an approach like in the first section will be
used. It will assumed that we are really trying to solve the Poisson equation
for an arbitrary function f . (And so we are, really.) We then mentally cut up
this function f into spikes. That idea is sketched in two-dimensions in figure
fig:2dspike.

f

y

x
dξ

dη

f(ξ, η)

Figure 19.6: One of the spikes of which an arbitrary two-dimensional function
f consists is shown in outline.

The problem for such a narrow, but finite spike can be solved with some
physical intuition. The solution will again be called ∆u. The total solution
will then be the sum of the solutions ∆u for all the spikes. Of course, each

extrascale=3,notransparent
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solution will not just depend on the position (x, y) at which you want to know
the temperature. It will also depends on where the spike is, as indicated by its
center point (ξ, η).

✟✟✟✯
r

∆ξ
∆η

f∆ξ∆η
heat in

r = d

Figure 19.7: Sketch of the problem to be solved: heat is added only to the small
dark rectangle around a point (ξ, η).

Figure 19.7 shows a two-dimensional top view equivalent to figure 19.6. In
other words, it shows just the plate, not the function f . The dimensions of
the little rectangle to which the heat is added by the considered spike will be
indicated by ∆ξ∆η. The amount of heat added is f(ξ, η)∆ξ∆η, since variations
in f over the small rectangle can be ignored. Since the Green’s function G is
the solution for unit added heat flux, the final Green’s function will be obtained
by dividing the solution ∆u by the amount of heat f(ξ, η)∆ξ∆η. (Formally
speaking, you would then still need to take the limit ∆ξ,∆η → 0, 0, but that
becomes trivial under the approximations to be made.)

The mathematical problem being solved is:

∇2∆u =

{
f(ξ, η) within the vicinity ∆ξ∆η of point (ξ, η)
0 everywhere else

For convenience, for now use a polar coordinate system r, ϑ centered around
the point (ξ, η) of heat addition, as indicated in figure 19.7. Further, since the
rectangle ∆ξ∆η is assumed to be very small, almost a single point, you can
reasonably assume that the temperature distribution ∆u depends only on the
distance r from the point where the heat is added, not on ϑ.

Under those assumptions, it is easiest to simply integrate the mathematical
problem above over the inside of a circle of radius d:

∫ d

r=0

∫ 2π

ϑ=0

∇2∆u r drdϑ = f(ξ, η)∆ξ∆η

extrascale=3,notransparent
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But ∇2∆u = div (grad ∆u), so you can apply the divergence theorem here:

∫

S

~n · ∇∆u dS = f(ξ, η)∆ξ∆η.

In this two-dimensional problem the “surface” S is the perimeter 2πd of the
circle. And ~n is the radial polar unit vector ı̂r, which makes the total derivative
~n · ∇∆u equal to the derivative with respect to radius, d∆u/dd. So you have:

d∆u

dd
2πd = f(ξ, η)∆ξ∆η

Take the 2πd to the other side and integrate to get ∆u:

∆u =
f(ξ, η)∆ξ∆η

2π
ln d

The Green’s function is the solution for unit heat added:

G =
1

2π
ln d

This derivation used a polar coordinate system centered around the heat addi-
tion point (ξ, η). To get the expression for whatever the origin of the coordinate
system is, substitute

d = |~x− ~ξ| =
√

(x− ξ)2 + (y − η)2.

That gives the Green’s function as stated in the overview.

19.2.2 Review Questions

1. Do an analysis similar to either this subsection, or the next one, to derive
the Green’s function of the Poisson equation in three dimensional infinite
space.
Solution pninfl-a

19.2.3 Rigorous derivation

For students who do not like the above derivation with infinitesimal regions, and
the assumption that their temperature distribution only depends on distance,
here is a mathematically solid derivation.

It will be assumed that a suitable heat distribution f(x, y) is given with
at least continuous low-order derivatives. Also that it disappears sufficiently
quickly at large distances that you do not have to worry about that region.
Then it is to be shown that if you do the Green’s function integration

u(x, y) =

∫∫
G(x, y; ξ, η)f(ξ, η) dξdη G =

1

2π
ln |~x− ~ξ|

http://www.eng.fsu.edu/~dommelen/aim/solman/pninfl-a.html
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✟✟✟✯ρε

ρ = R

Figure 19.8: Region of integration for the Green’s function integral. Excluded
regions are left blank. The point (x, y) at which the temperature u is to be
found is in the center of the excluded small circle.

you get a function u(x, y) satisfying the Poisson equation:

∇2u(x, y) = f(x, y)

The first thing to check is that you do at least get some function u(x, y)
by doing the integration. That is not automatic, since the integrand is infinite
when (ξ, η) = (x, y). And integration over an infinite region is not proper either.
What you must do is exclude the inside of a very small circle around (x, y) and
the outside of a very large circle from the integration. Then you define u(x, y)
to be the limit of the integral when the radius of the small circle ε becomes zero,
and the radius R of the the large circle becomes infinite. (Assuming that those
limits exist.) See figure 19.8.

A local polar coordinate system ρ, ϕ will be used centered at the point (x, y)
at which the temperature is desired. Then ρ is the distance that the heat
addition point (ξ, η) is away from the point (x, y) at which the temperature is
desired. Note that the variables in the integration are ξ and η; (x, y) is just a
fixed point in this entire story. The two-dimensional Green’s function is

G =
1

2π
ln(ρ)

in these terms.
The effect of the excluded area outside the large circle may be taken to be

vanishingly small if the radius of the large circle, call it R, is large, since it was
assumed that function f vanishes sufficiently quickly at large distances. The
effect of the excluded area inside the small circle is can be estimated as

∣∣∣∣
∫∫

1

2π
ln(ρ)f(ξ, η) dξdη

∣∣∣∣ ≤ |fmax|
∫ ε

ρ=0

1

2π
ln(ρ) 2πρ dρ

extrascale=3,notransparent
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where |fmax| is the maximum value of f within the circle and ε is the radius
of the small circle. Now |fmax| is finite since f is continuous, and the integral
becomes vanishingly small when ǫ → 0. So the effect of the small circle too can
be ignored if it is small enough. In particular, the limit when the radius ǫ of the
small circle tends to zero and the radius of the large circle R tends to infinity
exists. So the temperature u(x, y) exists.

But does it satisfy the Poisson equation ∇2u = f? Now what you cannot
do here is simply differentiate the Green’s function (the logarithm) within the
integral

u(x, y) =

∫∫
G(x, y; ξ, η)f(ξ, η) dξdη

=

∫∫
f(ξ, η)

2π
ln
√

(x− ξ)2 + (y − η)2 dξdη

a couple of times with respect to x and y. If you differentiate the logarithm, it
becomes a more singular function, and you get into trouble.

Instead you need to go back to the basic definition of the partial derivatives.
As an example, take

∂u

∂x
≡ lim

∆x→0

u(x+∆x, y)− u(x, y)

∆x
.

The integral for u(x+∆x, y);

u(x+∆x, y) =

∫∫
f(ξ, η)

2π
ln
√
(x+∆x− ξ)2 + (y − η)2 dξdη,

can be manipulated by defining ξ̄ = ξ −∆x to become

u(x+∆x, y) =

∫∫
f(ξ̄ +∆x, η)

2π
ln
√
(x− ξ̄)2 + (y − η)2 dξ̄dη,

You can now again drop the bar on ξ̄ since it is just an integration variable
whose name makes no difference.

Plug this, and the expression for u(x, y, z) itself, into the limit above to get:

∂u

∂x
= lim

∆x→0

∫∫
[f(ξ +∆x, η)− f(ξ, η)]/∆x

2π
ln
√

(x− ξ)2 + (y − η)2 dξdη,

In the limit ∆x → 0, the term in the numerator becomes the partial derivative
∂f/∂ξ! So x-derivatives transform to ξ-derivatives on f inside the integral.
And the equivalent thing happens to y-derivatives. Since the derivatives of f
are assumed to be continuous just like f , there are no problems with these
integrals.
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The net result is that

∇2u =

∫∫ ∇2
~ξ
f

2π
ln
√
(x− ξ)2 + (y − η)2 dξdη,

using the notations

∇2 =
∂2

∂x2
+

∂2

∂y2
and ∇2

~ξ
=

∂2

∂ξ2
+

∂2

∂η2
.

Now you need to show that the integral in the right hand side is equal to
f(x, y) to finish the proof that ∇2u = f . To shorten the notations, the Green’s
function will again be written as G, and the question is whether

∫∫
G∇2

~ξ
f dξdη equals f?

To show this, exclude again the inside of a small circle of radius ε and the
outside of a large circle of radius R around (x, y) from the integration, as in
figure 19.8. In that case, you do not have to worry about infinite quantities,
and you can again take the limit ε → 0 and R → ∞ later to get the final result.

If you add a second term,

∫∫
G∇2

~ξ
f dξdη −

∫∫
f∇2

~ξ
G dξdη

you can use Green’s second integral identity from section 1.2 in the book. The
added term is zero, since ∇2

~ξ
G = 0 away from the singular point ~x = ~ξ. (Re-

member, G is the solution of the Poisson problem where the forcing is a delta
function, zero everywhere except at the singular point. So ∇2G = 0 away from
the point, and since the components of ~ξ appear in G in exactly the same way
as those of ~x, if ∇2G = 0, then so is ∇2

~ξ
G.)

Green’s second identity now says that the expression that should equal f is
the “surface” integral

∫
G

∂f

∂n~ξ

dS~ξ −
∫

f
∂G

∂n~ξ

dS~ξ

where ∂/∂n~ξ = ~n · ∇~ξ is the derivative normal to the surface with respect to

the components of ~ξ. The “surface” S~ξ is in this two-dimensional case the
perimeter of the region of integration. Part of it is the large circle ρ = R, but
you can ignore that since it is assumed that f vanishes sufficiently rapidly at
large distances. The other part is the perimeter of the little circle ρ = ε that
was excluded from the integration. The integral over this little circle cannot
be ignored. On it, the normal derivative ∂/∂n~ξ is minus the radial derivative
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∂/∂ρ, (minus since the normal vector must stick out of the region of integration,
which here is into the excluded little circle.) So you have on the little circle

G =
1

2π
ln(ρ) =

1

2π
ln(ε)

∂G

∂n~ξ

= − 1

2πε

The perimeter S~ξ of the little circle is 2πε. So you can estimate the two integrals
above as

−ε ln(ε)

∮

ρ=ε

∂f

∂n~ξ

dS~ξ

S~ξ

+

∮

ρ=ε

f
dS~ξ

S~ξ

The first term is certainly no larger than ε ln(ε) times the maximum value of the
gradient of f on the spherical surface and disappears when you take the limit
ε → 0. The second term however is the average value of f on the perimeter,
and that becomes simply f when the circle becomes so small that the variations
in f can be ignored.

So finally, you conclude that ∇2u is indeed f .

19.3 The Poisson or Laplace equation in a fi-

nite region

19.3.1 Overview

∇2u = f
Ω

δΩ
B.C.

Figure 19.9: Example finite domain Ω in which the Poisson or Laplace equation
is to be solved.

This section will derive the solution of the Poisson equation in a finite region
as sketched in figure 19.9. The region will be denoted as Ω, and its boundary
by δΩ. It will again be assumed that the region is two-dimensional, leaving the
three-dimensional case to the homework. As shown in figure 19.9, inside the
region the Poisson equation applies. In case f = 0, this becomes the Laplace
equation. On the boundary there is some boundary condition that will for now
be left arbitrary.

19.3.2 Intro to the solution procedure

The big idea is to relate the finite domain solution to the infinite domain solution
derived earlier.

extrascale=3,notransparent
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∇2u=f
∇2uinf=f

∇2uout=0
∇2uinf=0

Figure 19.10: Temperature distributions involved in the solution process: (i) u is
the desired temperature distribution satisfying the given boundary conditions;
(ii) uout is an external temperature distribution whose boundary conditions can
be cleverly chosen to achieve various objectives; (iii) uinf is the infinite-domain
solution that satisfies no particular boundary conditions on δΩ.

For the given heat addition f , you can still do the integral
∫
Gf dV~ξ over the

domain Ω to get the infinite domain solution. That solution will now be called
uinf , as indicated in figure 19.10.

The infinite domain solution satisfies the Poisson equation, but it does not
satisfy the boundary conditions. It will turn out that some surface integrals
must be added to it to get the boundary conditions right.

The precise form of these integrals can vary. The different versions all give
the same, correct, solution u inside the domain Ω. However, they give different
answers for the continuation of this solution to outside the domain Ω. So a
meaningful discussion of the various possibilities requires consideration of the
solution outside the domain. Even though the solution outside domain Ω is not
actually a part of the problem.

The solution outside Ω will be indicated as uout, so the picture becomes
as shown in figure 19.10. Since you surely do not want to just make up an
arbitrary function f outside Ω, it will be assumed that f = 0 outside. So uout

satisfies the homogeneous Poisson equation, the Laplace equation. And so does
the infinite space solution uinf outside Ω, for that matter. Only integrating f
over the domain Ω is the same as setting f to zero outside the domain.

19.3.3 Derivation of the integral solution

(book, example 8.2)

The desired integral solution u for the finite-region Poisson solution is a
generalization of the infinite domain solution

uinf(~x) =

∫
G(~x; ~ξ)f(~ξ) dV~ξ,

extrascale=3,notransparent
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where G is the infinite domain Green’s function derived in the previous section.
In the two-dimensional case discussed here:

G =
1

2π
ln
∣∣∣~x− ~ξ

∣∣∣ .

Since f = ∇2u, the expression above represents an important relationship
between the infinite-domain solution uinf and the actual, finite-domain, solution
u:

uinf(~x) =

∫
G(~x; ~ξ)∇2

~ξ
u(~ξ) dV~ξ

where

∇2
~ξ
=

∂2

∂ξ2
+

∂2

∂η2
.

is the Laplacian with respect to ξ and η. George Green discovered that the
integral in the right hand side could be simplified into surface integrals using
the divergence theorem, and that doing so directly relates u to uinf .

✟✟✯ρε

ρ = R

δΩu

uout

Figure 19.11: Region of integration of the integral for the infinite-space solution.
Note that δΩ is a bounding surface of both dark grey domain Ω and of the light
grey exterior region.

Some caution is needed, however. The Green’s function is infinite when ~ξ =
~x, and integrals of infinite functions are not proper. And neither are integrals
over infinite regions. You must exclude a very small circle around the point
~x at which uinf is desired from the integration, and also the outside of a very
large circle, as indicated in figure 19.11. The correct value for uinf can then be

extrascale=3,notransparent
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obtained as the limit in which the radius ε of the small circle becomes zero and
the radius R of the large circle becomes infinite. Also, you must think of the
integral as really consisting of two separate integrations; one over the dark grey
region Ω and one over the light grey exterior of Ω. The reason is that u and its
derivatives are not normally continuous on the surface δΩ, and the divergence
theorem can only be used for fairly smooth functions.

To simplify the remaining discussion, the origin of the coordinate system
will be shifted towards the point ~x at which uinf is desired. The integration
coordinate ~ξ can then be described by polar coordinates ρ and ϕ centered around
this point. That simplifies the expression to be evaluated to

uinf =

∫
G∇2

~ξ
u dV~ξ with G =

1

2π
ln ρ

To get a divergence integral, move a ∇~ξ out in front, adding a correction
term to make up for the error in doing so:

uinf =

∫
∇~ξ

(
G∇~ξu

)
dV~ξ −

∫ (
∇~ξG

)(
∇~ξu

)
dV~ξ.

Move a ∇~ξ out in front in the second integral to create another divergence
integral, adding another correction term:

uinf =

∫
∇~ξ

(
G∇~ξu

)
dV~ξ −

∫
∇~ξ

((
∇~ξG

)
u
)
dV~ξ +

∫ (
∇2

~ξ
G
)
u dV~ξ.

This final correction term, however, is zero. To see why, remember that the
Green’s function G(~x, ~ξ) is the temperature distribution due to a spike of heat

at point ~ξ. So ∇2G = 0 everywhere except at the singular point ~x = ~ξ. And
since ~ξ appears exactly the same way in the Green’s function as ~x, then so is
∇2

~ξ
G zero.

The remaining two terms become “surface” (actually, contour in 2D,) inte-
grals using the divergence theorem. In particular:

uinf = −
∮

ρ=ε

G
∂u

∂ρ
dS~ξ +

∮

ρ=ε

u
∂G

∂ρ
dS~ξ

+

∮

ρ=R

G
∂uout

∂ρ
dS~ξ −

∮

ρ=R

uout
∂G

∂ρ
dS~ξ

+

∮

δΩ

G

(
∂u

∂n~ξ

− ∂uout

∂n~ξ

)
dS~ξ −

∮

δΩ

(u− uout)
∂G

∂n~ξ

dS~ξ (19.9)

To verify this expression, note that the “surfaces” include the small and
big circles, and that δΩ counts as both part of the “surface” of the dark grey
region in figure 19.11 as well as part of the “surface” of the light grey region. The
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normal vector ~n on δΩ was taken to stick out of region Ω, which accounts for the
additional minus sign in the corresponding uout terms. Also ~n · ∇~ξ is according
to the total differential of calculus the derivative ∂/∂n~ξ in the direction normal
to the surface. On the big circle, that is the same as ∂/∂ρ, and on the small
circle it is −∂/∂ρ since there the outward normal points towards the origin.

The second integral over the small circle is particularly interesting: since
G = ln(ρ)/2π, its ρ derivative is 1/2πρ, which is the inverse of the “surface”
(perimeter) of the circle. So you get

∮

ρ=ε

u
∂G

∂ρ
dS~ξ =

∮

ρ=ε

u
dS~ξ

S~ξ

.

That is just the average of u on the small circle, and it becomes u at the
point ~x, (used here as origin,) in the limit that the radius of the small circle
becomes zero. So, since this integral simplifies to u, all the other integrals in
equation (19.9) merely describe the difference between the true solution u and
the infinite-domain solution uinf .

The first integral over the small circle in (19.9) is vanishingly small and can
be ignored. To see why, note that it is no larger than the maximum value of
the gradient of u on the small circle times

∮

ρ=ε

G dS~ξ =

∮

ρ=ε

1

2π
ln(ρ) ρ dϕ = ln(ε) ε

and that becomes zero in the limit ε → 0.
There is little that can be done about the integrals over “surface” δΩ. How-

ever, the integrals over the big circle in (19.9) still must be evaluated. To do
so, you must know something about the behavior of the solution uout for large
values of ρ. In general, it is described by

uout ∼ C0 ln ρ+ C1 +
C2

ρ
+ . . .

In three or more dimensions, the constant C0 is zero. The two integrals over
the big circle become, noting that dS~ξ = ρ dϕ,

∮

ρ=R

1

2π
ln(ρ)

(
C0

ρ
− C2

ρ2
+ . . .

)
ρ dϕ−

∮

ρ=R

(
C0 ln(ρ) + C1 +

C2

ρ

)
1

2πρ
ρ dϕ

which becomes −C1 in the limit R → ∞.
Collecting the results together, the solution for the temperature u at any

point (x, y) is:

u(~x) =

∫

Ω

Gf dV~ξ +

∮

δΩ

(u− uout)
∂G

∂n~ξ

dS~ξ −
∮

δΩ

G

(
∂u

∂n~ξ

− ∂uout

∂n~ξ

)
dS~ξ + C1

(19.10)
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where G is the infinite domain Green’s function, (2π)−1 ln |~x − ~ξ|, with |~x − ~ξ|
the distance between the point of integration ~ξ = (ξ, η) and the point ~x = (x, y)
at which the temperature u is desired. The first integral is therefor the infinite
domain solution uinf , which has the right values for the added heat f , but does
not satisfy the correct boundary condition on δΩ

19.3.3 Review Questions

1. Perform the equivalent analysis in the three dimensional case.

Solution pnfd-a

19.3.4 Boundary integral (panel) methods

The previous subsection derived the solution to the Poisson equation in a finite
domain. It was given by equation (19.10). This subsection will examine how
this solution may be evaluated.

Except for G(~x; ~ξ), all other quantities in the right hand side of equation

(19.10) are evaluated at the point of integration ~ξ. For example, ∂u/∂n~ξ stands
for the normal derivative ∂u/∂n evaluated at the boundary point ξ of integra-
tion. That means that if you merely know u and the normal derivative ∂u/∂n
on the boundary, you can find u in the interior by taking uout to be zero and do-
ing the integrals above. Unfortunately, a priori at most only one of u (Dirichlet
boundary condition) or ∂u/∂n (Neumann boundary condition) will be known
on the boundary.

Various solutions for this problem are possible. A panel method might decide
to compute the particular solution where uout is not zero, but has the same values
as u on the boundary. The big advantage is then that the second integral in
(19.10) drops out, leaving only the last integral as a problem.

A simple panel method will now discretize the boundary in a large number
of densely spaced points, and then put a Green’s function at each point. Since
each Green’s function corresponds to the addition of a spike of heat at that
point, this is called a surface “source” distribution. The problem remains that
the strengths

−
(
∂u/∂n~ξ − ∂uout/∂n~ξ

)
dS~ξ

of these sources are not known, since even if ∂u/∂n is given on the boundary,
∂uout/∂n is not. So the strength of each source is an unknown, and an equally
large number of equations is needed. These equations can be found from requir-
ing that at that many points, the error in the boundary condition as computed
from (19.10) is zero. Put all these equations on a computer and solve. And
with the source strength now known, u can then be evaluated at any arbitrary
point.

Alternatively, a panel method might decide to compute the solution for the
case that u and uout have the same normal derivatives on the boundary. That

http://www.eng.fsu.edu/~dommelen/aim/solman/pnfd-a.html
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kills off the source integral, leaving the second integral in (19.10). The quantity
∂G/∂n~ξ in this integral is called a “dipole.” The reason for that name can be
understood by writing the definition of the derivative:

∂G

∂n~ξ

≡ lim
∆n→0

(
1

∆n
G(~x; ~ξ + ~n∆n)− 1

∆n
G(~x; ~ξ)

)
. (19.11)

This shows that a dipole corresponds to an infinitely large source of heat and
an infinitely large sink of heat infinitely close together.

19.3.5 Poisson’s integral formulae

The previous subsection showed that the Poisson equation can be solved by
using suitable source and/or dipole distributions on the boundary of the domain.
However, the strengths of these distributions are not usually known, since they
involve both u and its normal derivative on the boundary, and there is only
one boundary condition. And if an exterior solution uout is chosen to eliminate
one of them, that has the effect of introducing the unknown values of uout or
its derivative into the problem. So at least one distribution strength must be
found using brute numerical force. Or by brute analytical force, maybe, if the
domain is simple.

There is an exception, however, and it occurs for the Dirichlet problem inside
a ball (a circle in two dimensions, a sphere in three-dimensions, etcetera.) In
that case, suitable distribution strengths can be found by simple means.

The following discussion will restrict itself to the Laplace equation, since the
Poisson equation can always be turned into the Laplace equation by subtracting
the unbounded space solution uinf . This only produces an unimportant change
in the inhomogeneous term of the boundary condition. The problem to be solved
is then:

∇2u = 0 for |~x| ≤ R, u = g on |~x| = R,

where g is a given function, physically the temperature on the boundary in heat
conduction problems, and R is the radius of the ball.

In two dimensions, using polar coordinates, the solution is

u(r, ϑ) =
R2 − r2

2π

∮
g(ϑ̄) dϑ̄

R2 − 2Rr cos(ϑ̄− ϑ) + r2
(19.12)

and in three dimensions, using spherical coordinates, the solution is

u(r, ϑ, ϕ) =
R2 − r2

4π
R

×
∫∫
© g(ϑ̄, ϕ̄) sin ϑ̄ dϑ̄dϕ̄
{
R2 − 2Rr[cos ϑ̄ cosϑ+ sin ϑ̄ sinϑ cos(ϕ̄− ϕ)] + r2

}3/2
(19.13)

These results are known as “Poisson’s integral formula” in two, respectively
three dimensions.
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19.3.6 Derivation

This subsection will derive the two-dimensional formula above, leaving the three-
dimensional one for the homework. For simplicity, from now on it will be as-
sumed that the ball (i.e. circle in two-dimensions) has unit radius,

R = 1

It is a simple matter of rescaling r to get back to the formulae for a ball of
arbitrary radius.

The integral formula can be derived by a clever selection for the solution
uout outside the circle in the integral solution (19.10). In particular, the trick is
to take

uout(r, ϑ) = Au(r̄, ϑ) where r̄ =
1

r
(19.14)

Here A is a constant still to be selected. Note that if r̄ 6 1 then r > 1: these rules
turn solutions inside the ball into solutions outside the ball. The transformation
r̄ = 1/r is called an inversion with respect to the surface of the unit ball.

The first thing to show is that uout satisfies the Laplace equation. The
integral solution (19.10) does not apply otherwise. The Laplacian,

∇2uout =
∂2uout

∂r2
+

1

r

∂uout

∂r
+

1

r2
∂2uout

∂θ2

must be zero.
To show that this is so, first differentiate (19.14) once, using the chain rule

to convert the r̄ derivatives of u to r derivatives:

∂uout

∂r
= A

∂u

∂r̄

∂r̄

∂r
= −A

∂u

∂r̄

1

r2

Differentiate this once more to get the second derivative. Note that you now
have to use the product rule of differentiation to differentiate the factors. And
you need again the chain rule for differentiating the first factor. You get

∂2uout

∂r2
= A

∂2u

∂r̄2
1

r2
1

r2
+ A

∂u

∂r̄

2

r3

Also,
∂2uout

∂θ2
= A

∂2u

∂θ2

If you plug these derivatives into the Laplacian given above, you get

∇2uout = A
1

r4

[
∂2u

∂r̄2
+ r

∂u

∂r̄
+ r2

∂2u

∂θ2

]

Since r = 1/r̄, you recognize the Laplacian of u inside the square brackets. That
is zero because u satisfies the Laplace equation. Then you see that so does uout.
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Now the idea is to try to choose the constant A so that the integral solution
(19.10) only involves the given values of u on the boundary. In particular, the
normal derivative of u−uout must be eliminated. Now for a spherical boundary,
the normal derivative is the radial derivative. And on the surface of the ball, r
= r̄ = 1. So on the boundary, using the expressions above,

uout(1, θ) = Au(1, θ)
∂uout

∂r
(1, θ) = −A

∂uout

∂r
(1, θ)

Note that in the final term, the first independent variable in u has been renamed
simply r. It does not make a difference what you call the independent variable
of a function; we just used a bar on it when we were treating u at one location
to define uout at another location. The bar was merely to keep the two locations
apart.

For ∂(u− uout)/∂r to vanish on the surface of the sphere. according to the
above equations you need to take A = −1. In that case, u− uout on the sphere
equals 2u, and u is the given function g on the surface of the sphere. So the
integral solution (19.10) becomes

u(~x) =

∮

|~ξ|=1

2g
∂G

∂n~ξ

dS~ξ + C1 with G =
1

2π
ln
∣∣∣~x− ~ξ

∣∣∣ . (19.15)

The above solution u is completely in terms of the given function g. So the
Dirichlet problem has been solved.

But of course you want to clean it up. You would like the solution of a
problem in a circle to be in terms of polar coordinates. So set

~x = rı̂r with ı̂r =

(
cosϑ
sinϑ

)
~ξ = ρı̂ρ with ı̂ρ =

(
cosϕ
sinϕ

)

for the point ~x at which the temperature u is desired and the point of integration
~ξ respectively. Then the “surface” element dS~ξ in the integral over the circle
perimeter is ρ dϕ, and ρ = 1 on the circle.

Also, the derivative ∂G/∂n~ξ normal to the circle is simply ∂G/∂ρ. G is a

function of the distance d = |~x− ~ξ| between the points ~x and ~ξ; in particular G
= ln(d)/2π in two dimensions. You can write

d2 = (rı̂r − ρı̂ρ) · (rı̂r − ρı̂ρ) = r2 − 2rρı̂r · ı̂ρ + ρ2, (19.16)

whose derivative with respect to ρ equals

dd2

dρ
=

−2rρı̂r · ı̂ρ + 2ρ2

ρ

or getting rid of the ugly dot product term using the expression (19.16) for d2,

dd2

dρ
=

ρ2 − r2 + d2

ρ
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So you can write using the chain rule that

∂G

∂n~ξ

=
dG

dd

dd

dd2
∂d2

∂ρ
=

dG

dd

ρ2 − r2 + d2

2dρ

Plug in the expression G = ln(d)/2π for the two-dimensional Green’s function,
and note that ρ = 1 on the circle to get:

∂G

∂n~ξ

=
1− r2

4πd2
+

1

4π

Plug that into the integral expression (19.15) for u(~x), taking d2 from (19.16)
with ı̂r · ı̂ρ equal to cos(ϕ− ϑ), to get

u(r, ϑ) =
1− r2

2π

∮
g(ϕ) dϕ

1− 2r cos(ϕ− ϑ) + r2
+

1

2π

∮
g(ϕ) dϕ+ C1.

The two final terms are just constants, and they cancel each other. The
reason is that

C1 = uout(∞, ϑ) = −u(0, ϑ)

The mean value theorem, proved in {D.3}, says that u(0, ϑ) equals the average
of g = u on the circle.

Also, to allow for the case that the radial coordinate r is not normalized
with the circle radius R, you want to replace r in the above result with r/R.
That produces the Poisson integral as stated in the previous subsection.

19.3.6 Review Questions

1. Find a suitable solution uout outside the sphere in three dimensions. Show
that it satisfies the Laplace equation.
Solution pnifd-a

2. Derive the Poisson integral formula in three dimensions as given in the
previous subsection.
Solution pnifd-b

19.3.7 The integral formula for the Neumann problem

The Neumann problem in two dimensions is:

∇2u = 0 for r ≤ R,
∂u

∂r
= g on r = R,

This corresponds physically to a problem where the heat flux instead of the
temperature is described on the boundary. The solution is

u(r, ϑ) =
−1

2π

∮
g(ϕ) ln

R2 − 2Rr cos(ϕ− ϑ) + r2

R2
dϕ+ C1 (19.17)

http://www.eng.fsu.edu/~dommelen/aim/solman/pnifd-a.html
http://www.eng.fsu.edu/~dommelen/aim/solman/pnifd-b.html
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Note that there is only a proper solution for u if
∮

g(ϕ) dϕ = 0

If you put in an invalid g, you will get a u, but it will not have heat flux g
through the boundary. In particular, putting in a nonzero constant for g will
produce u = 0 and no heat flux. It can be seen from the above expression that
the undetermined constant C1 is the temperature at the center of the circle.

The derivation of the formula above is similar to the one in the previous
subsection. You will be disappointed to learn that you must miss doing it in
the homework. The same story does not work in three dimensions since you
cannot get rid of the unknown surface values of u in both the source and dipole
distributions. In two dimensions, however, if you take uout(r, ϑ) = u(1/r, ϑ), the
dipole strength is zero and only the source integral remains:

u(~x) = −
∮

|~ξ|=1

2gG dS~ξ + C1 with G =
1

2π
ln d

and use of the expression (19.16) for d gives the stated result.

19.3.8 Smoothness of the solution

One important qualitative conclusion that can be drawn from the various results
of the previous subsections is that the solution of a Laplace equation problem
is infinitely smooth in the interior of the region Ω in which it applies.

For example, consider the derived expression for u if the exterior solution is
zero:

u(~x) =

∮

δΩ

u
∂G

∂n~ξ

dS~ξ −
∮

δΩ

G
∂u

∂n~ξ

dS~ξ (19.18)

If you take derivatives of u with respect to the components of ~x, you will be
differentiating G(~x; ~ξ) inside the integral. And G has infinitely many finite

derivatives away from the singular point ~ξ = ~x, in other words, away from the
boundary.

So, if u and ∂u/∂n are merely integrable on the boundary, which still allows
them to be quite singular, the solution at every point in the interior will have
infinitely many continuous derivatives.

It is somewhat different for the Poisson equation, since if the forcing f has a
singularity at some point, then so will the solution u. But still the solution for u
will be less singular than f is. For example, in two-dimensions a delta function
in f , whose square is not integrable, produces a logarithmic Green’s function,
for which every power is integrable over the singular point. In general, it can
be seen from Fourier solution of the Poisson problem that u will in general have
two more square integrable derivatives than f . (Assuming that lack of decay of
u at large distances is not a factor or subtracted out first.)



Chapter 20

First Order Equations

The book’s treatment of first order equations is not very intuitive, and the
artificial parameter r may not be a convenient one. Also, you would like to
write a solution of a partial differential equation without applying a boundary
condition. This chapter gives an alternate approach that defines no artificial
quantities.

20.1 Classification and characteristics

The general quasi-linear first order equation in two dimensions takes the form

aux + buy = c (20.1)

where a, b, and c may depend on x, y, and u. All scalar first order equation are
classified as hyperbolic equations.

The characteristics are defined by

dy

dx
=

b

a
(20.2)

They will form a single family of lines in the x, y-plane. (In contrast, the char-
acteristics of scalar second order hyperbolic differential equations form two in-
tersecting families of lines.)

In general, the variation of a function u of two variables along a line is given
by the total differential of calculus,

du

dx
= ux + uy

dy

dx

but along the characteristic lines that becomes

du

dx
= ux + uy

b

a

177
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and comparing with the partial differential equation, it is seen that the right
hand side is c/a. So the variation of the solution u along the characteristic lines
is given by

du

dx
=

c

a
(20.3)

Note that frequently, you may have to solve the ordinary differential equa-
tions in a different form or order. For example, if b/a depends on u, you will
not be able to solve dy/dx = b/a to find y as a function of x since u in b/a is
still an unknown function of x. But maybe, say, c/b is not a function of x, in
which case you could solve du/dy = c/b; then you could plug that solution for
u as a function of y into dx/dy = a/b to get an equation for x that no longer
involves u. The bottom line is that it is really best to write the characteristic
equations as

dx : dy : du = a : b : c (20.4)

and pick from those proportionalities the ratio that is easiest to solve first.
In all the unsolved problems in the book, there is at least one solvable ratio.

But if there is none, you may be forced to try to change variables, e.g. to polar,
or eliminate one variable by, say, differentiating a ratio, hopefully producing a
second order ordinary differential equation with one variable eliminated.

Example

Question: (5.30) Solve
yux + xuy = cu

Solution:

This example wants to solve the partial differential equation

yux + xuy = cu

For this equation, a ratio like du/dx = cu/y is not immediately solvable for u,
since y besides u would be an unknown function of x. The only solvable ratio is
in fact that between dx and dy:

dy

dx
=

x

y
⇒ y dy = x dx ⇒ y2 = x2 + C1

where C1 is the integration constant. These characteristic lines are hyperbola;
they are sketched in figure 20.1.

Now that y is a known function of x, specifically y =
√
x2 + C1 assuming it is

positive, the ordinary differential equation for u can be solved

du

dx
=

cu

y
=

cu√
x2 + C1

to give

du

u
= c

dx√
x2 + C1

⇒ ln |u| = c ln
(
x+

√
x2 + C1

)
+ ln |C2|
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x

y

Figure 20.1: Characteristics of the partial differential equation of problem 5.30.

Taking exponentials and noting that the square root equals y, this simplifies to

u = C2(x+ y)c along a characteristic y2 = x2 + C1

For example, if it is given that u = 1 at the point x = y = 1 shown as a fat dot
in figure 20.2, then it follows from the above general expressions that C1 = 0,
so the characteristic line is the line y = x shown in grey, and that C2 = 1/2c,
so you would get u(x, x) = xc for u on the grey line.

x

y

Figure 20.2: Given the value of u at a single point on a characteristic line, u
can be found at every point on that line.

Example

Question: (5.6) Solve the nasty example

xux + yuuy = −xy.

Solution:

extrascale=3,notransparent
extrascale=3,notransparent
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In this case, none of the ratios

dy

dx
=

uy

x

du

dx
= −y

du

dy
= −x

u

is a solvable ordinary differential equation; each involves three variables. You
might try to take a derivative of an equation, like

d2u

dx2
= −dy

dx
= −uy

x
=

u

x

du

dx
=⇒ d2u

dx2
=

u

x

du

dx

which is indeed an ordinary differential equation for u(x) not involving the un-
known y. But it is an awkward second order nonlinear equation.

The trick is to guess that the combination xy can be found as a function of u:

y
dx

du
+ x

dy

du
= −1− u =⇒ dxy

du
= −1− u

which produces

xy = −u− 1
2u

2 + C1.

This can then be plugged into

dx

du
= −1

y
= − x

xy
=

x

u+ 1
2u

2 − C1

to get a separable equation giving x as a function of u, with another integration
constant C2. However, that becomes a mess, involving either an arctan or
logarithm, depending on the value of C1.

20.2 Numerical solution

It is certainly straightforward to numerically solve the two ordinary differen-
tial equations of the previous subsection along a characteristic line using say a
Runge-Kutta method. You would need to start from some point at which an
initial or boundary condition is given.

If you find the solution along each of a densely spaced set of characteristic
lines, you have essentially found u everywhere.

Of course, if a is zero somewhere in the region of interest, it may be a better
idea to find u and x as functions of y instead of u and y as functions of x, by
taking suitable ratios from (20.4). Or you could just find all three variables as
function of the arc length s along the characteristic lines, by solving

dx

ds
=

a√
a2 + b2

dy

ds
=

b√
a2 + b2

du

ds
=

c√
a2 + b2

This allows either a or b to be zero; it only fails if both are zero at the same
point, and that is a true physical problem rather than a mathematical one.
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20.3 Analytical solution

Often, you want an analytical expression for the solution u of a first order
equation in terms of x and y. Solving the differential equations gives expressions
valid along characteristic lines, which is not the same thing. These expressions
involve two integration “constants”, call them C1 and C2, that themselves are
unknown functions of x and y: if you move from one characteristic line to
another, the values of C1 and C2 will normally change. They are only constants
along the characteristic lines.

To get a relationship for u as a function of x and y, the trick is to recognize
that there is a functional dependence between the two integration constants
involved. You can use, say, C1 as a label for what characteristic curve you are
on: different values of C1 correspond to different characteristic lines. And C2

only depends on what characteristic line you are on, not on the position on the
line. So C2 only depends on what C1 is; C2 is some function C2(C1) of C1.
What function that is remains unknown; that depends on the relevant initial or
boundary condition, but it is some function.

The procedure to find u as a function of x and y, or at least, to find the
most general and precise expression between these three quantities, is therefor:

1. In one of the two ordinary differential equation solutions you obtained,
say the one involving the integration constant you called C2, replace C2

by the more precise C2(C1) to indicate that it is not really a constant, but
still depends on what C1 is.

2. Substitute for C1 from the other ordinary differential equation solution.

Note that in some special cases, it makes a difference in which of the two
ordinary differential equation solutions you take the integration constant to be
a function of the other one: sometimes C2(C1) is not a well-defined function,
but C2(C1) is. (An example is in subsubsection 20.5.5.)

Example

Question: (5.30 continued) Solve

yux + xuy = cu

Solution:

Previously, it was found that the characteristics of this example were given by

u = C2(x+ y)c along a characteristic y2 = x2 + C1

To get the general expression for u(x, y), first note that more precisely,

u = C2(C1)(x+ y)c,
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then plug in the expression for C1 from the other equation to get

u(x, y) = C2(y
2 − x2)(x+ y)c.

This is the most general solution of the partial differential equation. Function
C2() remains undetermined; the above expression is a solution of the partial
differential equation regardless what one-argument function you take for C2().

In fact, you need an undetermined one-argument function in the solution, be-
cause you must still match the function used to specify the relevant initial or
boundary condition, also a one-argument function.

20.4 Using the boundary or initial condition

After you have found the general solution of the partial differential equation
as described in the previous sections, you probably want to find the remaining
undetermined function that it involves by applying a given boundary or initial
condition. To do so:

1. Write the boundary condition in terms of a single parameter, call it s.

2. Plug the general solution to the partial differential equation into it.

3. Call the argument of the unknown function, say α, and express everything
else in terms of α instead of s by solving for s in terms of α.

4. That will produce the expression for the unknown function for any value
of its argument. Plug that back into the general solution which is now
fully determined.

Example

Question: (5.30 continued) Solve

yux + xuy = cu

with initial condition

u = x2 + y on x+ y = 1,

Solution:

The general solution to the partial differential equation for this example is given
by

u(x, y) = C2(y
2 − x2)(x+ y)c.

Plug that into the initial condition on the line x+ y = 1 in order to figure out
what function C2 must be:

C2(y
2 − x2)(x+ y)c = x2 + y on x+ y = 1,
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Don’t try to deduce one-parameter function C2 directly from an expression in-
volving two different parameters. Instead convert to a single parameter by ex-
pressing one parameter in terms of the other. In this case, you can use x+ y =
1 to express y in terms of x as y = 1− x. That gives

C2(1− 2x+ x2 − x2)(x+ 1− x)c = x2 + 1− x on y = 1− x,

or cleaned up
C2(1− 2x) = x2 − x+ 1

Now you have an expression for function C2 in terms of a single parameter. To
get the function itself, give some name to its parameter that is not already used.
Call the argument, say, α. So C2 = C2(α). According to the initial condition
above

α ≡ 1− 2x.

Solve this for x in terms of α,

x = 1
2 (1− α)

and plug that into the expression for C2 to get an expression for function C2(α)
in terms of α only:

C2(α) =
(

1
2 (1− α)

)2
− 1

2 (1− α) + 1

or worked out
C2(α) =

1
4α

2 + 3
4 .

x

y

Figure 20.3: Region where u is determined by an initial condition given on the
line x+ y = 1.

Now that function C2 has been identified, plug it into the general solution, valid
everywhere,

u(x, y) = C2(y
2 − x2)(x+ y)c.

to get the final solution

u(x, y) =
(

1
4 (y

2 − x2)2 + 3
4

)
(x+ y)c.

extrascale=3,notransparent
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Note that this solution is only valid in the grey region of figure 20.3; the char-
acteristics in the white region never intersect the line x + y = 1. To find the
solution there, you would need an initial condition on, say, the line x+ y = −1.

You see how important it is to graph the characteristics.

20.5 The inviscid Burgers’ equation

The inviscid Burgers’ equation is a model for nonlinear wave propagation, es-
pecially in fluid mechanics. It takes the form

ut + uux = 0 (20.5)

The characteristic equations are, according to (20.4),

dx

dt
= u

du

dt
= 0.

The second of these shows that u is constant along the characteristics of the
Burgers’ equation, and then the first equation shows that the characteristic lines
are straight lines in the x, t-plane.

The solution of the two characteristic ordinary differential equations above
is simple:

x = ut+ C1 u = C2

The general solution of the partial differential equation may be found in terms
of x and t by noting that C2 must be a function of C1, C2 = C2(C1), and then
substituting x− ut for C1:

u = C2(x− ut).

Some special cases are singular in those terms; they require that C1 is written
in terms of C2 = u:

x = ut+ C1(u).

Normally, either expression may be taken to be the general solution of the ordi-
nary differential equation. One-parameter function C2, respectively C1 remains
to be identified from whatever initial or boundary conditions there are.

20.5.1 Wave steepening

The given solution of the inviscid Burgers’ equation shows that the charac-
teristics are straight lines. This is troubling, since straight lines are likely to
intersect. In particular, since the point on a given characteristic lines propa-
gates with speed u, faster points behind less fast ones will eventually overtake
them.
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As an example, consider the following problem:

ut + uux = 0 u(x, 0) = 1− cos(x)

This problem is self-evidently periodic of period 2π. Figure 20.4 shows how the
characteristics intersect starting from time t = 1.

0 x 2π

t
1

Figure 20.4: Characteristics of Burgers’ equation for an example initial condition
intersect for times greater than t = 1.

Figure 20.5 shows profiles u versus x at various times. Note that for times
greater than one, u becomes a multiple-valued function. Physically, this is
normally not acceptable: you can not have three different pressures or flow
velocities at the same point.

0 x 2π

u

2

Figure 20.5: Profiles at times t = 0, .5, 1, and 1.3 show wave steepening leading
to a multiple-valued solution for times greater than t = 1.

20.5.2 Shocks

The previous subsection noted that solutions of hyperbolic equations with inter-
secting characteristics are usually not physically acceptable. In fact, the desired
solution for the inviscid Burgers’ equation is usually taken to be the solution of
the viscous Burgers’ equation:

ut + uux = εuxx
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0 x 2π

t
1

Figure 20.6: Correct solution of Burgers’ equation for the same initial condition
as the previous subsection.

0 x 2π

u

2

Figure 20.7: Correct profiles for Burgers’ equation for the same initial condition
as the previous subsection.
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in the limit that the coefficient of viscosity ε becomes zero.
The viscous Burgers’ equation, too, is analytically solvable, though the so-

lution will be skipped here. The bottom line is that it does not have multiple
valued solutions. So what does the solution of the viscous Burgers’ equation
look like in the limit that the viscosity becomes zero? Like figures 20.6 and
20.7. A jump discontinuity called a “shock” develops in u. The characteristics
run into this shock and disappear.

The question now is of course, what determines the precise location of the
shock? Clearly, it should be somewhere in the region of intersecting character-
istics, but that still leaves a considerable uncertainty. Equations for the shock
are needed. They usually follow from the requirement that certain quantities
remain conserved in the solution. This is addressed in the next subsections.

20.5.3 Conservation laws

Often, partial differential equations express conservation of some physical quan-
tity. For example, the continuity equation for the density of a fluid expresses
conservation of mass of the fluid: the mass of a region of fluid is found by inte-
grating the density over the volume of the region, and the continuity equation
implies that mass is preserved in time.

The viscous Burgers’ equation, too, preserves some quantity. To see what,
integrate the equation over an interval from some position x= a to some position
x = b: ∫ b

a

ut dx+

∫ b

a

uux dx = ε

∫ b

a

uxx dx

The last two integrals can be integrated after noting that uux = 1
2
(u2)x, to give

∫ b

a

ut dx+ 1
2
u2
b − 1

2
u2
a = εux,b − εux,a

First consider the case that the problem is periodic and the integral is over
a full period. Then the quantities at a and b are the same because of periodicity
and drop away against each other. This shows that

∫ b

a

ut dx =
d

dt

∫ b

a

u dx = 0

so that
∫
u dx over a period is a conserved quantity, unchanging in time. The

unknown u itself can then be identified as the amount of conserved quantity per
unit length.

Next consider the case that the region of integration is not a period. In that
case, the Leibniz rule for differentiating integrals says that

d

dt

∫ b

a

ut dx =

∫ b

a

ut dx+ ub
db

dt
− ua

da

dt
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and plugging that into the integrated equation:

d

dt

∫ b

a

ut dx =

(
ub

db

dt
− 1

2
u2
b + εux,b

)
−
(
ua

da

dt
− 1

2
u2
a + εux,a

)
.

Now think of interval a, b as being preceded by a similar interval a′b′, with b′

= a. It is evident from the above expression that the reduction in the value of∫ b

a
u dx caused by the term

(
ua

da

dt
− 1

2
u2
a + εux,a

)

is fully compensated for by a corresponding increase in
∫ b′

a′
u dx, because the

same term shows up there as
(
ub′

db′

dt
− 1

2
u2
b′ + εux,b′

)

with a plus sign. So whatever goes out of interval ab at a goes into interval a′b′.
The same way, whatever comes in at b comes out of the region x > b. It follows
that

∫
u dx is still preserved.

It may be noted that in
(
ub

db

dt
− 1

2
u2
b + εux,b

)

the first term represents the amount of conserved quantity being swept into the
interval by the motion of its end point b. Typically, the second term physically
corresponds to the amount of conserved quantity being convected out by motion
of the substance, and the final term to the amount diffusing in by random
molecular motion.

20.5.4 Shock relation

If the solution of the inviscid Burgers’ equation is indeed supposed to approx-
imate the solution of the viscous equation when the coefficient of viscosity ǫ
becomes zero, it puts a condition on how the shocks must move. The shock is
vanishingly thin and can only hold a negligible amount of conserved material.
So, whatever goes into the shock at one side must come out at the other side.

The amounts going in and out of a region were derived in the previous section
for an interval ab. Taking point a just before the shock and b just behind the
shock, so that to practical purposes a = xs = b with xs the shock velocity,
equality of the amounts going in and out requires

ub
dxs

dt
− 1

2
u2
b = ua

dxs

dt
− 1

2
u2
a
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Solving for the shock velocity dxs/dt, you get

dxs

dt
= 1

2
(ub + ua)

It follows that the shock must move with the average of the characteristic
velocities ua and ua just before and after the shock. Figures 20.6 and 20.7 were
obtained by finding the shock position from that relationship.

Shock relations, like this one for Burgers’ equation, are known as Rankine-
Hugoniot relations in fluid mechanics. When deriving shock relations, make
sure that the unknown variables are the conserved quantities per unit volume.
If you multiply the inviscid Burgers’ equation by 2u, you get

(u2)t + 2u2ux = 0

from which it can be seen that as far as the inviscid Burgers’ equation is con-
cerned,

∫
u2 dx is also a conserved quantity. But the shocks you would compute

using the corresponding conservation law are going to be different, and wrong if
the true conserved quantity across shocks is the

∫
u dx of the viscous Burgers’

equation.

20.5.5 The entropy condition

Consider now Burgers’ equation for a unit “pulse” initial condition:

ut + uux = 0 u(x, 0) =
{

1 for 0 ≤ x ≤ 10 everywhere else

This problem has a simple solution that is also quite wrong. It is shown in
figure 20.8. It implies that the pulse moves with velocity 1

2
towards the right.

Note that both shocks satisfy the shock condition of the previous section; u =
0 at one side of each shock and u = 1 at the other side average in each case to
dxs/dt =

1
2
.

The problem is with the left shock. Characteristics should run into the shock
for increasing time like for the right shock, not emerge out of it as happens for
the left one. In fluid mechanics, the left shock is what is called an “expansion”
shock. It produces an adiabatic decrease in entropy over the shock, something
the second law of thermodynamics does not allow. For that reason, the condition
that characteristics must run into the shock is called the “entropy condition.”

The correct solution is shown in figure 20.9. The left jump in the initial
condition spreads out into what is called an “expansion far.” Unlike the shock,
the expansion fan is a perfectly good nonsingular solution of the Burgers“ equa-
tion, though you must use the solution form x = ut+ C1(u) with C1 = 0. The
solution form u = C2(x−ut) does not work since x−ut is the same, zero, on all
characteristics, and u must be different on different characteristics. Conversely,
in the other three regions, you must use the solution form u = C2(x−ut) with C2
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x0 1

u t = 0.5

0

1

x0 1

u

0

1

t = 0

x0 1

t

u = 0 u = 1 u = 0

0

1

Figure 20.8: Incorrect solution to Burgers’ equation for the initial pulse profile
shown in the center graphic. The left shock violates the entropy condition.
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x0 1

u t = 0.5

0

1

x0 1

u

0

1

t = 0

x0 1

t

u = 0 x = ut u = 1 u = 0

0

1

Figure 20.9: Correct solution to Burgers’ equation for the initial pulse profile
shown in the center graphic. The left shock has been replaced by an expansion
fan.
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either uniformly zero or uniformly one. There the solution form x = ut+C1(u)
does not work since u is the same for all characteristics and x− ut is not.

It may also be observed that the entropy condition is necessary to get a
unique solution; both figures 20.8 and 20.9 satisfy the Burgers“ equation at all
continuous points and the shock conditions at all discontinuities.

20.6 First order equations in more dimensions

The procedures of the previous subsections extend in a logical way to more
dimensions. If the independent variables are x1, x2, . . . , xn, the first order quasi-
linear partial differential equation takes the form

a1ux1
+ a2ux2

+ . . .+ anuxn
= d (20.6)

where the an and d may depend on x1, x2, . . . , xn and u.
The characteristic equations can now be found from the ratios

dx1 : dx2 : . . . : dxn : du = a1 : a2 : . . . : an : d (20.7)

After solving n different ordinary differential equations from this set, the in-
tegration constant of one of them, call it Cn can be taken to be a general
n− 1-parameter function of the others,

Cn = Cn(C1, C2, . . . , Cn−1)

and then substituting for C1, C2, . . . , Cn−1 from the other ordinary differential
equation, an expression for u results involving one still undetermined, n − 1
parameter function Cn.

To find this remaining undetermined function, plug in whatever initial condi-
tion is given, renotate the parameters of Cn to α1, α2, . . . and express everything
in terms of them to find function Cn(α1, α2, . . .).

20.7 Systems of First Order Equations (None)

TBA



Chapter 21

D’Alembert Solution of the
Wave equation

This chapter discusses a way to solve the wave equation in one spatial dimension
in a relatively easy way.

21.1 Introduction

The wave equation in two dimensions,

utt = a2uxx

has the general solution

u(x, t) = f1(x− at) + f2(x+ at)

Here f1(x−at) is a function that moves to the right with speed a; a ’right-going
wave’. And f2(x − at) is a function that moves to the left with speed a; a
’left-going wave’.

This solution was derived earlier. The functions f1 and f2 must be found
from whatever initial and boundary conditions are given. One special case of
that is the D’Alembert solution, which is the subject of this brief chapter.

In its simplest form, the D’Alembert solution assumes that there are no
boundaries. That means that the x-range is doubly infinite:

−∞ < x < ∞

Therefore, only initial conditions are needed at the starting time t = 0:

u(x, 0) = f(x) ut(x, 0) = g(x)

Here f and g are assumed to be given functions.
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Note that since the wave equation is second order in time, it needs two
initial conditions. Physically, the wave equation might describe the vibrations
of a string. The two initial conditions are then that both the initial position
and the initial velocity of the string must be given at each point.

The two given initial conditions allow the unknown functions f1 and f2 in
the solution of the wave equation to be determined. That gives the solution
directly in terms of the given functions f and g:

u(x, t) =
f(x− at) + f(x+ at)

2
+

1

2a

∫ x+at

x−at

g(ξ) dξ (21.1)

This is derived in example 4.10 in the book.
The solution can be understood more physically from looking at the x, t-

plane:

To get the solution u at a position and time P, we need to average the f , (i.e. u),
values at points Q and R. To that we need to add an integral of g, (i.e. the
velocity ut), between points Q and R:

uP =
uQ + uR

2
+

1

2a

∫ R

Q

ut dξ

Note that the solution at point P depends on the initial conditions in the
interval QR. In other words, the “region of dependence” of point P is the triangle
QPR. Whatever is outside that triangle does not affect the solution at P at all.

Conversely, point P is inside the region of influence of all points inside the
triangle. A change in the initial conditions at any initial point inside the triangle
will influence the solution at P.

21.2 Extension to finite regions

If x is restricted by finite boundaries, the D’Alembert solution does not really
apply. To use it anyway, we must somehow extend the problem to a doubly in-
finite x-range without boundaries. But our solution without boundaries should
still satisfy the boundary conditions for the finite range. That is often possible
by clever use of symmetry. An example can clarify that.
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21.2.1 The physical problem

The problem is to find the pressure for sound wave propagation in a tube with
one end closed and one end open:

21.2.2 The mathematical problem

• There is a finite domain Ω̄ given by 0 6 x 6 ℓ

• There is an unknown pressure u = u(x, t) to be found from the wave
equation

utt = a2uxx

• The constant a is the speed of sound a. The equation is only valid for
normal acoustics in which the gas velocities are much less than the speed
of sound.

• This equation is second order in time so it needs two initial conditions.
They are:

u(x, 0) = f(x) ut(x, 0) = g(x) for0 ≤ x ≤ ℓ
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• This equation is second order in space so it needs two boundary conditions.
Given are one homogeneous Neumann boundary condition at x = 0 and
one homogeneous Dirichlet condition at x = ℓ.

21.2.3 Dealing with the boundary conditions

The D’Alembert solution applies to an infinite domain −∞ < x < ∞. So to
use the D’Alembert solution, the given initial conditions, that are valid for 0 <
x < ℓ must be extended to all x. In other words, functions f(x) and g(x) must
be converted into functions f̄(x) and ḡ(x) that have values for all x. Of course,
in the interval 0 < x < ℓ, they must stay the same as f(x) and g(x). Assume
now for example that f(x) looks as sketched below:

You might think that you could now simply take f̄(x) to be zero for all
x outside the range of the pipe. The corresponding D’Alembert solution will
satisfy the wave equation everywhere, including inside the pipe 0 < x < ℓ. That
is good, because the wave equation must indeed be satisfied. Unfortunately, the
solution you get that way will not satisfy the boundary conditions at x = 0 and
x = ℓ. So it will still be wrong.

You must select the extension f̄(x) of f(x) to all x so that the correct bound-
ary conditions become automatic.

The way to do it is as follows:

• To make the boundary condition ux = 0 at x = 0 automatic, create sym-
metry around x = 0. Symmetric functions have zero derivative at the
symmetry point.

• To make the boundary condition u = 0 at x = ℓ automatic, create anti-
symmetry (odd symmetry) around x = ℓ. Anti-symmetric functions have
zero derivative at the symmetry point.
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The process is shown for f(x) below:

Create the extended function ḡ(x) or G the same way.
It is OK if you get kinks or discontinuities in your functions f̄ and ḡ while

creating (anti)symmetry. This happens when f and/or g does not satisfy the
given boundary conditions. While then u or ux may not have a unique value
at the initial time, that problem will disappear when the time becomes greater
than zero.
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21.2.4 The final solution

u(x, t) =
f̄(x− at) + f̄(x+ at)

2
+

1

2a

∫ x+at

x−at

ḡ(ξ) dξ

This is pretty easy to evaluate for simple functions f and g. You will have fun
doing it.

In the range 0 6 x 6 ℓ, the found solution is exactly the same as for the
finite pipe! The solution outside that range can simply be ignored.
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Separation of Variables

Separation of variables is a standard way of solving simple partial differential
equations in simple regions. In general, the boundaries will have to be at con-
stant values of the coordinates. In Cartesian coordinates, that works out to
rectangles. Using cylindrical or polar coordinates, or similar, allows somewhat
more general regions.

The idea is to write the solution as an infinite sum of chosen functions of
one coordinate times coefficients that depend on the other coordinate(s). How
exactly this works will be demonstrated by example.

22.1 A simple example

The method of separation of variables shall first be demonstrated for a simple
example. The method as described here will work as long as the spatial region
is finite and has homogeneous boundary conditions.

22.1.1 The physical problem

The problem is to find the unsteady pressure field u(x, t) in a pipe with one end
closed and the other open to the atmosphere:

Figure 22.1: Acoustics in a pipe.
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extrascale=3


200 CHAPTER 22. SEPARATION OF VARIABLES

22.1.2 The mathematical problem

Figure 22.2: Dependent variables.

• There is a finite domain Ω̄ given by 0 6 x 6 ℓ

• There is an unknown pressure u = u(x, t) to be found from the wave
equation

utt = a2uxx

• The constant a is the speed of sound a. The equation is only valid for
normal acoustics in which the gas velocities are much less than the speed
of sound.

• This equation is second order in time so it needs two initial conditions.
They are:

u(x, 0) = f(x) ut(x, 0) = g(x) for0 ≤ x ≤ ℓ

• This equation is second order in space so it needs two boundary conditions.
Given are one homogeneous Neumann boundary condition at x = 0 and
one homogeneous Dirichlet condition at x = ℓ.

22.1.3 Outline of the procedure

We will try to find a solution of this problem in the form

u =
∑

n

un(t)Xn(x)

extrascale=3
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Here the Xn will be cleverly chosen functions called “eigenfunctions.” The un

are coefficients, depending on time, that are found from plugging the expression
for u into the partial differential equation and the initial conditions.

There are two big reasons why the Xn must be the eigenfunctions, rather
than the un:

• You want the independent variable in the eigenfunction to have a finite
range. That applies for x, but the time t runs from zero to infinity.

• The time coordinate has initial conditions at t = 0. You want the inde-
pendent variable in the eigenfunctions to have boundary conditions that
apply at two different points. In this example, there is one boundary
condition at x = 0 and the other at x = ℓ.

(If the spatial range is infinite or semi-infinite, you may be able to use a
Fourier transform. Alternatively, you may be able to use a Laplace transform
in time.)

22.1.4 Step 1: Find the eigenfunctions

The first step is to find the eigenfunctions Xn.

The eigenfunctions are found from requiring that each individual
term of the form un(T )Xn(x) is capable of satisfying the homoge-
neous partial differential equation and the homogeneous boundary
conditions.

In this particular example the partial differential equation is homogeneous.
But even if it is not, i.e. if the partial differential equation was something like

utt = a2uxx + q

with q a given function of x and t, then still in this step you would use the
homogeneous equation

utt = a2uxx

By convention, un(t) is usually written as T (t) and Xn(x) as X(x) in this
step. To see when X(x)T (t) satisfies the homogeneous partial differential equa-
tion, plug it in:

[X(x)T (t)]tt = a2[X(x)T (t)]xx ⇒ X(x)T ′′(t) = a2X ′′(x)T (t)

where primes indicate derivatives of the function with respect to its argument.
The trick is now to take the terms containing time to one side of the equation

and the terms containing x to the other side.

1

a2
T ′′(t)

T (t)
=

X ′′(x)

X(x)
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This trick is why this solution procedure is called the “method of separation of
variables.”

While the right hand side, X ′′(x)/X(x), does not depend on t, you would
think that it would depend on the position x; both X and X ′′ change when x
changes. But actually, X ′′/X does not change with x; after all, if we change
x, it does nothing to t, so the left hand side does not change. And since the
right hand side is the same, it too does not change. So the right hand side does
not depend on either x or t; it must be a constant. By convention, we call the
constant −λ:

T ′′

a2T
=

X ′′

X
= constant = −λ

If we also require X to satisfy the same homogeneous boundary conditions
as u. In this case, that means that at x = 0, its x-derivative is zero, and that
at x = ℓ, X itself is zero. So we get the following problem for X:

X ′′ + λX = 0 X ′(0) = 0 X(ℓ) = 0

This is a boundary value problem involving an ordinary differential equation.
Not a partial differential equation.

Note that the problem is completely homogeneous: X(x) = 0 satisfies both
the partial differential equation and the boundary conditions. This is similar to
the eigenvalue problem for vectors A~v = λ~v, which is certainly always true when
~v = 0. But for the eigenvalue problem, we are interested in nonzero vectors ~v
for which A~v = λv. That only occurs for special values λ1, λ2, . . . of λ.

Similarly, we are interested only in nonzero solutions X(x) of the above
ordinary differential equation and boundary conditions. Eigenvalue problems
for functions such as the one above are called “Sturm-Liouville problems.” The
biggest differences from matrix eigenvalue problems are:

• There are infinitely many eigenvalues λ1, λ2, . . . and corresponding eigen-
functions X1(x), X2(x), . . . rather than just n eigenvalues and eigenvec-
tors.

• We cannot write a determinant to find the eigenvalues. Instead we must
solve the problem using our methods for solving ordinary differential equa-
tions.

Fortunately, the above ordinary differential equation is simple: it is a con-
stant coefficient one, so we write its characteristic polynomial:

k2 + λ = 0 ⇒ k = ±
√
−λ = ±i

√
λ

We must now find all possible eigenvalues λ and all corresponding eigenfunctions
that satisfy the required boundary conditions. We must look at all possibilities,
one at a time.
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1. Case λ < 0:

Since k = ±
√
−λ

X = Ae
√
−λx + Be−

√
−λx

We try to satisfy the boundary conditions:

X ′(0) = 0 = A
√
−λ− B

√
−λ ⇒ B = A

X(ℓ) = 0 = A
(
e
√
−λℓ + e−

√
−λℓ
)

⇒ A = 0

So A = B = 0; there are no nontrivial solutions for λ < 0.

2. Case λ = 0:

Since k1 = k2 = 0 we have a multiple root of the characteristic equation,
and the solution is

X = Ae0x + Bxe0x = A+ Bx

We try to satisfy the boundary conditions again:

X ′(0) = 0 = B X(ℓ) = 0 = A

So A = B = 0; there are again no nontrivial solutions.

3. Case λ > 0:

Since k = ±
√
−λ = ±i

√
λ, the solution of the ordinary differential equa-

tion is after cleanup:

X = A sin
(√

λx
)
+ B cos

(√
λx
)

We try to satisfy the first boundary condition:

X ′(0) = 0 = A
√
λ

Since we are looking at the case λ > 0, this can only be true if A = 0. So,
we need

X = B cos
(√

λx
)

We now try to also satisfy the second boundary condition:

X(ℓ) = 0 = B cos
(√

λℓ
)
= 0

For a nonzero solution, B may not be zero, so the cosine must be zero. For
positive argument, a cosine is zero at 1

2
π, 3

2
π, . . ., so that our eigenvalues

are √
λ1 =

π

2ℓ
,
√

λ2 =
3π

2ℓ
,
√

λ3 =
5π

2ℓ
, . . .
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The same as for eigenvectors, for our eigenfunctions we must choose the
one undetermined parameter B. Choosing each B = 1, we get the eigen-
functions:

X1 = cos
(πx
2ℓ

)
, X2 = cos

(
3πx

2ℓ

)
, X3 = cos

(
5πx

2ℓ

)
, . . .

The eigenvalues and eigenfunctions have been found. If we want to evaluate
them on a computer, we need a general formula for them. You can check that
it is:

λn =
(2n− 1)2π2

4ℓ2
Xn = cos

(
(2n− 1)πx

2ℓ

)
(n = 1, 2, 3, . . .)

Just try a few values for n. We have finished finding the eigenfunctions.

22.1.5 Should we solve the other equation?

If you look back to the beginning of the previous subsection, you may wonder
about the function T (t). It satisfied

T ′′

a2T
= −λ

Now that we have found the values for λ from the X-problem, we could solve
this ordinary differential equation too, and find functions T1(t), T2(t), . . ..

However, it is far more straightforward not to do so. Now that the eigen-
functions Xn have been found, the general expression for the solution,

u =
∑

n

un(t)Xn(x)

can simply be plugged into the partial differential equation and its initial con-
ditions to find the un, completing the solution.

However, most people do solve for the Tn corresponding to each eigenvalue
λn. If you want to follow the crowd, please keep in mind the following:

1. The values of λ can only be found from the Sturm-Liouville problem forX.
The problem for T is not a Sturm-Liouville problem and cannot produce
the correct values for λ.

2. The functions T (t) do not satisfy the same initial conditions at time t =
0 as u does. That is unlike the Xn which must satisfy the homogeneous
boundary conditions.

3. Finding T is useless if the partial differential equation is inhomogeneous;
it simply does not work. Unless you add still more artificial tricks to the
mix, as the book does.
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22.1.6 Step 2: Solve the problem

Now that the eigenfunctions are known, the problem may be solved. To do so,
everything needs to be written in terms of the eigenfunctions. And that means
everything, including the partial differential equation and the initial conditions.

We first write our solution u(x, t) in terms of the eigenfunctions:

u(x, t) =
∞∑

n=1

un(t)Xn(x)

The coefficients un(t) are called the “Fourier coefficients” of u. The complete
sum is called the “Fourier series” for u.

We know our eigenfunctionsXn(x), but not yet our Fourier coefficients un(t).
In fact, the un(t) are what is still missing; if we know the un(t), we can find the
solution u that we want by doing the sum above. On a computer probably, if
we want to get high accuracy. Or just the first few terms by hand, if we accept
some numerical error.

Next we write the complete partial differential equation, utt = a2uxx, in
terms of the eigenfunctions:

∞∑

n=1

ün(t)Xn(x) = a2
∞∑

n=1

un(t)X
′′
n(x)

This equation will always simplify; that is how the method of separation of
variables works. Look up the differential equation for Xn in the second last
subsection; it was

X ′′
n(x) = −λnXn(x)

Using this expression for X ′′
n, we can get rid of the x-derivatives in the partial

differential equation to get

∞∑

n=1

ün(t)Xn(x) = a2
∞∑

n=1

(−λnun(t))Xn(x)

Now if two functions are equal, all their Fourier coefficients must be equal, so
we have, for any value of n,

ün(t) = −a2λnun(t) (for n = 1, 2, 3, . . .)

That no longer contains x at all. The partial differential equation has become
a set of ordinary differential equations in t only. And those are much easier to
solve than the original partial differential equations. Getting rid of x is really
what the method of separation variables does for us.



206 CHAPTER 22. SEPARATION OF VARIABLES

The above ordinary differential equations can be solved easily. For each
value of n it is a constant coefficient equation. So you write the characteristic
equation k2 = −a2λn. That give k = ±ia

√
λn. Then the solution is

un(t) = C1ne
ia
√
λnt + C2ne

−ia
√
λnt

or after cleaning up,

un(t) = D1n cos
(
a
√
λnt
)
+D2n sin

(
a
√
λnt
)

So, we have already found our pressure a bit more precisely:

u(x, t) =
∞∑

n=1

[
D1n cos

(
a
√
λnt
)
+D2n sin

(
a
√
λnt
)]

Xn(x)

but we still need to figure out what the integration constants D1n and D2n are.
To do so, we also write the initial condition u(x, 0) = f(x) and ut(x, 0) =

g(x) in terms of the eigenfunctions:

f(x) =
∞∑

n=1

fnXn(x) g(x) =
∞∑

n=1

gnXn(x)

Sometimes, when f or g is a simple function, like function 1, students do not
write a Fourier series for it. But that does not work.

Using the Fourier series for u, f , and g above, the two initial conditions
become ∞∑

n=1

D1nXn(x) =
∞∑

n=1

fnXn(x)

∞∑

n=1

a
√
λnD2nXn(x) =

∞∑

n=1

gnXn(x).

The Fourier coefficients must again be equal, so we conclude that the coefficients
we are looking for are

D1n = fn D2n =
gn

a
√
λn

The Fourier series for u becomes now

u(x, t) =
∞∑

n=1

[
fn cos

(
a
√
λnt
)
+

gn

a
√
λn

sin
(
a
√
λnt
)]

Xn(x)

where

λn =
(2n− 1)2π2

4ℓ2
Xn = cos

(
(2n− 1)πx

2ℓ

)
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So, if we can find the Fourier coefficients fn and gn of functions f(x) and g(x),
we are done.

Now f(x) and g(x) are, supposedly, given functions, but how do we find
their Fourier coefficients? The answer is the following important formula:

fn =

∫ l

0
f(x)Xn(x)dx∫ l

0
Xn(x)2dx

This is called the “orthogonality relation”. Even if f is some simple function
like f = 1, we still need to do those integrals. Only if f = 0 we can immediately
say that each Fourier coefficient fn is zero. The same for g:

gn =

∫ l

0
g(x)Xn(x)dx∫ l

0
Xn(x)2dx

(These formulae work as long as the ordinary differential equation for the Xn

is of the form AX ′′
n + BXn = 0. What you do for more general differential

equations will be covered later.)
We are done! Or at least, we have done as much as we can do until someone

tells us the actual functions f(x) and g(x). If they do, we just do the integrals
above to find all the fn and gn, (maybe analytically or on a computer), and then
we can sum the expression for u(x, t) for any x and t that strikes our fancy.

Note that we did not have to do anything with the boundary conditions
ux(0, t) = 0 and u(ℓ, t) = 0. Since every eigenfunction Xn satisfies them, the
expression for u above automatically also satisfies these homogeneous boundary
conditions.

22.2 Comparison with D’Alembert

The example problem of the previous section was also solved in chapter 21 using
D’Alembert. It is interesting to compare the two solutions.

The separation of variables solution took the form:

u =
∞∑

n=1

[
fn cos

(2n− 1)πat

2ℓ
+

2ℓgn
(2n− 1)πa

sin
(2n− 1)πat

2ℓ

]
cos

(2n− 1)πx

2ℓ

Some of its nice features are:

• It shows the natural frequencies (tones) to be πa/2ℓ, 3πa/2ℓ,...

• It shows the energy, so the strength, of each harmonic.

• The method is not restricted to the one-dimensional wave equation.
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The D’Alembert solution took the form

u(x, t) =
f̄(x− at) + f̄(x+ at)

2
+

1

2a

∫ x+at

x−at

ḡ(ξ) dξ

Some of its nice features are

• The pressure can be evaluated at any point without doing infinite sums.

• It shows how wave fronts propagate.

• It shows regions of influence and dependence.

In short, each method has its advantages and disadvantages.

22.3 Understanding the Procedure

All the different steps in the separation of variable procedure as described may
seem totally arbitrary. This section tries to explain why the steps are not
arbitrary, but really quite logical. To understand this section does require that
you have a good understanding of vectors and linear algebra. Otherwise you
may as well skip this.

22.3.1 An ordinary differential equation as a model

Partial differential equations are relatively difficult to understand. Therefore we
will instead consider an ordinary differential equation, but for a vector unknown:

~utt = −A~u

Here ~u is assumed to be a vector of N scalar unknowns u1, u2, . . .uN . Also A
is some given constant matrix. Later on, it will be assumed that matrix A is
positive definite. That means that A is symmetric and has positive eigenvalues.

The initial conditions are:

~u = ~f, ~ut = ~g at t = 0

If you want to solve this problem, the trick is to write ~u in terms of the
so-called eigenvectors of matrix A:

~u = u1~e1 + u2~e2 + u3~e3 + . . .

Here u1, u2, . . . are numerical coefficients that will depend on time. Further e1,
e2, . . . , are the eigenvectors of matrix A. By definition, these satisfy

A~e1 = λ1~e1 A~e2 = λ2~e2 . . .
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where λ1, λ2, . . . are numbers called the eigenvalues of matrix A. If A is not
a defective matrix, a complete set of independent eigenvectors will exist. That
then means that the solution ~u of the problem can indeed be written as a
combination of the eigenvectors. For simplicity, in this discussion it will be
assumed that A is not defective. That is certainly true if A is symmetric;
symmetric matrices are never defective.

Now if you substitute the expression for ~u into the ordinary differential
equation

~utt = −A~u

you get
ü1~e1 + ü2~e2 + . . . = −a2λ1u1~e1 − a2λ2u2~e2 + . . .

Here the dots in the left hand side indicate time derivatives. Also, in the right
hand side, use was made of the fact that A~ei is the same as λi~ei for every value
of i = 1, 2, . . ..

The above equation can only be true if the coefficients of each individual
eigenvector is the same in the left hand side as in the right hand side:

ü1 = −λ1u1 ü2 = −λ2u2 . . .

That are ordinary differential equations. You can solve these particular ones
relatively easily. The solution is

u1 = C1 cos(
√
λ1t) +D1 sin(

√
λ1t) u2 = C2 cos(

√
λ2t) +D2 sin(

√
λ2t) . . .

Each solution un has two integration constants Cn and Dn that still remain
unknown. To get them, use the initial conditions

~u = ~f, ~ut = ~g at t = 0

where ~f and ~g are given vectors. You need to write these vectors also in terms
of the eigenfunctions,

~f = f1~e1 + f2~e2 + . . . ~g = g1~e1 + g2~e2 + . . .

Then you can see that what you need is

u1(0) = f1 u̇1(0) = g1 u2(0) = f2 u̇2(0) = g2 . . .

That allows you to figure out the integration constants. So u1, u2, . . . are now
fully determined. And that means that the solution

~u = u1~e1 + u2~e2 + u3~e3 + . . .

is now fully determined. Just perform the summation at any time you want. So
that is it.
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The entire process becomes much easier if the matrix A is what is called
symmetric. For one, you do not have to worry about the matrix being defec-
tive. Symmetric matrices are never defective. Also, you do not have to worry
about the eigenvalues possibly being complex numbers. The eigenvalues of a
symmetric matrix are always real numbers.

And finally, the eigenvectors of a symmetric matrix can always be chosen to
be unit vectors that are mutually orthogonal. In other words, they are like the
unit vectors ı̂′, ̂′, k̂′, . . . , of a rotated Cartesian coordinate system.

The orthogonality helps greatly when you are trying to write ~f and ~g in
terms of the eigenvectors. For example, you need to write ~f in the form

~f = f1~e1 + f2~e2 + . . .

If the eigenvectors ~e1, ~e1, . . . , are orthonormal, then f1, f2, . . . can simply be
found using dot products:

f1 = ~e1 · ~f f2 = ~e2 · ~f . . .

Usually, however, you do not normalize the eigenvectors to length one. In
that case, you can still write

~f = f1~e1 + f2~e2 + . . .

but now you must find the coefficients as

f1 =
~e1 · ~f
~e1 · ~e1

f2 =
~e2 · ~f
~e2 · ~e2

. . .

In short you must divide by the square length of the eigenvector. The values
for g1, g2, . . . can be found similarly.

The next subsections will now show how all of the above carries over directly
to the method of separation of variables for simple partial differential equations.

22.3.2 Vectors versus functions

The previous subsection showed how to solve an example ordinary differential
for a vector unknown. The procedure had clear similarities to the separation
of variables procedure that was used to solve the example partial differential
equation in section 22.1.

However, in the ordinary differential equation, the unknown was a vector ~u
at any given time t. In the partial differential equation, the unknown u(x, t) was
a function of x at any given time. Also, the initial conditions for the ordinary
differential equation were given vectors ~f and ~g. For the partial differential
equation, the initial conditions were given functions f(x) and g(x). The ordinary
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differential equation problem had eigenvectors ~e1, ~e2, . . .. The partial differential
equation problem had eigenfunctions X1(x), X2(x), . . ..

The purpose of this subsection is to illustrate that it does not make that
much of a difference. The differences between vectors and functions are not
really as great as they may seem.

Let’s start with a vector in two dimensions, like say the vector ~v = (3, 4).
You can represent this vector graphically as a point in a plane, but you can also
represent it as the ’spike function’, as in the left-hand sketch below:

The first coefficient, v1, is 3. That corresponds to a spike of height of 3 when
the subscript, call it i, is 1. The second coefficient v2 = 4, so there is a spike of
height 4 at i = 2. Similarly, the three-dimensional vector ~v = (3, 4, 2) can be
graphed as the three-spike function in the middle figure. If you keep adding more
dimensions, going to the limit of infinite-dimensional space, the spike graph vi
approaches a function f with a continuous coordinate x instead of i.

Phrased differently, you can think of a function f(x) as an infinite column
vector of numbers, with the numbers being the successive values of f(x). In
this way, vectors become functions. And vector analysis turns into functional
analysis.

22.3.3 The inner product

You are not going to do much with vectors without the dot product. The dot
product makes it possible to find the length of a vector, by multiplying the vector
by itself and taking the square root. The dot product is also used to check if
two vectors are orthogonal: if their dot product is zero, they are orthogonal. In
this subsection, the dot product is generalized to functions.

The usual dot product of two arbitrary vectors ~f and ~g can be found by
multiplying components with the same index i together and summing that:

~f · ~g ≡ f1g1 + f2g2 + f3g3

The below figure shows multiplied components using equal colors.
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The three term sum above can be written more compactly as:

~f · ~g ≡
∑

all i

figi

The Σ is called the “summation symbol.”
The dot (or “inner”) product of functions is defined in exactly the same

way as for vectors, by multiplying values at the same x position together and
summing. But since there are infinitely many x-values, the sum becomes an
integral:

(f, g) =

∫

all x

f(x)g(x) dx (22.1)

It is conventional to put a comma between the functions instead of a dot like
for vectors. Also, people like to enclose the functions inside parentheses. But
the idea is the same, as illustrated in the figure below:

As an example, the ordinary differential equation model problem involved a
given initial condition ~f for ~u. To solve the problem, vector ~f had to be written
in the form

~f = f1~e1 + f2~e2 + . . .

Here the vectors ~e1, ~e2, . . . were the eigenvectors of the matrix A in the problem.
The coefficients f1, f2, . . . could be found using dot products:

f1 =
~e1 · ~f
~e1 · ~e1

f2 =
~e2 · ~f
~e2 · ~e2

. . .

This can be done this way as long as the eigenvectors are orthogonal. The dot
product between any two different eigenvectors must be zero. The eigenvec-
tors were indeed orthogonal, because it was assumed that the matrix A in the
problem was symmetric.

extrascale=3
extrascale=3
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Similarly, the partial differential equation problem of section 22.1 involved
a given initial condition f(x) for u(x, t). To solve the problem, this initial
condition had to be written in the form:

f(x) = f1X1(x) + f2X2(x) + . . .

Here X1(x), X2(x), . . . were the so-called eigenfunctions found in the separation
of variables procedure. The coefficients f1, f2, . . . can be found using inner
products

f1 =
(X1, f)

(X1, X1)
f2 =

(X2, f)

(X2, X2)
. . .

This can be done this way as long as the eigenfunctions are orthogonal. The
inner product between any two different eigenfunctions must be zero. The next
section explains why that is indeed the case.

22.3.4 Matrices versus operators

This section compares the solution procedure for the ordinary differential equa-
tion

~utt = −A~u where A is a matrix

to that for the partial differential equation

utt = −Lu where L = −a2
∂2

∂x2

You may wonder whether that makes any sense. A matrix is basically a table
of numbers. The “linear operator” L is shorthand for “take two derivatives and
multiply the resulting function by the constant −a2.”

But the difference between matrices and operators is not as great as it seems.
One way of defining a matrix A is as a thing that, given a vector ~u, can produce
a different vector A~u;

~u(t)
matrix A ✲ A~u(t)

Similarly you can define an operator L as a thing that, given a function u,
produces another function Lu:

u(x, t)
operator L

✲ Lu(x; t) = −a2uxx(x, t)

After all, taking derivatives of functions simply produces another function. And
multiplying a function by a constant simply produces another function.

Since it was already seen that vectors and functions are closely related, then
so are matrices and operators.
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Like matrices have eigenvectors, linear operators have eigenfunctions. In
particular, section 22.1 found the appropriate eigenfunctions of the operator
above to be

Xn = cos

(
(2n− 1)πx

2ℓ

)
for n = 1, 2, 3, . . .

(This also depended on the boundary conditions, but that point will be ignored
for now.) You can check by differentiation that for these eigenfunctions

LXn = −a2
d2

dx2
Xn = λnXn where λn = a2

(
(2n− 1)π

2ℓ

)2

So they are indeed eigenfunctions of operator L.
But, as the previous subsection pointed out, it was also assumed that these

eigenfunctions are orthogonal. And that is not automatic. For a matrix the
eigenvectors can be taken to be orthogonal if the matrix is symmetric. Similarly,
for an operator the eigenfunctions can be taken to be orthogonal if the operator
is symmetric.

But how do you check that for an operator? For a matrix, you simply write
down the matrix as a table of numbers and check that the rows of the table are
the same as the columns. You cannot do that with an operator. But there is
another way. A matrix is also symmetric if for any two vectors ~f and ~g,

~f · (A~g) = (A~f) · ~g
In other words, symmetric matrices can be taken to the other side in a dot
product. (In terms of linear algebra

~f · (A~g) = ~f TA~g (A~f) · ~g = (A~f)T~g = ~f TAT~g

where the superscript T indicates transpose. For the two expression always to
be the same requires A = AT .)

Symmetry for operators can be checked similarly by whether they can be
taken to the other side in inner products involving any two functions f and g:

(f, Lg) = (Lf, g) iff L is symmetric.

To check that for the operator above, write out the first inner product:

(f, Lg) = −a2
∫ ℓ

0

f(x)g′′(x) dx

Now use integration by parts twice to get

(f, Lg) = −a2
∫ ℓ

0

f ′′(x)g(x) dx = (Lf, g)

So operator L is symmetric and therefore it has orthogonal eigenfunctions. (It
was assumed in the integrations by parts that the functions f and g satisfy the
homogeneous boundary conditions at x = 0 and x = ℓ given in section 22.1. All
functions of interest here must satisfy them.)
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22.3.5 Some limitations

Some limitations to the similarity between vectors and functions should be
noted.

One difference is that the functions in partial differential equations must
normally satisfy boundary conditions. The ones in the example problem were

ux(0, t) = 0 u(ℓ, t) = 0

Usually you do not have boundary conditions on vectors. But in principle you
could create an analogue to the first boundary condition by demanding that
the first component of vector ~u is the same as the second. An analogue to the
second boundary condition would be that the very last component of vector ~u
would be zero.

As long as matrix A respects these boundary conditions, there is no problem
with that. In terms of linear algebra, you would be working in a subspace of
the complete vector space; the subspace of vectors that satisfy the boundary
conditions.

There is another problem with the analogy between vectors and functions.
Consider the initial condition ~f for the solution ~u of the ordinary differential
equation. You can give the components of ~f completely arbitrary values and
you will still get a solution for ~u.

But now consider the initial condition f(x) for the solution u(x, t) of the
ordinary differential equation. If you simply give a random value to the function
f at every individual value of x, then the function will not be differentiable. The
partial differential equation for such a function will then make no sense at all.
For functions to be meaningful in the solution of a partial differential equation,
they must have enough smoothness that derivatives make some sense.

Note that this does not mean that the initial condition cannot have some
singularities, like kinks or jumps, say. Normally, you are OK if the initial condi-
tions can be approximated in a meaningful sense by a sum of the eigenfunctions
of the problem. Because the functions that can be approximated in this way
exclude the extremely singular ones, a partial differential equation will always
work in a subspace of all possible functions. A subspace of reasonably smooth
functions. Often when you see partial differential equations in literature, they
also list the subspace in which it applies. That is beyond the scope of this book.

22.4 Handling Periodic Boundary Conditions

In this section the method of separation of variables will be applied to a problem
in polar coordinates. The selected problem turns out to have two eigenfunctions
for each eigenvalue other than the lowest.
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22.4.1 The physical problem

The problem is to find the ideal flow in a unit circle if the normal (radial)
velocity on the perimeter is known.

22.4.2 The mathematical problem

• Finite domain Ω̄: 0 6 r 6 1, 0 6 ϑ < 2π

• Unknown velocity potential u = u(r, ϑ)

• Elliptic equation

∇2u = urr +
1

r
ur +

1

r2
uϑϑ = 0

• One Neumann boundary condition at r = 1.
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22.4.3 Outline of the procedure

We will try to find a solution of this problem in the form

u =
∑

n

Rn(r)Θn(θ)

Here the Θn will be the eigenfunctions.
The reason to take the Θn as the eigenfunctions and not the Rn is because

separation of variables needs homogeneous boundary conditions. The r direction
has an inhomogeneous boundary condition ur(1, θ) = f(θ) at r = 1.

22.4.4 Step 1: Find the eigenfunctions

This follows the same procedures as in the first example. We substitute a single
term u = R(r)Θ(ϑ) into the homogeneous partial differential equation

urr + frac1rur +
1

r2
uϑϑ = 0

That gives:

R′′Θ+
1

r
R′Θ+

1

r2
RΘ′′ = 0

which separates into

r2
R′′

R
+ r

R′

R
= −Θ′′

Θ
= constant = λ

Make sure that all r terms are at the same side of the equation! Some students
leave an r2 in the θ side.

Now which ordinary differential equation gives us the Sturm-Liouville prob-
lem, and thus the eigenvalues? Not the one for R(r); u has an inhomogeneous
boundary condition on the perimeter r = 1. Eigenvalue problems must be ho-
mogeneous; they simply don’t work if anything is inhomogeneous.

We are in luck with Θ(ϑ) however. The unknown u(r, ϑ) has “periodic”
boundary conditions in the ϑ-direction. If ϑ increases by an amount 2π, u(r, ϑ)
returns to exactly the same values as before: it is a “periodic function” of ϑ.
Periodic boundary conditions are homogeneous: the zero solution satisfies them.
After all, zero remains zero however many times you go around the circle.

The Sturm-Liouville problem for Θ is:

−Θ′′ = λΘ

Θ(0) = Θ(2π) Θ′(0) = Θ′(2π)

Note that for a second order ordinary differential equation, we need two bound-
ary conditions. So we wrote down that both Θ, as well as its derivative are
exactly the same at ϑ = 0 and 2π.
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Pretend that we do not know the solution of this Sturm-Liouville problem!
Write the characteristic equation of the ordinary differential equation:

k2 + λ = 0 ⇒ k = ±i
√
λ

Lets look at all possibilities:

1. Case λ = 0:

Since k1 = k2 = 0:
Θ = A+ Bϑ

Boundary conditions:

Θ(0) = Θ(2π) ⇒ A = A+B2π

That can only be true if B = 0. Then the second boundary condition is

Θ′(0) = Θ′(2π) ⇒ 0 = 0

hence Θ = A. No undetermined constants in eigenfunctions! Simplest is
to choose A = 1:

Θ0(ϑ) = 1

2. Case λ 6= 0:

We will be lazy and try to do the cases of positive and negative λ at the
same time. For positive λ, the cleaned-up solution is

Θ = A cos
(√

λϑ
)
+ B sin

(√
λϑ
)

This also applies for negative λ, except that the square roots are then
imaginary.

Lets write down the boundary conditions first:

Θ(0) = Θ(2π) ⇒ A = A cos
(√

λ2π
)
+ B sin

(√
λ2π

)

Θ′(0) = Θ′(2π) ⇒ B
√
λ = −A

√
λ sin

(√
λ2π

)
+ B

√
λ cos

(√
λ2π

)

These two equations are a bit less simple than the ones we saw so far.
Rather than directly trying to solve them and make mistakes, this time
let us write out the augmented matrix of the system of equations for A
and B: 

 1− cos
(√

λ2π
)

− sin
(√

λ2π
)

0

sin
(√

λ2π
)

1− cos
(√

λ2π
)

0
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Any nontrivial solution must be nonunique (since zero is also a solution).
So the determinant of the matrix must be zero, which is:

1− 2 cos
(√

λ2π
)
+ cos2

(√
λ2π

)
+ sin2

(√
λ2π

)
= 0

or

cos
(√

λ2π
)
= 1

A cosine is only equal to 1 when its argument is an integer multiple of 2π.
Hence the only possible eigenvalues are

√
λ1 = 1

√
λ2 = 2

√
λ3 = 3 . . .

If λ is negative, cos
(
i
√
−λ2π

)
= cosh

(√
−λ2π

)
which is always greater

than one for nonzero λ.

For the found eigenvalues, the system of equations for A and B becomes:

(
0 0 0
0 0 0

)

Hence we can find neither A or B; there are two undetermined constants
in the solution:

Θn = A cos(nϑ) + B sin(nϑ)

We had this situation before with eigenvector in the case of double eigen-
values, where an eigenvalue gave rise two linearly independent eigenvec-
tors. Basically we have the same situation here: each eigenvalue is double.
Similar to the case of eigenvectors of symmetric matrices, here we want
two linearly independent, and more specifically, orthogonal eigenfunctions.
A suitable pair is

Θ1
n(ϑ) = cos(nϑ)

Θ2
n(ϑ) = sin(nϑ)

We can now tabulate the complete set of eigenvalues and eigenfunctions now
as:

λ0 = 0 Θ0 = 1
λ1 = 1 Θ1

1 = cos(ϑ) Θ2
1 = sin(ϑ)

λ2 = 4 Θ1
2 = cos(2ϑ) Θ2

2 = sin(2ϑ)
λ3 = 9 Θ1

3 = cos(3ϑ) Θ2
3 = sin(3ϑ)

λ4 = 16 Θ1
4 = cos(4ϑ) Θ2

4 = sin(4ϑ)
...

...
...
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22.4.5 Step 2: Solve the problem

We will again expand all variables in the problem in a Fourier series. Let’s
start with the function f(ϑ) giving the outflow through the perimeter.

f(ϑ) = f0 +
∞∑

n=1

f 1
n cos(nϑ) +

∞∑

n=1

f 2
n sin(nϑ)

This is the way a Fourier series of a periodic function with period 2π always
looks.

Since f(ϑ) is supposedly known, we should again be able to find its Fourier
coefficients using orthogonality. The formulae are as before.

f0 =

∫ 2π

ϑ=0
f(ϑ)1 dϑ

∫ 2π

ϑ=0
12 dϑ

(the bottom is of course equal to 2π,)

f 1
n =

∫ 2π

ϑ=0
f(ϑ) cos(nϑ) dϑ

∫ 2π

ϑ=0
cos2(nϑ) dϑ

(n = 1, 2, . . .)

f 2
n =

∫ 2π

ϑ=0
f(ϑ) sin(nϑ) dϑ

∫ 2π

ϑ=0
sin2(nϑ) dϑ

(n = 1, 2, . . .)

(the bottoms are equal to π.)
Since I hate typing big formulae, allow me to write the Fourier series for

f(ϑ) much more compactly as

f(ϑ) =
∞∑

n,i

f i
nΘ

i
n(ϑ)
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where Θ1
n = cos(nϑ) and Θ2

n = sin(nϑ). Also, all three formulae for the Fourier
coefficients can be summarized as

f i
n =

∫ 2π

ϑ=0
f(ϑ)Θi

n(ϑ) dϑ∫ 2π

ϑ=0
Θi2

n (ϑ) dϑ
(n = 0, 1, 2, . . . ; i = 1, 2)

For n = 0, only the value i = 1 is relevant, of course; Θ1
0 = cos(0ϑ) = 1 = Θ0.

There is no Θ2
0 = sin(0ϑ) = 0.

Next, let’s write the unknown u(r, ϑ) as a compact Fourier series:

u(r, ϑ) =
∑

n,i

ui
n(r)Θ

i
n(ϑ)

We put this into partial differential equation urr + ur/r + uϑϑ/r
2 = 0:

∑

n,i

ui
n(r)

′′Θi
n(ϑ) +

1

r

∑

n,i

ui
n(r)

′Θi
n(ϑ) +

1

r2

∑

n,i

ui
n(r)Θ

i
n(ϑ)

′′ = 0

Using the Sturm-Liouville equation Θi
n(ϑ)

′′ = −λΘi
n(ϑ), where λ was found to

be n2, this simplifies to

∑

n,i

ui
n(r)

′′Θi
n(ϑ) +

1

r

∑

n,i

ui
n(r)

′Θi
n(ϑ)−

1

r2

∑

n,i

n2ui
n(r)Θ

i
n(ϑ) = 0

We get the following ordinary differential equation for ui
n(r):

ui
n(r)

′′ +
1

r
ui
n(r)

′ − n2

r2
ui
n(r) = 0

or multiplying by r2:

r2ui
n(r)

′′ + rui
n(r)

′ − n2ui
n(r) = 0

This is not a constant coefficient equation. Writing down a characteristic equa-
tion is no good.

Fortunately, we have seen this one before: it is the Euler equation. You
solved that one by changing to the logarithm of the independent variable, in
other words, by rewriting the equation in terms of

ρ ≡ ln r

instead of r. The r-derivatives can be converted as in:

dui
n

dr
=

dui
n

dρ

dρ

dr
=

dui
n

dρ

1

r
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d2ui
n

dr2
=

d

dr

[
dui

n

dρ

1

r

]
=

d

dr

[
dui

n

dρ

]
1

r
− dui

n

dρ

1

r2

=
d

dρ

[
dui

n

dρ

]
dρ

dr

1

r
− dui

n

dρ

1

r2
=

d2ui
n

dρ2
1

r2
− dui

n

dρ

1

r2

The ordinary differential equation becomes in terms of ρ:

d2ui
n

dρ2
− n2ui

n = 0

This is now a constant coefficient equation, so we can write the characteristic
polynomial, k2 − n2 = 0, or k = ±n, which has a double root when n = 0. So
we get for n = 0:

u1
0 = A1

0 + B1
0ρ = A1

0 + B1
0 ln r

while for n 6= 0:

ui
n = Ai

ne
nρ + Bi

ne
−nρ = Ai

nr
n + Bi

nr
−n

Now both ln r as well as r−n are infinite when r = 0. But that is in the
middle of our flow region, and the flow is obviously not infinite there. So from
the ‘boundary condition’ at r = 0 that the flow is not singular, we conclude
that all the B-coefficients must be zero. Since r0 = 1, all coefficients are of the
form Ai

nr
n, including the one for n = 0.

Hence our solution can be more precisely written

u(r, ϑ) =
∑

n,i

Ai
nr

nΘi
n(ϑ)

Next we expand the boundary condition ur(1, ϑ) = f(ϑ) at r = 1 in a Fourier
series: ∑

n,i

nAi
nΘ

i
n(ϑ) =

∑

n,i

f i
nΘ

i
n(ϑ)

producing
nAi

n = f i
n

For n = 0, we see immediately that A0 can be anything, but we need f0 = 0
for a solution to exist! According to the orthogonality relationship for f0, this
requires: ∫ 2π

0

f(ϑ) dϑ = 0

Are you surprised that the net outflow through the perimeter must be zero for
this steady flow?

For nonzero n:

Ai
n =

f i
n

n
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and our solution becomes

u = A0 +
∑

n,i

f i
n

rn

n
Θi

n(ϑ)

where A0 can be anything.

22.4.6 Summary of the solution

Let’s summarize our results, and write the eigenfunctions out in terms of the
individual sines and cosines.

Required for a solution is that:
∫ 2π

0

f(ϑ) dϑ = 0

Then:

f 1
n =

1

π

∫ 2π

ϑ=0

f(ϑ) cos(nϑ) dϑ (n = 1, 2, . . .)

f 2
n =

1

π

∫ 2π

ϑ=0

f(ϑ) sin(nϑ) dϑ (n = 1, 2, . . .)

u = A0 +
∞∑

n=1

{
f 1
n

rn

n
cos(nϑ) + f 2

n

rn

n
sin(nϑ)

}

where A0 can be anything.

22.5 Finding the Green’s function

The previous section found the solution to the ideal flow in a circle in the form

u = A0 +
∞∑

n=1

{
f 1
n

rn

n
cos(nϑ) + f 2

n

rn

n
sin(nϑ)

}

We can write it directly in terms of the given f(x) if we substitute in the
expressions for the Fourier coefficients:

u = A0 +
∞∑

n=1

∫ 2π

0

f(φ) cos(nφ) dφ
rn

nπ
cos(nϑ) +

∫ 2π

0

f(φ) sin(nφ) dφ
rn

nπ
sin(nϑ)

We can clean it up by combining terms and interchanging integration and
summation:

u = A0 +

∫ 2π

0

∞∑

n=1

{
rn

nπ
[cos(nφ) cos(nϑ) + sin(nφ) sin(nϑ)]

}
f(φ) dφ
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u = A0 +

∫ 2π

0

{ ∞∑

n=1

rn

nπ
cos(n[ϑ− φ])

}
f(φ) dφ

This we can clean up even more by giving a name to the function within the
curly brackets:

u = A0 +

∫ 2π

0

G(r, ϑ− φ)f(φ) dφ

Nice, not? We can even simplify G by converting to complex exponentials and
differentiating:

G(r, ϑ) =
∞∑

n=1

rn

nπ
cos(nϑ) =

∞∑

n=1

{
rn

2nπ
einϑ +

rn

2nπ
e−inϑ

}

2π
∂G

∂r
=

∞∑

n=1

{
r−1
(
reiϑ

)n
+ r−1

(
re−iϑ

)n}
=

eiϑ

1− reiϑ
+

e−iϑ

1− re−iϑ

The last equation applies because the sums are geometric series.
Integrating and cleaning up produces

G(r, ϑ) = − 1

2π
ln
(
1− 2r cos(ϑ) + r2

)

So, we finally have the following Poisson-type integral expression giving u
directly in terms of the given f(ϑ), with no sums:

u(r, ϑ) = A0 −
1

2π

∫ 2π

0

ln
(
1− 2r cos(ϑ− φ) + r2

)
f(φ) dφ

Neat!

22.6 Inhomogeneous boundary conditions

The method of separation of variables needs homogeneous boundary conditions.
More precisely, the eigenfunctionsmust have homogeneous boundary conditions.
(Even if in a set of functions each function satisfies the given inhomogeneous
boundary conditions, a combination of them will in general not do so.)

In the previous example, this problem could be circumvented by choosing
θ instead of r as the variable of the eigenfunctions. For the example in this
section, however, this does not work.

22.6.1 The physical problem

The problem is to find the unsteady temperature distribution in a bar for any
arbitrary position x and time t. The initial temperature distribution at time
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zero equals a given function f(x). The heat flux out of the left end equals a
given function g0(t), and the temperature of the right end a given function g1(t).
Heat is added to the bar from an external source at a rate described by a given
function q(x).

Figure 22.3: Heat conduction in a bar.

22.6.2 The mathematical problem

Figure 22.4: Heat conduction in a bar.

• Finite domain Ω̄: 0 6 x 6 ℓ

• Unknown temperature u = u(x, t)

• Constant κ, so a linear constant coefficient partial differential equation.

• Parabolic

• Inhomogeneous

• One initial condition

• One Neumann boundary condition

extrascale=3
extrascale=3
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• One Dirichlet boundary condition

• All of f , g0, g1, and q are given functions.

22.6.3 Outline of the procedure

We would like to use separation of variables to write the solution in a form that
looks roughly like:

u(x, t) =
∑

n

un(t)Xn(x)

Here the Xn would be the eigenfunctions.
The un cannot be eigenfunctions since the time axis is semi-infinite. Also,

Sturm-Liouville problems require boundary conditions at both ends, not initial
conditions.

Unfortunately, eigenfunctions must have homogeneous boundary conditions.
So if u was simply written as a sum of eigenfunctions, it could not satisfy
inhomogeneous boundary conditions.

Fortunately, we can apply a trick to get around this problem. The trick is to
write u as the sum of a function u0 that satisfies the inhomogeneous boundary
conditions plus a remainder v:

u(x, t) = u0(x, t) + v(x, t)

Since u0 produces the inhomogeneous term in the boundary conditions, the
remainder v satisfies homogeneous boundary conditions. Therefore v can be
written as

v(x, t) =
∑

n

vn(t)Xn(x)

using separation of variables. Add u0 to get u.

22.6.4 Step 0: Fix the boundary conditions

The first thing to do is find a function u0 that satisfies the same boundary
conditions as u. In particular, u0 must satisfy:

u0,x(0, t) = g0(t) u0(ℓ, t) = g1(t)

The function u0 does not have to satisfy the either the partial differential
equation or the initial condition. That allows you to take something simple for
it. The choice is not unique, but you want to select something simple.

A function that is linear in x,

u0(x, t) = A(t) +B(t)x

is surely the simplest possible choice. In this example, it works fine too.
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Plug this expression for u0 into the boundary conditions for u,

ux(0, t) = g0(t) u(ℓ, t) = g1(t)

That produces the requirements

B(t) = g0(t) A(t) +B(t)ℓ = g1(t)

The solution is B(t) = g0(t) and A(t) = g1(t)−B(t)ℓ. So our u0 is

u0(x, t) = g1(t) + g0(t)(x− ℓ)

Keep track of what we know, and what we do not know. Since we (sup-
posedly) have been given functions g0(t) and g1(t), function u0 is from now on
considered a known quantity, as given above.

You could use something more complicated than a linear function if you like
to make things difficult for yourself. Go ahead and use A(t)erf(x) + B(t)J0(x)
if you really love to integrate error functions and Bessel functions. It will work.
I prefer a linear function myself, though. (For some problems, you may need a
quadratic instead of a linear function.)

Under certain conditions, there may be a better choice than a low order
polynomial in x. If the problem has steady boundary conditions and a simple
steady solution, go ahead and take u0 to be that steady solution. It will work
great. However, in the example here the boundary conditions are not steady;
we are assuming that g0 and g1 are arbitrary given functions of time.

Next, having found u0, define a new unknown v as the remainder when u0

is subtracted from u:

v ≡ u− u0

We now solve the problem by finding v. When we have found v, we simply add
u0, already known, back in to get u.

To do so, first, of course, we need the problem for v to solve. We get it from
the problem for u by everywhere replacing u by u0 + v. Let’s take the picture
of the problem for u in front of us and start converting.
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Figure 22.5: Heat conduction in a bar.

First take the boundary conditions at x = 0 and x = ℓ:

ux(0, t) = g0(t) u(ℓ, t) = g1(t)

Replacing u by u0 + v:

u0x(0, t) + vx(0, t) = g0(t) u0(ℓ, t) + v(ℓ, t) = g1(t)

But since by construction u0x(0, t) = g0 and u0(ℓ, t) = g1,

vx(0, t) = 0 v(ℓ, t) = 0

Note the big thing: while the boundary conditions for v are similar to those
for u, they are homogeneous. We will get a Sturm-Liouville problem in the
x-direction for v where we did not for u. That is what u0 does for us.

extrascale=3
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We continue finding the rest of the problem for v. We replace u by u0 + v
into the partial differential equation ut = κuxx + q,

u0,t + vt = κ(u0,xx + vxx) + q

and take all u0 terms to the right hand side:

vt = κvxx + q̄

where q̄ = κu0,xx + q − u0,t, or, written out

q̄(x, t) = q(x, t)− g′1(t)− g′0(t)(x− ℓ)

Hence q̄ is now a known function, just like q.
The final part of the problem for u that we have not converted yet is the

initial condition. We replace u by u0 + v in u(x, 0) = f(x),

u0(x, 0) + v(x, 0) = f(x)

and take u0 to the other side:

v(x, 0) = f̄(x)

where f̄(x) is f(x)− u0(x, 0), or written out:

f̄(x) = f(x)− g1(0)− g0(0)(x− ℓ)

Again, f̄ is now a known function.
The problem for v is now the same as the one for u, except that the boundary

conditions are homogeneous and functions f and q have changed into known
functions f̄ and q̄.

Using separation of variables, we can find the solution for v in the form:

v(x, t) =
∑

n

vn(t)Xn(x).

We already know how to do that! (Don’t worry, we will go over the steps
anyway.) Having found v, we will simply add u0 to find the asked temperature
u.

22.6.5 Step 1: Find the eigenfunctions

To find the eigenfunctions Xn, substitute a trial solution v = T (t)X(x) into the
homogeneous part of the partial differential equation, vt = κvxx+ q̄. Remember:
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ignore the inhomogeneous part q̄ when finding the eigenfunctions. Putting v =
T (t)X(x) into vt = κvxx produces:

T ′X = κTX ′′

Separate variables:
T ′

κT
=

X ′′

X
= constant = −λ

As always, λ cannot depend on x since the left hand side does not. Also, λ
cannot depend on t since the middle does not. So λ must be a constant.

We then get the following Sturm-Liouville problem for any eigenfunctions
X(x):

−X ′′ = λX X ′(0) = 0 X(ℓ) = 0

The last two equations are the boundary conditions on v which we made homo-
geneous.

This is the exact same eigenvalue problem that we had in an earlier example,
so I can just take the solution from there. The eigenfunctions are:

λn =
(2n− 1)2π2

4ℓ2
Xn = cos

(
(2n− 1)πx

2ℓ

)
(n = 1, 2, 3, . . .)

22.6.6 Step 2: Solve the problem

We expand in the problem for v in a Fourier series:

Figure 22.6: Heat conduction in a bar.

extrascale=3
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In particular,

v =
∞∑

n=1

vn(t)Xn(x) f̄ =
∞∑

n=1

f̄nXn(x) q̄ =
∞∑

n=1

qn(t)Xn(x)

Since q̄(x) and f̄(x) are known functions, we can find their Fourier coeffi-
cients from orthogonality:

f̄n =

∫ ℓ

0
f̄(x)Xn(x) dx∫ ℓ

0
X2

n(x) dx

q̄n(t) =

∫ ℓ

0
q̄(x, t)Xn(x) dx∫ ℓ

0
X2

n(x) dx

or with the eigenfunctions written out

f̄n =

∫ ℓ

0
f̄(x) cos((2n− 1)πx/2ℓ) dx
∫ ℓ

0
cos2((2n− 1)πx/2ℓ) dx

q̄n(t) =

∫ ℓ

0
q̄(x, t) cos((2n− 1)πx/2ℓ) dx
∫ ℓ

0
cos2((2n− 1)πx/2ℓ) dx

The integrals in the bottom equal 1
2
ℓ.

So the Fourier coefficients f̄n are now known constants, and the q̄n(t) are
now known functions of t. Though in actual application, numerical integration
may be needed to find them. During finals, I usually make the functions f , g0
and g1 simple enough that you can do the integrals analytically.

Now write the partial differential equation vt = κvxx + q̄ using the Fourier
series: ∞∑

n=1

v̇n(t)Xn(x) = κ
∞∑

n=1

vn(t)X
′′
n(x) +

∞∑

n=1

qn(t)Xn(x)

Looking in the previous section, the Sturm-Liouville equation was −X ′′ = λX,
so the partial differential equation simplifies to:

∞∑

n=1

v̇n(t)Xn(x) = −κ

∞∑

n=1

λnvn(t)Xn(x) +
∞∑

n=1

qn(t)Xn(x)

It will always simplify or you made a mistake.
For the sums to be equal for any x, the coefficients of every individual

eigenfunction must balance. So we get

v̇n(t) + κλnvn(t) = qn(t)
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We have obtained an ordinary differential equation for each vn. It is again
constant coefficient, but inhomogeneous.

Solve the homogeneous equation first. The characteristic polynomial is

k + κλn = 0

so the homogeneous solution is

vnh = Ane
−κλnt

For the inhomogeneous equation, undetermined constants is not a possibility
since we do not know the actual form of the functions q. So we use variation of
parameter:

vn = An(t)e
−κλnt

Plugging into the ordinary differential equation produces

A′
ne

−κλnt + 0 = qn(t) =⇒ A′
n = qn(t)e

κλnt

We integrate this equation to find An. I could write the solution using an
indefinite integral:

An(t) =

∫
qn(t)e

κλnt dt

But that has the problem that the integration constant is not explicitly shown.
That makes it impossible to apply the initial condition. It is better to write the
anti-derivative using an integral with limits plus an explicit integration constant
as:

An(t) =

∫ t

τ=0

qn(τ)e
κλnτ dτ + An0

You can check using the Leibniz rule for differentiation of integrals (or really,
just the fundamental theorem of calculus,) that the derivative is exactly what
it should be. (Also, the lower limit does not really have to be zero; you could
start the integration from 1, if it would be simpler. The important thing is that
the upper limit is the independent variable t.)

Putting the found solution for An(t) into

vn = An(t)e
−κλnt

we get, cleaned up:

vn(t) =

∫ t

τ=0

qn(τ)e
−κλn(t−τ) dτ + An0e

−κλnt

We still need to find the integration constant An0. To do so, write the initial
condition v(x, 0) = f̄(x) using Fourier series:

∞∑

n=0

vn(0)Xn(x) =
∞∑

n=0

f̄nXn(x)
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This gives us initial conditions for the vn:

vn(0) = f̄n = An0

the latter from above, and hence

vn(t) =

∫ t

τ=0

qn(τ)e
−κλn(t−τ) dτ + f̄ne

−κλnt

or writing out the eigenvalue:

vn(t) =

∫ t

τ=0

qn(τ)e
−κ(2n−1)2π2(t−τ)/4ℓ2 dτ + f̄ne

−κ(2n−1)2π2t/4ℓ2

We have vn in terms of known quantities, so we are done.

22.6.7 Summary of the solution

Collecting all the boxed formulae together, the solution is found by first com-
puting the coefficients f̄n from:

f̄n =
2

ℓ

∫ ℓ

0

f̄(x) cos((2n− 1)πx/2ℓ) dx (n = 1, 2, 3, . . .)

where

f̄(x) = f(x)− g1(0)− g0(0)(x− ℓ)

Also compute the functions q̄n(t) from:

q̄n(t) =
2

ℓ

∫ ℓ

0

q̄(x, t) cos((2n− 1)πx/2ℓ) dx (n = 1, 2, 3, . . .)

where

q̄(x, t) = q(x, t)− g′1(t)− g′0(t)(x− ℓ)

Then the temperature is:

u(x, t) = g1(t) + g0(t)(x− ℓ)

+
∞∑

n=1

[∫ t

τ=0

qn(τ)e
−κ(2n−1)2π2(t−τ)/4ℓ2 dτ + f̄ne

−κ(2n−1)2π2t/4ℓ2
]
cos

(2n− 1)πx

2ℓ
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22.7 Finding the Green’s functions

We can, if we want, write the solution for v in other ways that may be more
efficient numerically. The solution was, rewritten more concisely in terms of the
eigenvalues and eigenfunctions:

v(x, t) =
∑

n

[∫ t

τ=0

q̄n(τ)e
−κλn(t−τ) dτ + f̄ne

−κλnt

]
Xn(x).

The first part is due to the inhomogeneous term q̄ in the partial differential
equation, the second due to the initial condition v(x, 0) = f̄(x)

Look at the second term first, let’s call it vf ,

vf ≡
∑

n

f̄ne
−κλntXn(x).

We can substitute in the orthogonality relationship for f̄(x):

vf =
∑

n

∫ ℓ

0
f̄(ξ)Xn(ξ) dξ∫ ℓ

0
X2

n(ζ) dζ
e−κλntXn(x)

and change the order of the terms to get:

vf =

∫ ℓ

0

[
∑

n

Xn(ξ)Xn(x)∫ ℓ

0
X2

n(ζ) dζ
e−κλnt

]
f̄(ξ)dξ

We define a shorthand symbol for the term within the square brackets:

G(x, t, ξ) ≡
∑

n

Xn(ξ)Xn(x)∫ ℓ

0
X2

n(ζ) dζ
e−κλnt

Since this does not depend on what function f̄(x) is, we can evaluate G once
and for all. For any f̄(x), the corresponding temperature is then simply found
by integration:

vf (x, t) =

∫ ℓ

0

G(x, t, ξ)f̄(ξ)dξ

Function G(x, t, ξ) by itself is the temperature v(x, t) if f̄ is a single spike of
heat initially located at x = ξ. Mathematically, G is the solution for v if f̄(x)
is the “delta function” δ(x− ξ).

Now look at the first term in v, due to q̄, let’s call it vq:

vq ≡
∑

n

∫ t

τ=0

q̄n(τ)e
−κλn(t−τ) dτXn(x)
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We plug in the orthogonality expression for q̄n(τ):

vq =
∞∑

n=0

∫ t

τ=0

∫ ℓ

0
q̄(ξ, τ)Xn(ξ) dξ∫ ℓ

0
X2

n(ζ) dζ
e−κλn(t−τ) dτXn(x)

and rewrite

vq =

∫ t

τ=0

∫ ℓ

0

[
∑

n

Xn(ξ)Xn(x)∫ ℓ

0
X2

n(ζ) dζ
e−κλn(t−τ)

]
q̄(ξ, τ) dξdτ

We see that

vq(x, t) =

∫ t

τ=0

∫ ℓ

0

G(x, t− τ, ξ)q̄(ξ, τ) dξdτ

where the function G is exactly the same as it was before. However, G(x, t−τ, ξ)
describes the temperature due to a spike of heat added to the bar at a time τ
and position ξ; it is called the Green’s function.

The fact that solving the initial value problem (f̄), also solves the inho-
mogeneous partial differential equation problem (q̄) is known as the Duhamel
principle. The idea behind this principle is that function q̄(x, t) can be “sliced
up” as a cake. The contribution of each slice τ 6 t 6 τ + dτ of the cake to the
solution v can be found as an initial value problem with q̄(x, τ) dτ as the initial
condition at time τ .

22.8 An alternate procedure

This example tries to be clever about handling inhomogeneous boundary equa-
tions for the Laplace equations. It does run into a few problems. But the
students will of course explain and fix up the problem.

22.8.1 The physical problem

Find the steady temperature distribution in the square plate/cross section below
if the heat fluxes out of the sides are known.
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22.8.2 The mathematical problem

• Finite domain Ω̄: 0 6 x 6 1, 0 6 y 6 1.

• Unknown temperature u = u(x, y)

• Elliptic

• Four Neumann boundary conditions

• Integral constraint due to all Neumann boundary conditions:

∫ 1

0

p(x) dx−
∫ 1

0

g(y) dy −
∫ 1

0

q(x) dx+

∫ 1

0

f(y) dy = 0

Try separation of variables:

∑

n

un(y)Xn(x) or
∑

n

un(x)Yn(y)
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22.8.3 Step 0: Fix the boundary conditions

Standard approach:

All boundary conditions are inhomogeneous. Our standard approach would
be to set u = u0 + v where

u0x(0, y) = f(y) u0x(1, y) = g(y)

and then set

v =
∑

n

vn(y)Xn(x)

This would work without any problems. A u0 quadratic in x would be fine.
Of course, this choice for u0 is quite arbitrary.

Alternative approach:

Instead, we will follow a more elegant procedure that does not require us
to arbitrarily choose a u0. Unfortunately, this alternative procedure will get us
into some trouble.
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The idea is that the given problem can be seen as the sum of two problems,
each with homogeneous boundary conditions in one direction.

If we add the solutions u to the two problems together, we should get the
solution to the original problem.

The instructor will solve the left hand problem. The students will solve the
right hand problem, identify the difficulty, and fix it.

Some people split up the problem into 4, one for each side. That makes the
difficulty even worse.

22.8.4 Step 1: Find the eigenfunctions

Substitute u = T (y)X(x) into the homogeneous partial differential equation
uxx + uyy = 0:

TX ′′ + T ′′X = 0

T ′′

T
= −X ′′

X
= constant = λ

Since the instructor’s x-boundary conditions are homogeneous, he has a
Sturm-Liouville problem for X:

−X ′′ = λX X ′(0) = 0 X ′(1) = 0
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This was already solved in problem 7.19. Looking back there, substituting ℓ =
1,

λn = n2π2 Xn = cos (nπx) (n = 0, 1, 2, 3, . . .)

22.8.5 Step 2: Solve the problem

Expand all variables in the problem for u in a Fourier series:

u =
∞∑

n=0

un(y)Xn(x) p(x) =
∞∑

n=0

pnXn(x) q(x) =
∞∑

n=0

qnXn(x)

pn =

∫ 1

0
p(x)Xn(x) dx∫ 1

0
X2

n(x) dx

qn =

∫ 1

0
q(x)Xn(x) dx∫ 1

0
X2

n(x) dx

Remember that the expression you find for the integrals in the bottom, 1
2
, does

not work for n = 0, in which case it turns out to be 1.
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Fourier-expand the partial differential equation uxx + uyy = 0:

∞∑

n=0

un(y)Xn(x)
′′ +

∞∑

n=0

un(y)
′′Xn(x) = 0

Because of the Sturm-Liouville equation in the previous section

−
∞∑

n=0

λnun(y)Xn(x) +
∞∑

n=0

un(y)
′′Xn(x) = 0

giving the ordinary differential equation

un(y)
′′ − λnun(y) = 0

or substituting in the eigenvalue

un(y)
′′ − n2π2un(y) = 0

Fourier-expand the boundary condition uy(x, 0) = p(x):

∞∑

n=0

un(0)
′Xn(x) =

∞∑

n=0

pnXn(x) ⇒ u′
n(0) = pn

Fourier-expand the boundary condition uy(x, 1) = q(x):

∞∑

n=0

un(1)
′Xn(x) =

∞∑

n=0

qnXn(x) ⇒ u′
n(1) = qn

Solve the above ordinary differential equation and boundary conditions for
un. It is a constant coefficient one, with a characteristic equation

k2 − n2π2 = 0

Caution! Note that both roots are the same when n = 0. So we need to do the
n = 0 case separately.

For n 6= 0 the solution is

un = Ane
nπy + Bne

−nπy

The boundary conditions above give two linear equations for An and Bn:
(

nπ −nπ pn
nπenπ −nπe−nπ qn

)

that are best solved using Gaussian elimination. Rewriting the various expo-
nentials in terms of sinh and cosh, the solution for the Fourier coefficients of u
except n = 0 is:

un = −cosh(nπ[y − 1])

nπsinh(nπ)
pn +

cosh(nπy)

nπsinh(nπ)
qn (n = 1, 2, 3, . . .)
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For n = 0 the solution of the ordinary differential equation is

u0 = A0 + B0y

Put in the boundary conditions to get equations for the integration constants
A0 and B0:

u′
0(0) = B0 = p0 u′

0(1) = B0 = q0

Oops! We can only solve this if
p0 = q0

Looking above for the definition of those Fourier coefficients, we see we only
have a solution if ∫ 1

0

p(x) dx =

∫ 1

0

q(x) dx

Unfortunately, these two integrals will normally not be equal! Also, A0 remains
unknown.

22.8.6 Summary of the solution

First compute the Fourier coefficients of the given boundary conditions:

p0 =

∫ 1

0

p(x) dx pn = 2

∫ 1

0

p(x) cos(nπx) dx (n = 1, 2, . . .)

q0 =

∫ 1

0

q(x) dx qn = 2

∫ 1

0

q(x) cos(nπx) dx (n = 1, 2, . . .)

Then the solution is equal to:

u = A0 + p0x

+
∞∑

n=1

[
−cosh(nπ[y − 1])

nπsinh(nπ)
pn +

cosh(nπy)

nπsinh(nπ)
qn

]
cos(nπx)

But this only satisfies the boundary condition on the top of the plate if

∫ 1

0

q(x) dx =

∫ 1

0

p(x) dx

No problem! Students will explain and fix the problem.

22.9 A Summary of Separation of Variables

After the previous three examples, it is time to give a more general description
of the method of separation of variables.
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22.9.1 The form of the solution

Before starting the process, you should have some idea of the form of the solution
you are looking for. Some experience helps here.

For example, for unsteady heat conduction in a bar of length ℓ, with homo-
geneous end conditions, the temperature u would be written

u(x, t) =
∑

n

un(t)Xn(x)

where the Xn are chosen eigenfunctions and the un are computed Fourier co-
efficients of u. The separation of variables procedure allows you to choose the
eigenfunctions cleverly.

For a uniform bar, you will find sines and/or cosines for the functions Xn.
In that case the above expansion for u is called a Fourier series. In general it is
called a generalized Fourier series.

After the functions Xn have been found, the Fourier coefficients un can sim-
ply be found from substituting the expression above for u in the given partial
differential equation and initial conditions. (The boundary conditions are satis-
fied when you choose the eigenfunctions Xn.) If there are other functions in the
partial differential equation or initial conditions, they too need to be expanded
in a Fourier series.

If the problem was axially symmetric heat conduction through the wall of a
pipe, the temperature would still be written

u(r, t) =
∑

n

un(t)Rn(r)

but the expansion functions Rn would now be found to be Bessel functions, not
sines or cosines.

For heat conduction through a pipe wall without axial symmetry, still with
homogeneous boundary conditions, the temperature would be written

u(r, θ, t) =
∑

n,i

ui
n(r, t)Θ

i
n(θ) =

∑

n,i

∑

m

ui
nm(t)Rnm(r)Θ

i
n(θ)

where the eigenfunctions Θi
n turn out to be sines and cosines and the eigen-

functions Rnm Bessel functions. Note that in the first sum, the temperature is
written as a simple Fourier series in θ, with coefficients un that of course depend
on r and t. Then in the second sum, these coefficients themselves are written
as a (generalized) Fourier series in r with coefficients unm that depend on t.

(For steady heat conduction, the coordinate “t” might actually be a second
spatial coordinate. For convenience, we will refer to conditions at given values of
t as “initial conditions”, even though they might physically really be boundary
conditions.)
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22.9.2 Limitations of the method

The problems that can be solved with separation of variables are relatively
limited.

First of all, the equation must be linear. After all, the solution is found as
an sum of simple solutions.

The partial differential equation does not necessarily have to be a constant
coefficient equation, but the coefficients cannot be too complicated. You should
be able to separate variables. A coefficient like sin(xt) in the equation is not
separable.

Further, the boundaries must be at constant values of the coordinates. For
example, for the heat conduction in a bar, the ends of the bar must be at fixed
locations x = 0 and x = ℓ. The bar cannot expand, since then the end points
would depend on time.

You may be able to find fixes for problems such as the ones above, of course.
For example, the nonlinear Burger’s equation can be converted into the linear
heat equation. The above observations apply to straightforward application of
the method.

22.9.3 The procedure

The general lines of the procedure are to choose the eigenfunctions and then
to find the (generalized) Fourier coefficients of the desired solution u. In more
detail, the steps are:

1. Make the boundary conditions for the eigenfunctions Xn homo-
geneous

For heat conduction in a bar, this means that if nonzero end temperatures
or heat fluxes through the ends are given, you will need to eliminate these.

Typically, you eliminate nonzero boundary conditions for the eigenfunc-
tions by subtracting a function u0 from u that satisfies these boundary
conditions. Since u0 only needs to satisfy the boundary conditions, not
the partial differential equation or the initial conditions, such a function
is easy to find.

If the boundary conditions are steady, you can try subtracting the steady
solution, if it exists. More generally, a low degree polynomial can be tried,
say u0 = A + Bx + Cx2, where the coefficients are chosen to satisfy the
boundary conditions.

Afterwards, carefully identify the partial differential equation and initial
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conditions satisfied by the new unknown v = u− u0. (They are typically
different from the ones for u.)

2. Identify the eigenfunctions Xn

To do this substitute a single term TX into the homogeneous partial dif-
ferential equation. Then take all terms involving X and the corresponding
independent variable to one side of the equation, and T and the other in-
dependent variables to the other side. (If that turns out to be impossible,
the partial differential equation cannot be solved using separation of vari-
ables.)

Now, since the two sides of the equation depends on different coordinates,
they must both be equal to some constant. The constant is called the
eigenvalue.

Setting the X-side equal to the eigenvalue gives an ordinary differential
equation. Solve it to get the eigenfunctions Xn. In particular, you get
the complete set of eigenfunctions Xn by finding all possible solutions to
this ordinary differential equation. (If the ordinary differential equation
problem for the Xn turns out to be a regular Sturm-Liouville problem of
the type described in the next section, the method is guaranteed to work.)

The equation for T is usually safest ignored. The book tells you to also
solve for the Tn, to get the Fourier coefficients vn, but if you have an inho-
mogeneous partial differential equation, you have to mess around to get
it right. Also, it is confusing, since the eigenfunctions Xn do not have un-
determined constants, but the coefficients vn do. It are the undetermined
constants in vn that allow you to satisfy the initial conditions. They prob-
ably did not make this fundamental difference between the functions Xn

and the coefficients un clear in your undergraduate classes.

There is one case in which you do need to use the equation for the Tn:
in problems with more than two independent variables, where you want
to expand the Tn themselves in a generalized Fourier series. That would
be the case for the pipe wall without axial symmetry. Simply repeat the
above separation of variables process for the partial differential equation
satisfied by the Tn.

3. Find the coefficients

Now find the Fourier coefficients vn (or vnm for three independent vari-
ables) by putting the Fourier series expansion into the partial differential
equation and initial conditions.
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While doing this, you will also need to expand the inhomogeneous terms
in the partial differential equation and initial conditions into a Fourier se-
ries of the same form. You can find the coefficients of these Fourier series
using the orthogonality property described in the next section.

You will find that the partial differential equation produces ordinary dif-
ferential equations for the individual coefficients. And the integration
constants in solving those equations follow from the initial conditions.

Afterwards you can play around with the solution to get other equivalent
forms. For example, you can interchange the order of summation and integration
(which results from the orthogonality property) to put the result in a Green’s
function form, etcetera.

22.9.4 More general eigenvalue problems

So far, the eigenvalue problems in the examples were of the form X ′′ = −λX.
But you might get a different problem in other examples. Usually that produces
a different orthogonality expression.

You can figure out what is the correct expression by writing your ordinary
differential equation in the standard form of a Sturm-Liouville problem:

−pX ′′ − p′X ′ + qX = λr̄X,

where X(x) is the eigenfunction to be found and p(x) > 0, q(x), and r̄(x) >
0 are given functions. The distinguishing feature is that the coefficient of the
second, X ′, term is the derivative of the coefficient of the first, X ′′ term.

Starting with an arbitrary second order linear ordinary differential equa-
tion, you can achieve such a form by multiplying the entire ordinary differential
equation with a suitable factor.

The boundary conditions may either be periodic ones,

X(b) = X(a) X ′(b) = X ′(a),

or they can be homogeneous of the form

AX(a) + BX ′(a) = 0 CX(b) +DX ′(b) = 0,

where A, B, C, and D are given constants. Note the important fact that a
Sturm-Liouville problem must be completely homogeneous: X = 0 must be a
solution.

If you have a Sturm-Liouville problem, simply (well, simply ...) solve it. The
solutions only exists for certain values of λ. Make sure you find all solutions, or
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you are in trouble. They will form an infinite sequence of ‘eigenfunctions’, say
X1(x), X2(x), X3(x), ... with corresponding ‘eigenvalues’ λ1, λ2, λ3, ... that go
off to positive infinity.

You can represent arbitrary functions, say f(x), on the interval [a, b] as a
generalized Fourier series:

f(x) =
∑

n

fnXn(x).

If you know f(x), the orthogonality relation that gives the generalized Fourier
coefficients fn is

fn =

∫ b

a
f(x)Xn(x)r̄(x)dx∫ b

a
X2

n(x)r̄(x)dx

Now you know why you need to write your Sturm-Liouville problem in standard
form: it allows you to pick out the weight factor r̄ that you need to put in the
orthogonality relation!

22.10 More general eigenfunctions

In the simplest problems, the eigenfunctions are sines and cosines. That includes
the examples so far. But it is quite easy to get different eigenfunctions. In this
example, they will turn out to be products of sines and exponentials.

22.10.1 The physical problem

Find the unsteady temperature distribution in the moving bar below for arbi-
trary position and time if the initial distribution at time zero and the temper-
atures of the ends are known.
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22.10.2 The mathematical problem

• Finite domain Ω̄: 0 6 x 6 ℓ

• Unknown temperature u = u(x, t)

• Parabolic

• One initial condition

• Two Dirichlet boundary conditions

• Constant κ

Try separation of variables:
∑

n

Cn(t)Xn(x)

22.10.3 Step 0: Fix the boundary conditions

The x-boundary conditions are inhomogeneous:

u(0, t) = g0(t) u(ℓ, t) = g1(t)

So we try finding a u0 satisfying these boundary conditions:

u0(0, t) = g0(t) u0(ℓ, t) = g1(t)

A linear expression works:

u0 = A(t) + B(t)x



248 CHAPTER 22. SEPARATION OF VARIABLES

A(t) = g0(t) A(t) +B(t)ℓ = g1(t)

This can be solved to find

u0(x, t) = g0(t) +
g1(t)− g0(t)

ℓ
x

To get rid of the inhomogeneous boundary conditions, we subtract u0 from
u. That will produce homogeneous boundary conditions for the remainder v =
u− u0. Indeed, if you plug u = u0 + v into the boundary conditions, you get

u0(0, t) + v(0, t) = g0(t) u0(ℓ, t) + v(ℓ, t) = g1(t)

And since u0 satisfies the inhomogeneous boundary conditions, that becomes

v(0, t) = 0 v(ℓ, t) = 0

Substitute u = u0+v into the partial differential equation ut = κuxx+bux+cu
to get

vt = κvxx + bvx + cv + q

where

q(x, t) = −g′0(t)−
g′1(t)− g′0(t)

ℓ
x+ b

g1(t)− g0(t)

ℓ
+ cg0(t) + c

g1(t)− g0(t)

ℓ
x

Substitute u = u0 + v into the initial condition u(x, 0) = f(x):

v(x, 0) = f̄(x)

f̄(x) = f(x)− g0(0)−
g1(0)− g0(0)

ℓ
x

The problem for v is therefor:
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22.10.4 Step 1: Find the eigenfunctions

Substitute v = T (t)X(x) into the homogeneous partial differential equation vt
= κvxx + bvx + cv:

T ′X = κTX ′′ + bTX ′ + cTX

Separate:
T ′

T
= κ

X ′′

X
+ b

X ′

X
+ c = constant = −λ

The Sturm-Liouville problem for X is now:

−κX ′′ − bX ′ − cX = λX X(0) = 0 X(ℓ) = 0

This is a constant coefficient ordinary differential equation, with a charac-
teristic polynomial:

κk2 + bk + (c+ λ) = 0

The fundamentally different cases are now two real roots (discriminant positive),
a double root (discriminant zero), and two complex conjugate roots (discrimi-
nant negative.) We do each in turn.

1.

2. Case b2 − 4κ(c+ λ) > 0:

Roots k1 and k2 real and distinct:

X = Aek1x + Bek2x

Boundary conditions:

X(0) = 0 = A+ B ⇒ B = −A

X(ℓ) = 0 = A
(
ek1ℓ − ek2ℓ

)
= 0

No nontrivial solutions since the roots are different.

3. Case b2 − 4κ(c+ λ) = 0:

Since k1 = k2 = k:

X = Aekx +Bxekx

Boundary conditions:

X(0) = 0 = A X(ℓ) = 0 = Bℓekℓ

No nontrivial solutions.
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4. Case b2 − 4κ(c+ λ) < 0:

For convenience, we will write the roots of the characteristic polynomial
more concisely as:

k1 = −µ+ iω k2 = −µ− iω

where according to the solution of the quadratic

µ =
b

2κ
ω =

√
4κ(c+ λ)− b2

2κ

Since it can be confusing to have too many variables representing the
same thing, let’s agree that µ is our “representative” for b, and ω our
“representative” for λ. In terms of these representatives, the solution is,
after clean-up,

X = e−µx (A cos(ωx) + B sin(ωx))

Boundary conditions:

X(0) = 0 = A X(ℓ) = 0 = e−µℓB sin(ωℓ)

Nontrivial solutions B 6= 0 can only occur if

sin(ωℓ) = 0 ⇒ ωn = nπ/ℓ (n = 1, 2, . . .)

which gives us our eigenvalues, by substituting in for ω:

λn =
κn2π2

ℓ2
+

b2

4κ
− c (n = 1, 2, 3, ...)

Also, choosing each B = 1:

Xn = e−µx sin (nπx/ℓ) (n = 1, 2, 3, ...)
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22.10.5 Step 2: Solve the problem

Expand all variables in the problem for v in a Fourier series:

v =
∞∑

n=1

vn(t)Xn(x) f̄ =
∞∑

n=1

f̄nXn(x) q =
∞∑

n=1

qn(t)Xn(x)

We want to first find the Fourier coefficients of the known functions f̄ and q.
Unfortunately, the ordinary differential equation found in the previous section,

−κX ′′ − bX ′ − cX = λX

is not in standard Sturm-Liouville form: the derivative of the first, X ′′, coeffi-
cient, −κ, is zero, not −b. Let’s try to make it OK by multiplying the entire
equation by a factor, which will then be our r̄.

−r̄κX ′′ − r̄bX ′ − r̄cX = λr̄X

We want that the second coefficient is the derivative of the first:

r̄b =
d

dx
(r̄κ)

This is a simple ordinary differential equation for the r̄ we are trying to find,
and a valid solution is:

r̄ = ebx/κ = e2µx

Having found r̄, we can write the orthogonality relationships for the gener-
alized Fourier coefficients of f̄ and q (remember that Xn = e−µx sin(nπx/ℓ)):

f̄n =

∫ ℓ

x=0
eµxf̄(x) sin(nπx/ℓ) dx
∫ ℓ

x=0
sin2(nπx/ℓ) dx
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qn(t) =

∫ ℓ

x=0
eµxq(x, t) sin(nπx/ℓ) dx
∫ ℓ

x=0
sin2(nπx/ℓ) dx

The integrals in the bottoms equal ℓ/2.
Expand the partial differential equation vt = κvxx + bvx + cv+ q in a gener-

alized Fourier series:
∞∑

n=1

v̇n(t)Xn(x) =

κ
∞∑

n=1

vn(t)X
′′
n(x) + b

∞∑

n=1

vn(t)X
′
n(x) + c

∞∑

n=1

vn(t)Xn(x)

+
∞∑

n=1

qn(t)Xn(x)

Because of the choice of the Xn, κX
′′ + bX ′ + cX = −λX:

∞∑

n=1

v̇n(t)Xn(x) = −
∞∑

n=1

λnvn(t)Xn(x) +
∞∑

n=1

qn(t)Xn(x)

So, the ordinary differential equation for the generalized Fourier coefficients of
v becomes:

v̇n(t) + λnvn(t) = qn(t)

Expand the initial condition v(x, 0) = f̄(x) in a generalized Fourier series:

∞∑

n=1

vn(0)Xn(x) =
∞∑

n=1

f̄nXn(x)

so
vn(0) = f̄n

Solve this ordinary differential equation and initial condition for vn:
Homogeneous equation:

vnh = Ane
−λnt

Inhomogeneous equation:

A′
ne

−λnt + 0 = qn(t)

An =

∫ t

τ=0

qn(τ)e
λnτ dτ + An0

vn = Ane
−λnt

vn =

∫ t

τ=0

qn(τ)e
−λn(t−τ) dτ + An0e

−λnt

Initial condition: An0 = f̄n.

vn =

∫ t

τ=0

qn(τ)e
−λn(t−τ) dτ + f̄ne

−λnt
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22.10.6 Summary of the solution

Total solution:

µ =
b

2κ
λn =

κn2π2

ℓ2
+ λ0 λ0 =

b2

4κ
− c

f̄(x) = f(x)− g0(0)−
g1(0)− g0(0)

ℓ
x

f̄n =
2

ℓ

∫ ℓ

x=0

f̄(x)eµx sin(nπx/ℓ) dx

q(x, t) = −g′0(t)−
g′1(t)− g′0(t)

ℓ
x+ b

g1(t)− g0(t)

ℓ
+ c

(
g0(t) +

g1(t)− g0(t)

ℓ
x

)

qn(t) =
2

ℓ

∫ ℓ

x=0

q(x, t)eµx sin(nπx/ℓ) dx

u = g0(t) +
g1(t)− g0(t)

ℓ
x

+
∞∑

n=1

[∫ t

τ=0

qn(τ)e
−λn(t−τ) dτ + f̄ne

−λnt

]
e−µx sin(nπx/ℓ)

22.10.7 An alternative procedure

Define a new unknown w by u = we−αx−βt. Put this in the partial differential
equation for u and choose α and β so that the wx and w terms drop out. This
requires:

u = we−µx−λ0t

Then:

wt = κwxx w(x, 0) = eµxf(x) w(0, t) = eλ0tg0(t) w(ℓ, t) = eµℓ+λ0tg1(t)

No fun! Note that the generalized Fourier series coefficients for u become
normal Fourier coefficients for w.

22.11 A Problem in Three Independent Vari-

ables

This example addresses a much more complex case. It involves three indepen-
dent variables and eigenfunctions that turn out to be Bessel functions.
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22.11.1 The physical problem

Find the unsteady heat conduction in a disk if the perimeter is insulated. The
initial temperature is given.

22.11.2 The mathematical problem

• Finite domain Ω̄: 0 6 r 6 a, 0 6 ϑ < 2π

• Unknown temperature u = u(r, ϑ, t)

• Parabolic partial differential equation:

ut = κ

(
urr +

1

r
ur +

1

r2
uϑϑ

)

• One homogeneous Neumann boundary condition at r = a:

ur(a, ϑ, t) = 0

• One initial condition at t = 0:

u(r, ϑ, 0) = f(r, ϑ)

We will solve using separation of variables in the form

u(r, ϑ, t) =
∑

n

(
∑

m

unm(t)Rnm(r)

)
Θn(ϑ)

The eigenfunctions Θn will get rid of the ϑ variable in the partial differential
equation, and the eigenfunctions Rnm will get rid of the r variable, leaving
ordinary differential equations for the Fourier coefficients unm(t).
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22.11.3 Step 1: Find the eigenfunctions

Let’s start trying to get rid of one variable first. We might try a solution of the
form

u(r, ϑ, t) =
∑

n

un(ϑ, t)Rn(r)

where the Rn would be the eigenfunctions and the un(ϑ, t) the corresponding
Fourier coefficients. Unfortunately, if we try to substitute a single term of the
form C(ϑ, t)Rn(r) into the homogeneous partial differential equation, we are not
able to take all r terms to the same side of the equation and θ and t terms to
the other side. So we do not get a Sturm-Liouville problem for Rn.

Try again, this time

u(r, ϑ, t) =
∑

n

un(r, t)Θn(ϑ)

If we substitute C(r, t)Θ(ϑ) into the homogeneous partial differential equation
ut/κ = urr + ur/r + uϑϑ/r

2 we get:

1

κ
ṪΘ = C ′′Θ+

1

r
C ′Θ+

1

r2
CΘ′′

This, fortunately, can be separated:

r2
C ′′

C
+ r

C ′

C
− r2

Ċ

κC
= −Θ′′

Θ
= constant = λ

So we have a Sturm-Liouville problem for Θ:

−Θ′′ = λΘ

with boundary conditions that are periodic of period 2π. This problem was
already fully solved in 7.38. It was the standard Fourier series for a function of
period 2π. In particular, the eigenfunctions were cos(nϑ), n = 0, 1, 2, . . ., and
sin(nϑ), n = 1, 2, . . ..

Like we did in 7.38, in order to cut down on writing, we will indicate those
eigenfunctions compactly as Θi

n, where Θ1
n ≡ cos(nϑ) and Θ2

n ≡ sin(nϑ).
So we can concisely write

u =
∑

n,i

ui
n(r, t)Θ

i
n(ϑ)

Now, if you put this into the partial differential equation, you will see that
you get rid of the ϑ coordinate as usual, but that still leaves you with r and
t. So instead of ordinary differential equations in t, you get partial differential
equations involving both r and t derivatives. That is not good enough.
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We must go one step further: in addition we need to expand each Fourier
coefficient ui

n(r, t) in a generalized Fourier series in r:

u(r, ϑ, t) =
∑

n,i

(
∑

m

ui
nm(t)R

i
nm(r)

)
Θi

n(ϑ)

Now, if you put a single term of the form Tn(t)Rn(r)Θn(ϑ) into the homo-
geneous partial differential equation, you get

1

κ
Ṫ i
nR

i
nΘ

i
n = T i

nR
i
n

′′
Θi

n +
1

r
T i
nR

i
n

′
Θi

n +
1

r2
T i
nR

i
nΘ

i
n

′′

Since Θi
n
′′
= −λΘi

n = −n2Θi
n, this is separable:

Ṫ i
n

κT i
n

=
Ri

n
′′

Ri
n

+
Ri

n
′

rRi
n

− n2 1

r2
= constant = −µn

So we get a Sturm-Liouville problem for Ri
n with eigenvalue µn

r2Ri
n
′′
+ rRi

n
′
+ (µnr

2 − n2)Ri
n = 0

with again the same homogeneous boundary conditions as u:

Ri
n regular at r = 0 Ri

n
′
(a) = 0

We need to find all solutions to this problem.
Unfortunately, the ordinary differential equation above is not a constant

coefficient one, so we cannot write a characteristic equation. However, we have
seen the special case that µn = 0 before, 7.38. It was a Euler equation. We
found in 7.38 that the only solutions that are regular at r = 0 were found to be
Anr

n. But over here, the only one of that form that also satisfies the boundary
condition Ri

n
′
= 0 at r = a is the case n = 0. So, for µ = 0, we only get a single

eigenfunction

R00 = 1

For the case µn 6= 0, the trick is to define a stretched r coordinate ρ as

ρ =
√
µnr ⇒ ρ2

d2Ri
n

dρ2
+ ρ

dRi
n

dρ
+ (ρ2 − n2)Ri

n = 0

This equation can be found in any mathematical handbook in the section on
Bessel functions. It says there that solutions are the Bessel functions of the first
kind Jn and of the second kind Yn:

Ri
n = AnJn(

√
µnr) + BnYn(

√
µnr)
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Now we need to apply the boundary conditions. Now if you look up the
graphs for the functions Yn, or their power series around the origin, you will see
that they are all singular at r = 0. So, regularity at r = 0 requires Bn = 0.

The boundary condition at the perimeter is

Ri
n

′
(a) = 0 = An

√
µnJ

′
n(
√
µna)

Since µn is nonzero, nontrivial solutions only occur if

J ′
n(
√
µna) = 0

Now if you look up the graphs of the various functions J0, J1, . . ., you will see
that they are all oscillatory functions, like decaying sines, and have an infinity
of maxima and minima where the derivative is zero.

Each of the extremal points gives you a value of µn, so you will get an infinite of
values µn1, µn2, µn3, . . ., µnm, . . .. There is no simple formula for these values,
but you can read them off from the graph. Better still, you can find them in
tables for low values of n and m. (Schaum’s gives a table containing both the
zeros of the Bessel functions and the zeros of their derivatives.)

So the r-eigenvalues and eigenfunctions are:

µn1 µn2 . . . µnm . . .

Ri
n1 = Jn

(√
µn1r

)
Ri

n2 = Jn
(√

µn2r
)

. . . Ri
nm = Jn

(√
µn3r

)
. . .

where m is the counter over the nonzero stationary points of Jn. To include the
special case µn = 0, we can simply add µ00 = 0, Ri

00 = J0(0) = 1 to the list
above.

In case of negative µn, the Bessel function Jn of imaginary argument becomes
a modified Bessel function In of real argument, and looking at the graph of those,
you see that there are no solutions.
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22.11.4 Step 2: Solve the problem

We again expand all variables in the problem in generalized Fourier series:

Let’s start with the initial condition:

f(r, ϑ) =
∑

n,i

∑

m

f i
nmΘ

i
n(ϑ)Jn(

√
µnmr)

To find the Fourier coefficients f i
nm, we need orthogonality for both the r

and ϑ eigenfunctions. Now the ordinary differential equation for the Θ eigen-
functions was in standard form,

−Θ′′ = λΘ

but the one for Rn was not:

r2Ri
n
′′
+ rRi

n
′ − n2Ri

n = −µnr
2Ri

n

The derivative of the first coefficient is 2r, not r. To fix it up, we must divide
the equation by r. And that makes the weight factor r̄ that we need to put in
the orthogonality relationship equal to r.

As a result, our orthogonality relation for the Fourier coefficients of initial
condition f(r, ϑ) becomes

f i
nm =

∫ a

0
Jn(

√
µnmr)

[∫ 2π

0
Θi

n(ϑ)f(r, ϑ) dϑ
]
r dr

∫ a

0
J2
n(
√
µnmr) r dr

∫ 2π

0
Θi2

n (ϑ) dϑ

The integral within the square brackets turns f(r, ϑ) into its θ-Fourier coefficient
f i
n(r) and the outer integral turns that coefficient in its generalized r-Fourier
coefficient f i

nm. Note that the total numerator is an integral of f over the area
of the disk against a mode shape Jn(

√
µnmr)Θ

i
n(ϑ).

The r-integral in the denominator can be worked out using Schaum’s Math-
ematical Handbook 24.88/27.88:

∫ a

0

J2
n(
√
µnmr) r dr =

(
a2

2
− n2

2µnm

)
J2
n (

√
µnma)

(setting the second term to zero for µ00.)
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Hence, while akward, there is no fundamental problem in evaluating as many
f i
nm as you want numerically. We will therefor consider them now “known”.
Next we expand the desired temperature in a generalized Fourier series:

u(r, ϑ, t) =
∑

n,i

∑

m

ui
nm(t)Θ

i
n(ϑ)Jn(

√
µnmr)

Put into partial differential equation ut/κ = urr + ur/r + uϑϑ/r
2:

1

κ

∑

n,i

∑

m

u̇i
nmΘ

i
n(ϑ)Jn(

√
µnmr)

=
∑

n,i

∑

m

ui
nmΘ

i
n(ϑ)Jn(

√
µnmr)

′′

+
1

r

∑

n,i

∑

m

ui
nmΘ

i
n(ϑ)Jn(

√
µnmr)

′

+
1

r2

∑

n,i

∑

m

ui
nmΘ

i
n(ϑ)

′′Jn(
√
µnmr)

Because of the SL equation satisfied by the Θi
n:

1

κ

∑

n,i

∑

m

u̇i
nmΘ

i
n(ϑ)Jn(

√
µnmr)

=
∑

n,i

∑

m

ui
nmΘ

i
n(ϑ)Jn(

√
µnmr)

′′

+
1

r

∑

n,i

∑

m

ui
nmΘ

i
n(ϑ)Jn(

√
µnmr)

′

− 1

r2

∑

n,i

∑

m

n2ui
nmΘ

i
n(ϑ)Jn(

√
µnmr)

Because of the SL equation satisfied by the Jn:

1

κ

∑

n,i

∑

m

u̇i
nmΘ

i
n(ϑ)Jn(

√
µnmr)

= −
∑

n,i

∑

m

µnmu
i
nmΘ

i
n(ϑ)Jn(

√
µnmr)

Hence the ordinary differential equation for the Fourier coefficients is:

u̇i
nm + κµnmu

i
nm = 0

with solution:
ui
nm(t) = ui

nm(0)e
−κµnmt
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At time zero, the series expansion for u must be the same as the one for the
given initial condition f :

ui
nm(0) = f i

nm

Hence we have found the Fourier coefficients of u and solved the problem.

22.11.5 Summary of the solution

Find the set
√
µnma of positive stationary points of the Bessel functions Jn,

n = 0, 1, 2, ... and add µ00 = 0.
Find the generalized Fourier coefficients of the initial condition:

f 1
0m =

∫ 2π

0

∫ a

0

f(r, ϑ)J0(
√
µ0mr) r dϑdr

πa2J2
0 (

√
µ0ma)

f 1
nm =

2µnm

∫ 2π

0

∫ a

0

f(r, ϑ) cos(nϑ)Jn(
√
µnmr) r dϑdr

π
(
µnma

2 − n2
)
J2
n (

√
µnma)

f 2
nm =

2µnm

∫ 2π

0

∫ a

0

f(r, ϑ) sin(nϑ)Jn(
√
µnmr) r dϑdr

π
(
µnma

2 − n2
)
J2
n (

√
µnma)

Then:

u(r, ϑ, t) =
∞∑

m=0

f0me
−κµ0mtJ0 (

√
µ0mr)

+
∞∑

n=1

∞∑

m=1

f 1
nme

−κµnmt cos(nϑ)Jn (
√
µnmr)

+
∞∑

n=1

∞∑

m=1

f 2
nme

−κµnmt sin(nϑ)Jn (
√
µnmr)

That was not too bad!
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Fourier Transforms [None]
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Chapter 24

Laplace Transforms

This chapter shows how many simple linear partial differential equation prob-
lems can be solved using Laplace transforms. The procedure is illustrated using
a few examples.

24.1 Overview of the Procedure

The Laplace transform pairs a function of a real coordinate, call it t, with 0 <
t < ∞, with a different function of a complex coordinate s:

u(t, ·)
L
=⇒
⇐=
L−1

û(s, ·)

The pairing is designed to get rid of derivatives with respect to t in equations
for the function u. This works as long as the coefficients do not depend on t (or
at the very most are low degree powers of t.) The transformation is convenient
since pairings can be looked up in tables.

24.1.1 Typical procedure

Use tables to find the equations satisfied by û from these satisfied by u. Solve
for û and look up the corresponding u in the tables.

Table 24.1 lists important properties of the Laplace transform and table
24.2 gives example Laplace transform pairs. In the tables, k > 0, a, b, and c are
constants, normally positive, n is a natural number, and

erfc(x) ≡ 2√
π

∫ ∞

x

e−ξ2 dξ

Table 24.1 assumes that a and b are positive.

263
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u(t) û(s)

0.
1

2πi

∫ c+i∞

c−i∞
e−stû(s) ds

∫ ∞

0

u(t)e−st dt

1. C1u1(t) + C2u2(t) C1û1(s) + C2û2(s)

2. u(at) a−1û(s/a)

3.
∂nu

∂tn
(t) snû(s)− sn−1u(0)− . . .− ∂n−1u

∂tn−1
(0)

4. tnu(t) (−1)n
∂nû

∂sn

5. ectu(t) û(s− c)

6.

ū(t− b) ≡ H(t− b)u(t− b)

=
{ u(t− b) (t− b > 0)

0 (t− b < 0)

e−bsû(s)

7.

∫ t

0

f(t− τ)g(τ) dτ f̂(s)ĝ(s)

Table 24.1: Properties of the Laplace transform.

24.1.2 About the coordinate to be transformed

In many cases, t is physically time, since time is most likely to satisfy the
constraints 0 < t < ∞ and coefficients independent of t. Also, the Laplace
transform likes initial conditions at t = 0, not boundary conditions at both t =
0 and t = ∞.

24.2 A parabolic example

This example illustrates Laplace transform solution for a parabolic partial dif-
ferential equation.
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u(t) û(s)

1. 1
1

s

2. tn
n!

sn+1

3. ebt
1

s− b

4. sin(at)
a

s2 + a2

5. cos(at)
s

s2 + a2

6.
1√
πt

1√
s

7.
1√
πt

e−k2/(4t) 1√
s
e−k

√
s

8.
k√
4πt3

e−k2/(4t) e−k
√
s

9. erfc

(
k

2
√
t

)
1

s
e−k

√
s

Table 24.2: Selected Laplace transform pairs.

24.2.1 The physical problem

Find the flow velocity in a viscous fluid being dragged along by an accelerating
plate.

Figure 24.1: Viscous flow next to a moving plate

extrascale=3
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24.2.2 The mathematical problem

Figure 24.2: Viscous flow next to a moving plate

• Semi-infinite domain Ω̄: 0 6 x < ∞

• Unknown vertical velocity u = u(x, t)

• Parabolic

• One homogeneous initial condition

• One Neumann boundary condition at x = 0 and a regularity constraint
at x = ∞

• Constant kinematic viscosity κ

Try a Laplace transform in t.

24.2.3 Transform the problem

Transform the partial differential equation:

ut = κuxx
Table 6.3, # 3
==========⇒ sû− u(x, 0) = κûxx
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Transform the boundary condition:

ux = g(t) ==========⇒ ûx = ĝ(s)

24.2.4 Solve the transformed problem

Solve the partial differential equation:

sû = κûxx

This is a constant coefficient ordinary differential equation in x, with s simply
a parameter. Solve from the characteristic equation:

s = κk2 ⇒ k = ±
√
s/κ

û = Ae
√

s/κ x +Be−
√

s/κ x

Apply the boundary condition at x = ∞ that u must be regular there:

A = 0

Apply the given boundary condition at x = 0:

ûx = ĝ(s) ⇒ −B

√
s

κ
= ĝ

Solving for B and plugging it into the solution of the ordinary differential
equation, û has been found:

û = −
√

κ

s
e−

√
s/κ xĝ

24.2.5 Transform back

We need to find the original function u corresponding to the transformed

û = −
√

κ

s
e−

√
s/κ xĝ

We do not really know what ĝ is, just that it transforms back to g. However,
we can find the other part of û in the tables.

−
√

κ

s
e−

√
s/κ x Table 6.4, # 7

==========⇒ −
√

κ

πt
e−x2/4κt

How does ĝ times this function transform back? The product of two func-
tions, say f̂(s)ĝ(s), does not transform back to f(t)g(t). The convolution theo-
rem Table 6.3 # 7 is needed:

u(x, t) = −
∫ t

0

√
κ

π(t− τ)
e−x2/4κ(t−τ)g(τ) dτ
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24.3 A hyperbolic example

This example illustrates Laplace transform solution for a hyperbolic partial
differential equation.

It also illustrates that the transformed coordinate is not always a time.

24.3.1 The physical problem

Find the horizontal perturbation velocity in a supersonic flow above a membrane
overlaying a compressible variable medium.

Figure 24.3: Supersonic flow over a membrane.

24.3.2 The mathematical problem

Figure 24.4: Supersonic flow over a membrane.

• Domain Ω̄: 0 6 x < ∞, 0 6 y < ∞
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• Unknown horizontal perturbation velocity u = u(x, y)

• Hyperbolic

• Two homogeneous initial conditions

• One mixed boundary condition at y = 0 and a regularity constraint at y
= ∞

• Constant a = tanµ, where µ is the Mach angle.

Try a Laplace transform. The physics and the fact that Laplace transforms
like only initial conditions suggest that x is the one to be transformed. Variable
x is our “time-like” coordinate.

24.3.3 Transform the problem

Transform the partial differential equation:

uxx = a2uyy
Table 6.3, # 3
==========⇒ s2û− su(0, y)− ux(0, y) = a2ûyy

Transform the boundary condition:

uy − pu = f(x) ==========⇒ ûy − pû = f̂(s)

24.3.4 Solve the transformed problem

Solve the partial differential equation, again effectively a constant coefficient
ordinary differential equation:

s2û = a2ûyy

s2 = a2k2 ⇒ k = ±s/a

û = Aesy/a +Be−sy/a

Apply the boundary condition at y = ∞:

A = 0

Apply the boundary condition at y = 0:

ûy − pû = f̂ ⇒ −s

a
B − pB = f̂

Solving for B and plugging it into the expression for û gives:

û = − af̂

s+ ap
e−sy/a
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24.3.5 Transform back

We need to find the original to

û = − a

s+ ap
f̂e−sy/a

Looking in the tables:

1

s+ ap

Table 6.4, # 3
==========⇒ e−apx

The other factor is a shifted function f , restricted to the interval that its
argument is positive:

e−sy/af̂
Table 6.3, # 6
==========⇒ f̄

(
x− y

a

)

With the bar, I indicate that I only want the part of the function for which the
argument is positive. This could be written instead as

f
(
x− y

a

)
H
(
x− y

a

)

where the Heaviside step function H(x) = 0 if x is negative and 1 if it is positive.

Figure 24.5: Function f̄ .

Use convolution, Table 6.3, # 7. again to get the product.

u(x, y) = −
∫ x

0

af̄
(
ξ − y

a

)
e−ap(x−ξ) dξ

This must be cleaned up. I do not want bars or step functions in my answer.
I can do that by restricting the range of integration to only those values for

which f̄ is nonzero. (Or H is nonzero, if you prefer)
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Figure 24.6: Function f̄ again.

Two cases now exist:

u(x, y) = −
∫ x

y/a

af
(
ξ − y

a

)
e−ap(x−ξ) dξ (x >

y

a
)

u(x, y) = 0 (x <
y

a
)

It is neater if the integration variable is the argument of f . So, define φ =
ξ − y/a and convert:

u(x, y) = −
∫ x−y/a

0

af (φ) e−apx+py+apφ dφ (x >
y

a
)

u(x, y) = 0 (x <
y

a
)

This allows me to see which physical f values I actually integrate over when
finding the flow at an arbitrary point:

Figure 24.7: Supersonic flow over a membrane.
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24.3.6 An alternate procedure

An alternate solution procedure is to define a new unknown:

v ≡ uy − pu

You must derive the problem for v:
The boundary condition is simply:

v(x, 0) = f(x)

To get the partial differential equation for v, use

∂[P.D.E.]

∂y
− p[P.D.E.] ⇒ vtt = a2vxx

Similarly, for the initial conditions:

∂[I.C.]

∂y
− p[I.C.] ⇒ v(0, y) = vx(0, y) = 0

Figure 24.8: Problem for v.

After finding v, I still need to find u from the definition of v:

v ≡ uy − pu

Where do you get the integration constant??
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Appendix A

Addenda

This appendix describes a number of additional topics. They did not seem
important enough to warrant including them in the main text. An addition is
always a distraction; at the minimum you have to worry about whether you need
to worry about it. However, many of the topics below are covered in well-known
other texts. Obviously many other authors disagree about their importance. If
they turn out to be right, you can find it here.

A.1 Distributions

A delta function is not a function in the normal sense. Infinity is not a proper
number.

However, delta functions have a property that can be used to define them.
That property is called the “filtering property.” If you multiply a delta function
by a smooth function φ(x) and integrate over all x, you get the value of the
function at the location of the delta function:

∫ ∞

x=−∞
φ(x)δ(x− ξ) dx = φ(ξ)

The reason is that the delta function is everywhere zero except at the single
point x = ξ. So you can replace φ(x) by φ(ξ) without changing anything. And
φ(ξ) is a constant that can be taken out of the integral.

You can reverse that statement and define the delta function as the “dis-
tribution” that produces the result above for any smooth function φ. (The
functions φ are normally further constrained by a requirement that they must
become zero at their ends.)

In a similar way you can also define the derivative of the delta function, the
dipole δ′. It is the distribution for which, for any smooth φ,

∫ ∞

x=−∞
φ(x)δ′(x− ξ) dx = −φ′(ξ)
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To see why you want to define it this way, perform a formal integration by parts.



Appendix D

Derivations

This appendix gives various derivations. Sometimes you need to see the deriva-
tion to judge whether a result is applicable in given circumstances. And some
people like to see the derivation period.

D.1 Orthogonal coordinate derivatives

Since there is no fundamental difference between the three orthogonal coordi-
nates, it suffices to show that

∂ı̂1
∂u2

=
1

h1

∂h2

∂u1

ı̂2

The other derivatives with i 6= j go the same way, and the derivatives with
i = j can then be evaluated by writing ı̂i as a cross product of the other two
unit vectors.

Now to derive the above result, the only thing we know a priori is that the
derivative of a unit vector is normal to the unit vector, so:

∂ı̂1
∂u2

= c2ı̂2 + c3ı̂3

But it is not obvious why c2 would have to be ∂h2/h1∂u1 and c3 would have to
be zero.

Recall however that ı̂1 was defined as

∂~r

∂u1

≡ h1ı̂1

and if we differentiate this with respect to u2, one of the terms will involve the
desired derivative of ı̂1:

∂2~r

∂u1∂u2

=
∂h1

∂u2

ı̂1 + h1
∂ı̂1
∂u2

277



278 APPENDIX D. DERIVATIONS

Since we can change the order of differentiation without changing the derivative,
we must have

∂h1

∂u2

ı̂1 + h1
∂ı̂1
∂u2

=
∂h2

∂u1

ı̂2 + h2
∂ı̂2
∂u1

so, writing out the derivative

∂h1

∂u2

ı̂1 + h1(c2ı̂2 + c3ı̂3) =
∂h2

∂u1

ı̂2 + h2
∂ı̂2
∂u1

Now compare ı̂2 components in both sides, noting that the derivative of ı̂2 is
normal to ı̂2. Then you see that the value of c2 given above is indeed correct.

But it is not clear from the above why c3 would have to be zero. To find
that out, we dot the derivative ∂2~r/∂u1∂u2 with ∂~r/∂u3, because the latter
derivative is by definition h3ı̂3, so the dot product will give

∂2~r

∂u1∂u2

· ∂~r

∂u3

= h1c3h3

So to show that c3 is zero, we must show that the dot product above is zero.
That can be done with a bit of manipulation. The only thing you can do, of
course, is shuffle the derivatives around. In particular, if you pull the derivative
with respect to u1 to the front of the entire thing,

∂2~r

∂u1∂u2

· ∂~r

∂u3

=
∂

∂u1

(
∂~r

∂u2

· ∂~r

∂u3

)
− ∂~r

∂u2

· ∂~r

∂u1∂u3

where the final term corrects for the additional term generated by pulling the
u1 derivative out. Note now that the dot product in the parentheses above is
zero since the vectors are orthogonal. Only the final term survives.

Next, ask yourself: why pull the u1 derivative out? Why not u2? After all,
u1 and u2 appear completely symmetrically in the expression. That suggests
that really, what we should do is pull u1 out of half the term and u2 out of the
other half. That gives

−1
2

∂~r

∂u2

· ∂~r

∂u1∂u3

− 1
2

∂~r

∂u1

· ∂~r

∂u2∂u3

That is seen to be the same as

−1
2

∂

∂u3

(
∂~r

∂u2

· ∂~r

∂u1

)

and the dot product in parenthesis is zero. So indeed c3 is zero.



D.2. HARMONIC FUNCTIONS ARE ANALYTIC 279

D.2 Harmonic functions are analytic

This note shows that harmonic functions have converging Taylor series. The
proof uses the Poisson integral formula derived in a later chapter.

Consider a point in the interior of the domain in which a function u is
harmonic. Let the largest sphere around the point that stays inside the domain
have radius R. It is to be shown that u has a Taylor series around the considered
point with a finite radius of convergence.

To do so, scale the coordinates so that the radius of the sphere becomes 1.
Move the origin of your coordinate system to the center of the sphere. The
Poisson integral formula then says:

u = (1− r2)

∫

S

g

|~ξ − ~x|n
dS

S

where r = |~x|, S is the surface of the sphere, n is the number of dimensions, and
g is the value of u on the surface of the sphere. Rotate the coordinate system so
that the point at which the solution is to be found is on the x-axis. That gives

u = (1− x2)

∫

S

g

|1− 2xξ + x2|n/2
dS

S

Take a factor |1 + x2|n/2 out of the denominator of the integrand. For what
is left, define a new variable

α ≡ 2x

1 + x2

(Note that −1 < x < 1 corresponds to −1 < α < 1.) That gives

u =
1− x2

(1 + x2)n/2

∫

S

g

|1− ξα|n/2
dS

S

Now the first factor is an analytical function of x in the range −1 < x < 1
and is of no concern for now. In the integral, do a Taylor series expansion of
the denominator. That gives the integral as a power series in α. Note that the
convergence of this power series is no worse than that of (1− α)−n/2 since

∫

S

gξn
dS

S
≤
∫

S

g
dS

S

So the integral is an analytical function of α with a radius of convergence of 1.
And α is in turn an analytical function of x. Allow α and x to have complex
values. Within a finite distance from x = 0, α will be less than one in magnitude.
In that range then, the integral will be an analytical function of x. And then
so will u, because the factor in front of the integral is analytical too for |x| < 1.
That means that the Taylor series in terms of x converges within the indicated
range.
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Presumably, the radius of convergence is 1, like it is in 2 and 3 dimensions.
However, the above proof shows only that it is greater than zero. Apparently,
you will need to do a separation of variables solution to show the unit radius of
convergence.

D.3 Some properties of harmonic functions

The mean value theorem says that if you take a sphere around some point, the
average of u on the surface of that sphere is the value of u at the center of the
sphere. That is true as long as u satisfies the Laplace equation inside the sphere.

To prove the mean value theorem, take the origin of your coordinate system
at the center of the sphere. Then integrate the Laplace equation over the volume
of a sphere. Use the divergence theorem to get

0 =

∫

Ω

∇ · ∇u dV =

∫

δΩ

~n · ∇u dS =

∫

δΩ

∂u

∂n
dS

But the normal direction is the radial direction, so

0 =

∫

δΩ

∂u

∂r
dS

This holds for a spherical surface of any radius r around the origin as long as
the Laplace equation is applicable in the sphere. Divide by the total spherical
surface:

0 =

∫

δΩ

∂u

∂r

dS

S

The ratio dS/S does not depend on the radius. So you can take the derivative
out of the integral to get

0 =
d

dr

∫

δΩ

u
dS

S

The integral is by definition the average of u on the spherical surface. So it does
not depend on the radius of the surface. That means it remains the same when
you let the radius of the spherica; surface go to zero. But when r = 0, you get
the average of u at the origin, which is simply u at the origin, since the origin
is a single point.

The minimum and maximum properties follow immediately from the mean
value theorem. Note that the minimum property implies the maximum prop-
erty: the maximum of a harmonic function u is the minimum of the harmonic
function −u.

To show the minimum property, consider an arbitrary point in the interior
of the domain. Put a sphere of a sufficiently small radius around the point; the
sphere must stay in the domain. Now u is at the considered point equals the
average value of u on the spherical surface. And an average is always in between
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the minimum and maximum values. So u at the considered point cannot be less
than the smallest u value on the spherical surface. So u at the considered point
cannot be a unique minimum, lower than all other u values.

You may wonder whether u might be a minimum that is not unique. But for
the average of u on the spherical surface to equal the lowest value of u requires
that u is everywhere the lowest value on the surface. If u would be above the
minimum anywhere, the average would be above the minimum. So any spherical
surface around the considered point has the same value of u as the considered
point. At least as long as the sphere stays inside the domain. In other word, u
is constant within some sphere around the considered point that goes up to the
boundary. And for every point inside that sphere there is again a surrounding
sphere in which u is constant. You can then readily see from a sketch that this
means that u will have to be the minimum everywhere. In other words, u must
be a constant for there to be a nonunique minimum in the interior of the region.

D.4 Coordinate transformation derivation

This note derives the coordinate transformation formulae of chapter 18.7.2.
According to the total differential formula from calculus:

∂u

∂xi

=
n∑

k=1

∂u

∂ξk

∂ξk
∂xi

This formula is used to transform the first order derivatives of u.
Differentiating once more, using the product rule of differentiation and again

the total differential formulae for the first factor of the product:

∂2u

∂xi∂xj

=
n∑

k=1

[(
n∑

l=1

∂2u

∂ξk∂ξl

∂ξl
∂xj

)
∂ξk
∂xi

+
∂u

∂ξk

∂2ξk
∂xi∂xj

]

If you plug the formula for the second order derivatives above into the left
hand side of the original partial differential equation and rearrange, you get the
transformed equation.

n∑

k=1

n∑

l=1

(
n∑

i=1

n∑

j=1

aij
∂ξk
∂xi

∂ξl
∂xj

)
∂2u

∂ξk∂ξl
= d−

n∑

k=1

(
n∑

i=1

n∑

j=1

aij
∂2ξk

∂xi∂xj

)
∂u

∂ξk

The coefficients of the transformed matrix A′ and the transformed right hand
side can be read off from the above expression.

D.5 2D coordinate transformation derivation

This note gives a more detailed description where the expressions (18.22) for
the coefficients a′, b′, c′ and d′ comes from.
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In terms of the notations for the general case, you have

a = a11 b = a12 = a21 c = a22 x = x1 y = x2

and
a′ = a′11 b′ = a′12 = a′21 c′ = a′22 ξ = x1 η = x2

The introduction noted that the new coefficients can be found from

a′kl =
n∑

i=1

n∑

j=1

aij
∂ξk
∂xi

∂ξl
∂xj

d′ = d−
n∑

k=1

(
n∑

i=1

n∑

j=1

aij
∂2ξk

∂xi∂xj

)
∂u

∂ξk

As an example, let’s find the value for a′. In terms of the notations in the
general case, a′ is the 1,1 element of matrix A′: a′ = a′11. To get a′ = a′11, put
k = l = 1 in

a′kl =
n∑

i=1

n∑

j=1

aij
∂ξk
∂xi

∂ξl
∂xj

.

That turns ξk and ξl into ξ1, or ξ for short:

a′ = a′11 =
2∑

i=1

2∑

j=1

aij
∂ξ

∂xi

∂ξ

∂xj

If we write out the four terms of the double sum explicitly, that becomes:

a′ = a11
∂ξ

∂x1

∂ξ

∂x1

+ a12
∂ξ

∂x1

∂ξ

∂x2

+ a21
∂ξ

∂x2

∂ξ

∂x1

+ a22
∂ξ

∂x2

∂ξ

∂x2

Now note that by definition a11 = a, a12 = a21 = b, a22 = c, x1 = x, and x2 =
y, and you get the expression for a′ claimed:

a′ = a (ξx)
2 + 2b (ξx) (ξy) + c (ξy)

2

The expressions for b′, c′ and d′ may be verified similarly.

D.6 2D elliptical transformation

To bring two-dimensional elliptical equations in the two-dimensional canonical
form, you need to solve, say, the ordinary differential equation

dy

dx
=

b+ i
√
ac− b2

a

Note now that even if you take dx to be real, dy will be complex. And that
means that you need to know what happens to the coefficients a, b, and c when
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you depart the real x, y-plane into the complex domain. That may be fine if
you know the coefficients analytically, but otherwise it is a problem.

Assuming that you can solve the system, call the integration constant ξ̃.
Assuming that it is a differentiable function of x and y, it will satisfy

a(ξ̃x)
2 + 2bξ̃xξ̃y + c(ξ̃y)

2 = 0

Now set
ξ̃ = ξ + iη

If you plug that in the equation above and multiply out, you get

[a(ξx)
2 + 2bξxξy + c(ξy)

2]− [a(ηx)
2 + 2bηxηy + c(ηy)

2]

+2i[aξxηx + bξxηy + bξyηx + cξyηy] = 0

Now within the square brackets above, you find the generic expressions for
the coefficients a′, c′ and b′, respectively, of the transformed partial diffential
equation. For a complex number to be zero, both its real and its imaginary part
must be zero. It follows that a′ = c′ and that b′ = 0.





Appendix N

Notes

This appendix collects various notes on the material. This sort of material is
often given in footnotes at the bottom of the text. However, such a footnote
is distracting. You tend to read them even if they are probably not really that
important to you. Also, footnotes have to be concise, or they make a mess of
the main text.

N.1 Why this book?

See the preface.

N.2 History and wish list

• Jan. 11, 2011. The first version of this manuscript was posted.

• Jan. 14, 2011. A spell check was done. Various provements in the first
chapter were made.

• Jan.-Feb. xx, 2011. Various additions, improvements.

• Feb. 16, 2011. Version 0.7 alpha. Some corrections. Made explanation of
classification scheme a separate subsection.

• Feb. 18, 2011. Version 0.9 alpha. Various minor rewrites.

• Feb. 21, 2011. Version 0.10 alpha. Various minor rewrites and corrections.

• Feb. 23, 2011. Version 0.11 alpha. Various minor rewrites and corrections.
Added energy method for heat and wave equation.

• Feb. 22, 2011. Version 0.12 alpha. Various minor rewrites and corrections.
Added questions for Laplace energy methods.
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• Mar. 10, 2011. Version 0.13 alpha. Added new intro for Green’s functions.
Added questions for Green’s functions.

• Mar. 18, 2011. Version 0.14 alpha. Added new intro for Poisson’s integral
formula. Added questions for Poisson’s integral formula.

• Mar. 21, 2011. Version 0.15 alpha. Reorganized notes. Cleaned up first
order PDE a bit.



Web Pages

Below is a list of relevant web pages.
1. Wikipedia1

A valuable source source of information on about every loose end,
though somewhat uneven. Some great, some confusing, some overly
technical.

1http://wikipedia.org
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Notations

The below are the simplest possible descriptions of various symbols, just to help
you keep reading if you do not remember/know what they stand for.

Watch it. There are so many ad hoc usages of symbols, some will have been
overlooked here. Always use common sense first in guessing what a symbol
means in a given context.

··· A dot might indicate

• A dot product between vectors, if in between them.

• A time derivative of a quantity, if on top of it.

And also many more prosaic things (punctuation signs, decimal points,
. . . ).

××× Multiplication symbol. May indicate:

• An emphatic multiplication.

• Multiplication continued on the next line or from the previous line.

• A vectorial product between vectors. In index notation, the i-th
component of ~v × ~w equals

(~v × ~w)i = vıwı − vıwı

where ı is the index following i in the sequence 123123. . . , and ı the
one preceding it (or second following). Alternatively, evaluate the
determinant

~v × ~w =

∣∣∣∣∣∣

ı̂ ̂ k̂
vx vy vz
wx wy wz

∣∣∣∣∣∣

!!! Might be used to indicate a factorial. Example: 5! = 1 × 2 × 3 × 4 × 5 =
120.

The function that generalizes n! to noninteger values of n is called the
gamma function; n! = Γ(n + 1). The gamma function generalization is
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due to, who else, Euler. (However, the fact that n! = Γ(n+1) instead of n!
= Γ(n) is due to the idiocy of Legendre.) In Legendre-resistant notation,

n! =

∫ ∞

0

tne−t dt

Straightforward integration shows that 0! is 1 as it should, and integration
by parts shows that (n+ 1)! = (n+ 1)n!, which ensures that the integral
also produces the correct value of n! for any higher integer value of n than
0. The integral, however, exists for any real value of n above −1, not
just integers. The values of the integral are always positive, tending to
positive infinity for both n ↓ −1, (because the integral then blows up at
small values of t), and for n ↑ ∞, (because the integral then blows up at
medium-large values of t). In particular, Stirling’s formula says that for
large positive n, n! can be approximated as

n! ∼
√
2πnnne−n [1 + . . .]

where the value indicated by the dots becomes negligibly small for large n.
The function n! can be extended further to any complex value of n, except
the negative integer values of n, where n! is infinite, but is then no longer
positive. Euler’s integral can be done for n = −1

2
by making the change

of variables
√
t = u, producing the integral

∫∞
0

2e−u2

du, or
∫∞
−∞ e−u2

du,

which equals
√∫∞

−∞ e−x2 dx
∫∞
−∞ e−y2 dy and the integral under the square

root can be done analytically using polar coordinates. The result is that

(−1

2
)! =

∫ ∞

−∞
e−u2

du =
√
π

To get 1
2
!, multiply by 1

2
, since n! = n(n− 1)!.

A double exclamation mark may mean every second item is skipped, e.g.
5!! = 1 × 3 × 5. In general, (2n + 1)!! = (2n + 1)!/2nn!. Of course, 5!!
should logically mean (5!)!. Logic would indicate that 5 × 3 × 1 should
be indicated by something like 5!’. But what is logic in physics?

||| May indicate:

• The magnitude or absolute value of the number or vector, if enclosed
between a pair of them.

• The determinant of a matrix, if enclosed between a pair of them.

• The norm of the function, if enclosed between two pairs of them.



293

∑∑∑
Summation symbol. Example: if in three dimensional space a vector ~f has
components f1 = 2, f2 = 1, f3 = 4, then

∑
all i fi stands for 2+1+4 = 7.

One important thing to remember: the symbol used for the summation
index does not make a difference:

∑
all j fj is exactly the same as

∑
all i fi.

So freely rename the index, but always make sure that the new name is
not already used for something else in the part that it appears in. If you
use the same name for two different things, it becomes a mess.

Related to that,
∑

all i fi is not something that depends on an index i.
It is just a combined simple number. Like 7 in the example above. It is
commonly said that the summation index “sums away.”

∏∏∏
Multiplication symbol. Example: if in three dimensional space a vector ~f
has components f1 = 2, f2 = 1, f3 = 4, then

∏
all i fi stands for 2× 1× 4

= 6.

One important thing to remember: the symbol used for the multiplications
index does not make a difference:

∏
all j fj is exactly the same as

∏
all i fi.

So freely rename the index, but always make sure that the new name is
not already used for something else in the part that it appears in. If you
use the same name for two different things, it becomes a mess.

Related to that,
∏

all i fi is not something that depends on an index i.
It is just a combined simple number. Like 6 in the example above. It is
commonly said that the multiplication index “factors away.” (By who?)

∫∫∫
Integration symbol, the continuous version of the summation symbol. For
example, ∫

all x

f(x) dx

is the summation of f(x) dx over all infinitesimally small fragments dx

that make up the entire x-range. For example,
∫ 2

x=0
(2 + x) dx equals 3 ×

2 = 6; the average value of 2 + x between x = 0 and x = 2 is 3, and the
sum of all the infinitesimally small segments dx gives the total length 2 of
the range in x from 0 to 2.

One important thing to remember: the symbol used for the integration
variable does not make a difference:

∫
all y

f(y) dy is exactly the same as∫
all x

f(x) dx. So freely rename the integration variable, but always make
sure that the new name is not already used for something else in the part
it appears in. If you use the same name for two different things, it becomes
a mess.

Related to that
∫
all x

f(x) dx is not something that depends on a variable
x. It is just a combined number. Like 6 in the example above. It is
commonly said that the integration variable “integrates away.”
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→→→ May indicate:

• An approaching process. limε→0 indicates for practical purposes the
value of the expression following the lim when ε is extremely small.
Similarly, limr→∞ indicates the value of the following expression when
r is extremely large.

• The fact that the left side leads to, or implies, the right-hand side.

~~~ Vector symbol. An arrow above a letter indicates it is a vector. A vector
is a quantity that requires more than one number to be characterized.
Typical vectors in physics include position ~r, velocity ~v, linear momentum
~p, acceleration ~a, force ~F , angular momentum ~L, etcetera.

′′′ May indicate:

• A derivative of a function. Examples: 1′ = 0, x′ = 1, sin′(x) = cos(x),
cos′(x) = − sin(x), (ex)′ = ex.

• A small or modified quantity.

∇∇∇ The spatial differentiation operator nabla. In Cartesian coordinates:

∇ ≡
(

∂

∂x
,
∂

∂y
,
∂

∂z

)
= ı̂

∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

Nabla can be applied to a scalar function f in which case it gives a vector
of partial derivatives called the gradient of the function:

grad f = ∇f = ı̂
∂f

∂x
+ ̂

∂f

∂y
+ k̂

∂f

∂z
.

Nabla can be applied to a vector in a dot product multiplication, in which
case it gives a scalar function called the divergence of the vector:

div~v = ∇ · ~v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

or in index notation

div~v = ∇ · ~v =
3∑

i=1

∂vi
∂xi

Nabla can also be applied to a vector in a vectorial product multiplication,
in which case it gives a vector function called the curl or rot of the vector.
In index notation, the i-th component of this vector is

(curl~v)i = (rot~v)i = (∇× ~v)i =
∂vı
∂xı

− ∂vı
∂xı
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where ı is the index following i in the sequence 123123. . . , and ı the one
preceding it (or the second following it).

The operator ∇2 is called the Laplacian. In Cartesian coordinates:

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Sometimes the Laplacian is indicated as ∆.

In non Cartesian coordinates, don’t guess; look these operators up in a
table book, [4, pp. 124-126]: . For example, in spherical coordinates,

∇ = ı̂r
∂

∂r
+ ı̂θ

1

r

∂

∂θ
+ ı̂φ

1

r sin θ

∂

∂φ
(N.1)

That allows the gradient of a scalar function f , i.e. ∇f , to be found
immediately. But if you apply ∇ on a vector, you have to be very careful
because you also need to differentiate ı̂r, ı̂θ, and ı̂φ. In particular, the
correct divergence of a vector ~v is

∇ · ~v =
1

r2
∂r2vr
∂r

+
1

r sin θ

∂ sinθ vθ
∂θ

+
1

r sin θ

∂vφ
∂φ

(N.2)

The curl ∇ × ~v of the vector is

ı̂r
r sin θ

(
∂ sinθ vφ

∂θ
− ∂vθ

∂φ

)
+

ı̂θ
r

(
1

sin θ

∂vr
∂φ

− ∂r vφ
∂r

)
+

ı̂φ
r

(
∂r vθ
∂r

− ∂vr
∂θ

)

(N.3)
Finally the Laplacian is:

∇2 =
1

r2

{
∂

∂r

(
r2

∂

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

}
(N.4)

See also “spherical coordinates.”

Cylindrical coordinates are usually indicated as r, θ and z. Here z is the
Cartesian coordinate, while r is the distance from the z-axis and θ the
angle around the z axis. In two dimensions, i.e. without the z terms, they
are usually called polar coordinates. In cylindrical coordinates:

∇ = ı̂r
∂

∂r
+ ı̂θ

1

r

∂

∂θ
+ ı̂z

∂

∂z
(N.5)

∇ · ~v =
1

r

∂rvr
∂r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

(N.6)

∇× ~v = ı̂r

(
1

r

∂vz
∂θ

− ∂vθ
∂z

)
+ ı̂θ

(
∂vr
∂z

− ∂vz
∂r

)
+

ı̂z
r

(
∂rvθ
∂r

− ∂vr
∂θ

)
(N.7)

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2
(N.8)
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��� The D’Alembertian is defined as

1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

where c is a constant called the wave speed.

∗∗∗ A superscript star normally indicates a complex conjugate. In the complex
conjugate of a number, every i is changed into a −i.

< Less than.

6 Less than or equal.

> Greater than.

> Greater than or equal.

= Equals sign. The quantity to the left is the same as the one to the right.

≡ Emphatic equals sign. Typically means “by definition equal” or “every-
where equal.”

≈ Indicates approximately equal. Read it as “is approximately equal to.”

∼ Indicates approximately equal. Often used when the approximation applies
only when something is small or large. Read it as “is approximately equal
to” or as “is asymptotically equal to.”

∝∝∝ Proportional to. The two sides are equal except for some unknown constant
factor.

ΓΓΓ (Gamma) May indicate:

• The Gamma function. Look under “!” for details.

∆∆∆ (capital delta) May indicate:

• An increment in the quantity following it.

• Often used to indicate the Laplacian ∇2.

δδδ (delta) May indicate:

• With two subscripts, the “Kronecker delta”, which by definition is
equal to one if its two subscripts are equal, and zero in all other cases.
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• Without two subscripts, the “Dirac delta function”, which is infinite
when its argument is zero, and zero if it is not. In addition the infinity
is such that the integral of the delta function over its single nonzero
point is unity. The delta function is not a normal function, but a
distribution. It is best to think of it as the approximate function
shown in the right hand side of figure 19.5 for a very, very, small
positive value of ε.

One often important way to create a three-dimensional delta func-
tion in spherical coordinates is to take the Laplacian of the function
−1/4πr. In two dimensions, take the Laplacian of ln(r)/2π to get a
delta function.

• Often used to indicate a small amount of the following quantity,
or of a small change in the following quantity. There are nuanced
differences in the usage of δ, ∂ and d that are too much to go in here.

• Often used to indicate a second small quantity in addition to ε.

∂∂∂ (partial) Indicates a vanishingly small change or interval of the following
variable. For example, ∂f/∂x is the ratio of a vanishingly small change
in function f divided by the vanishingly small change in variable x that
causes this change in f . Such ratios define derivatives, in this case the
partial derivative of f with respect to x.

εεε (variant of epsilon) May indicate:

• A very small quantity.

ηηη (eta) May be used to indicate a y-position.

ΘΘΘ (capital theta) Used in this book to indicate some function of θ to be
determined.

θθθ (theta) May indicate:

• In spherical coordinates, the angle from the chosen z axis, with apex
at the origin.

• A z-position.

• A generic angle, like the one between the vectors in a cross or dot
product.

ϑϑϑ (variant of theta) An alternate symbol for θ.

λλλ (lambda) May indicate:

• Wave length.
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• An eigenvalue.

• Some multiple of something.

ξξξ (xi) May indicate:

• An x-position.

• An integration variable.

πππ (pi) May indicate:

• A geometrical constant with value 3.141,592,653,589,793,238,462...
The area of a circle of radius r is πr2 and its perimeter is 2πr. The
volume of a sphere of radius r is 4

3
πr3 and its surface is 4πr2. A 180◦

angle expressed in radians is π. Note also that e±iπ = −1 and e±i2π

= 1.

ρρρ (rho) May indicate:

• Scaled radial coordinate.

• Radial coordinate.

τττ (tau) May indicate:

• A time or time interval.

ΦΦΦ (capital phi) May indicate:

• Some function of φ to be determined.

φφφ (phi) May indicate:

• In spherical coordinates, the angle around the chosen z axis. Increas-
ing φ by 2π encircles the z-axis exactly once.

• A phase angle.

• Something equivalent to an angle.

ϕϕϕ (variant of phi) May indicate:

• A change in angle φ.

• An alternate symbol for φ.

ωωω (omega) May indicate:
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• Angular frequency.

AAA May indicate:

• Some generic matrix.

• Some constant.

• Area.

aaa May indicate:

• Acceleration.

• Start point of an integration interval.

• Some coefficient.

• Some constant.

absolute May indicate:

• The absolute value of a real number a is indicated by |a|. It equals
a is a is positive or zero and −a if a is negative.

• The absolute value of a complex number a is indicated by |a|. It
equals the length of the number plotted as a vector in the complex
plane. This simplifies to above definition if a is real.

adjoint The adjoint AH or A† of a matrix is the complex-conjugate transpose
of the matrix.

Alternatively, it is the matrix you get if you take it to the other side of
an inner product. (While keeping the value of the inner product the same
regardless of whatever two vectors or functions may be involved.)

“Hermitian”matrices are “self-adjoint;”they are equal to their adjoint.
“Skew-Hermitian”matrices are the negative of their adjoint.

“Unitary”matrices are the inverse of their adjoint. Unitary matrices gen-
eralize rotations and reflections of vectors. Unitary operators preserve
inner products.

Fourier transforms are unitary operators on account of the Parseval equal-
ity that says that inner products are preserved.

angle Consider two semi-infinite lines extending from a common intersection
point. Then the angle between these lines is defined in the following
way: draw a unit circle in the plane of the lines and centered at their
intersection point. The angle is then the length of the circular arc that is
in between the lines. More precisely, this gives the angle in radians, rad.
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Sometimes an angle is expressed in degrees, where 2π rad is taken to be
360◦. However, using degrees is usually a very bad idea in science.

In three dimensions, you may be interested in the so-called “solid angle”
Ω inside a conical surface. This angle is defined in the following way: draw
a sphere of unit radius centered at the apex of the conical surface. Then
the solid angle is the area of the spherical surface that is inside the cone.
Solid angles are in steradians. The cone does not need to be a circular
one, (i.e. have a circular cross section), for this to apply. In fact, the most
common case is the solid angle corresponding to an infinitesimal element
dθ × dφ of spherical coordinate system angles. In that case the surface of
the unit sphere inside the conical surface is is approximately rectangular,
with sides dθ and sin(θ)dφ. That makes the enclosed solid angle equal to
dΩ = sin(θ)dθdφ.

BBB May indicate:

• A generic second matrix.

• Some constant.

bbb May indicate:

• End point of an integration interval.

• Some coefficient.

• Some constant.

basis A basis is a minimal set of vectors or functions that you can write all
other vectors or functions in terms of. For example, the unit vectors ı̂,
̂, and k̂ are a basis for normal three-dimensional space. Every three-
dimensional vector can be written as a linear combination of the three.

CCC May indicate:

• A third matrix.

• A constant.

Cauchy-Schwartz inequality The Cauchy-Schwartz inequality describes a
limitation on the magnitude of inner products. In particular, it says that
for any vectors ~v and ~w

|~vH ~w| ≤ |~v||~w|
For example, if ~v and ~w are real vectors, the inner product is the dot
product and we have

~v · ~w = |~v||~w| cos θ
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where |~v| is the length of vector ~v and |~w| the one of ~w, and θ is the angle
in between the two vectors. Since a cosine is less than one in magnitude,
the Cauchy-Schwartz inequality is therefore true for vectors.

coscoscos The cosine function, a periodic function oscillating between 1 and -1 as
shown in [4, pp. 40-]. See also “sin.”

curl The curl of a vector ~v is defined as curl~v = rot~v = ∇ × ~v.

ddd Indicates a vanishingly small change or interval of the following variable.
For example, dx can be thought of as a small segment of the x-axis.

In three dimensions, d3~r ≡ dxdydz is an infinitesimal volume element.
The symbol

∫
means that you sum over all such infinitesimal volume

elements.

derivative A derivative of a function is the ratio of a vanishingly small change
in a function divided by the vanishingly small change in the independent
variable that causes the change in the function. The derivative of f(x)
with respect to x is written as df/dx, or also simply as f ′. Note that the
derivative of function f(x) is again a function of x: a ratio f ′ can be found
at every point x. The derivative of a function f(x, y, z) with respect to
x is written as ∂f/∂x to indicate that there are other variables, y and z,
that do not vary.

determinant The determinant of a square matrix A is a single number in-
dicated by |A|. If this number is nonzero, A~v can be any vector ~w for
the right choice of ~v. Conversely, if the determinant is zero, A~v can only
produce a very limited set of vectors, though if it can produce a vector w,
it can do so for multiple vectors ~v.

There is a recursive algorithm that allows you to compute determinants
from increasingly bigger matrices in terms of determinants of smaller ma-
trices. For a 1 × 1 matrix consisting of a single number, the determinant
is simply that number:

|a11| = a11

(This determinant should not be confused with the absolute value of the
number, which is written the same way. Since you normally do not deal
with 1 × 1 matrices, there is normally no confusion.) For 2 × 2 matrices,
the determinant can be written in terms of 1 × 1 determinants:

∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ = +a11

∣∣∣∣ a22

∣∣∣∣− a12

∣∣∣∣ a21

∣∣∣∣
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so the determinant is a11a22 − a12a21 in short. For 3 × 3 matrices, you
have
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
=

+a11

∣∣∣∣∣∣
a22 a23
a32 a33

∣∣∣∣∣∣
− a12

∣∣∣∣∣∣
a21 a23
a31 a33

∣∣∣∣∣∣
+ a13

∣∣∣∣∣∣
a21 a22
a31 a32

∣∣∣∣∣∣

and you already know how to work out those 2 × 2 determinants, so you
now know how to do 3 × 3 determinants. Written out fully:

a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

For 4 × 4 determinants,
∣∣∣∣∣∣∣∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣
=

+a11

∣∣∣∣∣∣∣∣

a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣∣∣
− a12

∣∣∣∣∣∣∣∣

a21 a23 a24
a31 a33 a34
a41 a43 a44

∣∣∣∣∣∣∣∣

+a13

∣∣∣∣∣∣∣∣

a21 a22 a24
a31 a32 a34
a41 a42 a44

∣∣∣∣∣∣∣∣
− a14

∣∣∣∣∣∣∣∣

a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣∣∣

Etcetera. Note the alternating sign pattern of the terms.

As you might infer from the above, computing a good size determinant
takes a large amount of work. Fortunately, it is possible to simplify the
matrix to put zeros in suitable locations, and that can cut down the work
of finding the determinant greatly. You are allowed to use the following
manipulations without seriously affecting the computed determinant:

1. You can “transpose”the matrix, i.e. change its columns into its rows.

2. You can create zeros in a row by subtracting a suitable multiple of
another row.

3. You can also swap rows, as long as you remember that each time
that you swap two rows, it will flip over the sign of the computed
determinant.
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4. You can also multiply an entire row by a constant, but that will
multiply the computed determinant by the same constant.

Applying these tricks in a systematic way, called “Gaussian elimination”
or “reduction to lower triangular form”, you can eliminate all matrix co-
efficients aij for which j is greater than i, and that makes evaluating the
determinant pretty much trivial.

div(ergence) The divergence of a vector ~v is defined as div~v = ∇ · ~v.

eee May indicate:

• The basis for the natural logarithms. Equal to 2.718,281,828,459...
This number produces the “exponential function” ex, or exp(x), or
in words “e to the power x”, whose derivative with respect to x is
again ex. If a is a constant, then the derivative of eax is aeax. Also,
if a is an ordinary real number, then eia is a complex number with
magnitude 1.

eiaxeiaxeiax Assuming that a is an ordinary real number, and x a real variable, eiax is
a complex function of magnitude one. The derivative of eiax with respect
to x is iaeiax

eigenvector A concept from linear algebra. A vector ~v is an eigenvector of
a matrix A if ~v is nonzero and A~v = λ~v for some number λ called the
corresponding eigenvalue.

exponential function A function of the form e..., also written as exp(. . .).
See “function” and “e.”

FFF May indicate:

• The anti-derivative of some function f .

• Some function.

fff May indicate:

• A generic function.

• A fraction.

• Frequency.

function A mathematical object that associates values with other values. A
function f(x) associates every value of x with a value f . For example, the
function f(x) = x2 associates x = 0 with f = 0, x = 1

2
with f = 1

4
, x = 1

with f = 1, x = 2 with f = 4, x = 3 with f = 9, and more generally, any
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arbitrary value of x with the square of that value x2. Similarly, function
f(x) = x3 associates any arbitrary x with its cube x3, f(x) = sin(x)
associates any arbitrary x with the sine of that value, etcetera.

One way of thinking of a function is as a procedure that allows you,
whenever given a number, to compute another number.

functional A functional associates entire functions with single numbers. For
example, the expectation energy is mathematically a functional: it as-
sociates any arbitrary wave function with a number: the value of the
expectation energy if physics is described by that wave function.

ggg May indicate:

• A second generic function.

Gauss’ Theorem This theorem, also called divergence theorem or Gauss-
Ostrogradsky theorem, says that for a continuously differentiable vector
~v, ∫

V

∇ · ~v dV =

∫

A

~v · ~n dA

where the first integral is over the volume of an arbitrary region and the
second integral is over all the surface area of that region; ~n is at each point
found as the unit vector that is normal to the surface at that point.

grad(ient) The gradient of a scalar f is defined as grad f = ∇f .

hypersphere A hypersphere is the generalization of the normal three-dimen-
sional sphere to n-dimensional space. A sphere of radius R in three-di-
mensional space consists of all points satisfying

r21 + r22 + r23 6 R2

where r1, r2, and r3 are Cartesian coordinates with origin at the center of
the sphere. Similarly a hypersphere in n-dimensional space is defined as
all points satisfying

r21 + r22 + . . .+ r2n 6 R2

So a two-dimensional “hypersphere” of radius R is really just a circle of
radius R. A one-dimensional “hypersphere” is really just the line segment
−R 6 x 6 −R.

The “volume” Vn and surface “area” An of an n-dimensional hypersphere
is given by

Vn = CnR
n An = nCnR

n−1

Cn =

{
(2π)n/2/2× 4× 6× . . .× n if n is even
(2π)(n−1)/22/1× 3× 5× . . .× n if n is odd
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(This is readily derived recursively. For a sphere of unit radius, note
that the n-dimensional “volume” is an integration of n−1-dimensional
volumes with respect to r1. Then renotate r1 as sinφ and look up the
resulting integral in a table book. The formula for the area follows because
V =

∫
Adr where r is the distance from the origin.) In three dimensions,

C3 = 4π/3 according to the above formula. That makes the three-dimen-
sional “volume” 4πR3/3 equal to the actual volume of the sphere, and the
three-dimensional “area” 4πR2 equal to the actual surface area. On the
other hand in two dimensions, C2 = π. That makes the two-dimensional
“volume” πR2 really the area of the circle. Similarly the two-dimensional
surface “area” 2πR is really the perimeter of the circle. In one dimensions
C1 = 2 and the “volume” 2R is really the length of the interval, and the
“area” 2 is really its number of end points.

Often the infinitesimal n-dimensional “volume” element dn~r is needed.
This is the infinitesimal integration element for integration over all coor-
dinates. It is:

dn~r = dr1dr2 . . . drn = dAndr

Specifically, in two dimensions:

d2~r = dr1dr2 = dxdy = (r dθ)dr = dA2dr

while in three dimensions:

d3~r = dr1dr2dr3 = dxdydz = (r2 sin θ dθdφ)dr = dA3dr

The expressions in parentheses are dA2 in polar coordinates, respectively
dA3 in spherical coordinates.

ℑℑℑ The imaginary part of a complex number. If c = cr +ici with cr and ci real
numbers, then ℑ(c) = ci. Note that c− c∗ = 2iℑ(c).

iii May indicate:

• The number of a particle.

• A summation index.

• A generic index or counter.

Not to be confused with i.

ı̂̂ı̂ı The unit vector in the x-direction.

iii The standard square root of minus one: i =
√
−1, i2 = −1, 1/i = −i, i∗ =

−i.
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index notation A more concise and powerful way of writing vector and ma-
trix components by using a numerical index to indicate the components.
For Cartesian coordinates, you might number the coordinates x as 1, y as
2, and z as 3. In that case, a sum like vx + vy + vz can be more concisely
written as

∑
i vi. And a statement like vx 6= 0, vy 6= 0, vz 6= 0 can be more

compactly written as vi 6= 0. To really see how it simplifies the notations,
have a look at the matrix entry. (And that one shows only 2 by 2 matrices.
Just imagine 100 by 100 matrices.)

iff Emphatic “if.” Should be read as “if and only if.”

integer Integer numbers are the whole numbers: . . . ,−2,−1, 0, 1, 2, 3, 4, . . ..

inverse (Of matrices.) If a matrix A converts a vector ~v into a vector ~w, then
the inverse of the matrix, A−1, converts ~w back into ~v.

In other words, A−1A = AA−1 = I with I the unit, or identity, matrix.

The inverse of a matrix only exists if the matrix is square and has nonzero
determinant.

irrotational A vector ~v is irrotational if its curl ∇ × ~v is zero.

jjj May indicate:

• A summation index.

• A generic index or counter.

̂̂̂ The unit vector in the y-direction.

kkk May indicate:

• A generic summation index.

k̂̂k̂k The unit vector in the z-direction.

lll May indicate:

• A generic summation index.

ℓℓℓ May indicate:

• A length.

limlimlim Indicates the final result of an approaching process. limε→0 indicates for
practical purposes the value of the following expression when ε is extremely
small.
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linear combination A very generic concept indicating sums of objects times
coefficients. For example, a position vector ~r is the linear combination
xı̂+ŷ+zk̂ with the objects the unit vectors ı̂, ̂, and k̂ and the coefficients
the position coordinates x, y, and z. A linear combination of a set of
functions f1(x), f2(x), f3(x), . . . , fn(x) would be the function

c1f1(x) + c2f2(x) + c3f3(x) + . . . cnfn(x)

where c1, c2, c3, . . . , cn are constants, i.e. independent of x.

linear dependence A set of vectors or functions is linearly dependent if at
least one of the set can be expressed in terms of the others. Consider the
example of a set of functions f1(x), f2(x), . . . , fn(x). This set is linearly
dependent if

c1f1(x) + c2f2(x) + c3f3(x) + . . . cnfn(x) = 0

where at least one of the constants c1, c2, c2, . . . , cn is nonzero. To see why,
suppose that say c2 is nonzero. Then you can divide by c2 and rearrange
to get

f2(x) = −c1
c2
f1(x)−

c3
c2
f3(x)− . . .− cn

c2
fn(x)

That expresses f2(x) in terms of the other functions.

linear independence A set of vectors or functions is linearly independent
if none of the set can be expressed in terms of the others. Consider the
example of a set of functions f1(x), f2(x), . . . , fn(x). This set is linearly
independent if

c1f1(x) + c2f2(x) + c3f3(x) + . . . cnfn(x) = 0

only if every one of the constants c1, c2, c3, . . . , cn is zero. To see why,
assume that say f2(x) could be expressed in terms of the others,

f2(x) = C1f1(x) + C3f3(x) + . . .+ Cnfn(x)

Then taking c2 = 1, c1 = −C1, c3 = −C3, . . . cn = −Cn, the condition
above would be violated. So f2 cannot be expressed in terms of the others.

mmm May indicate:

• Number of rows in a matrix.

• A generic summation index or generic integer.
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matrix A table of numbers.

As a simple example, a two-dimensional matrix A is a table of four num-
bers called a11, a12, a21, and a22:

(
a11 a12
a21 a22

)

unlike a two-dimensional (ket) vector ~v, which would consist of only two
numbers v1 and v2 arranged in a column:

(
v1
v2

)

(Such a vector can be seen as a “rectangular matrix” of size 2 × 1, but
let’s not get into that.)

In index notation, a matrix A is a set of numbers {aij} indexed by two
indices. The first index i is the row number, the second index j is the
column number. A matrix turns a vector ~v into another vector ~w according
to the recipe

wi =
∑

all j

aijvj for all i

where vj stands for “the j-th component of vector ~v,” and wi for “the i-th
component of vector ~w.”

As an example, the product of A and ~v above is by definition
(

a11 a12
a21 a22

)(
v1
v2

)
=

(
a11v1 + a12v2
a21v1 + a22v2

)

which is another two-dimensional ket vector.

Note that in matrix multiplications like the example above, in geometric
terms you take dot products between the rows of the first factor and the
column of the second factor.

To multiply two matrices together, just think of the columns of the second
matrix as separate vectors. For example:

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)

which is another two-dimensional matrix. In index notation, the ij com-
ponent of the product matrix has value

∑
k aikbkj.

The zero matrix is like the number zero; it does not change a matrix it is
added to and turns whatever it is multiplied with into zero. A zero matrix
is zero everywhere. In two dimensions:

(
0 0
0 0

)
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A unit matrix is the equivalent of the number one for matrices; it does
not change the quantity it is multiplied with. A unit matrix is one on its
“main diagonal” and zero elsewhere. The 2 by 2 unit matrix is:

(
1 0
0 1

)

More generally the coefficients, {δij}, of a unit matrix are one if i = j and
zero otherwise.

The transpose of a matrix A, AT, is what you get if you switch the two
indices. Graphically, it turns its rows into its columns and vice versa. The
Hermitian “adjoint”AH is what you get if you switch the two indices and
then take the complex conjugate of every element. If you want to take a
matrix to the other side of an inner product, you will need to change it to
its Hermitian adjoint. “Hermitian matrices”are equal to their Hermitian
adjoint, so this does nothing for them.

See also “determinant” and “eigenvector.”

nnn May indicate:

• Number of columns in a matrix.

• A generic summation index or generic integer.

• A natural number.

and maybe some other stuff.

natural Natural numbers are the numbers: 1, 2, 3, 4, . . ..

normal A normal operator or matrix is one that has orthonormal eigenfunc-
tions or eigenvectors. Since eigenvectors are not orthonormal in general,
a normal operator or matrix is abnormal!

For an operator or matrix A to be “normal,” it must commute with its
Hermitian adjoint, [A,A†] = 0. Hermitian matrices are normal since they
are equal to their Hermitian adjoint. Skew-Hermitian matrices are normal
since they are equal to the negative of their Hermitian adjoint. Unitary
matrices are normal because they are the inverse of their Hermitian ad-
joint.

O May indicate the origin of the coordinate system.

opposite The opposite of a number a is −a. In other words, it is the additive
inverse.
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perpendicular bisector For two given points P and Q, the perpendicular
bisector consists of all points R that are equally far from P as they are
from Q. In two dimensions, the perpendicular bisector is the line that
passes through the point exactly half way in between P and Q, and that
is orthogonal to the line connecting P and Q. In three dimensions, the
perpendicular bisector is the plane that passes through the point exactly
half way in between P and Q, and that is orthogonal to the line connecting
P and Q. In vector notation, the perpendicular bisector of points P and
Q is all points R whose radius vector ~r satisfies the equation:

(~r −~rP ) · (~rQ −~rP ) =
1
2
(~rQ −~rP ) · (~rQ −~rP )

(Note that the halfway point~r−~rP = 1
2
(~rQ−~rP ) is included in this formula,

as is the half way point plus any vector that is normal to (~rQ −~rP ).)

phase angle Any complex number can be written in “polar form” as c =
|c|eiα where both the magnitude |c| and the phase angle α are real num-
bers. Note that when the phase angle varies from zero to 2π, the complex
number c varies from positive real to positive imaginary to negative real
to negative imaginary and back to positive real. When the complex num-
ber is plotted in the complex plane, the phase angle is the direction of
the number relative to the origin. The phase angle α is often called the
argument, but so is about everything else in mathematics, so that is not
very helpful.

In complex time-dependent waves of the form ei(ωt−φ), and its real equiva-
lent cos(ωt−φ), the phase angle φ gives the angular argument of the wave
at time zero.

qqq May indicate:

• Charge.

• Heat flux density.

RRR May indicate:

• Some radius.

• Some function of r to be determined.

ℜℜℜ The real part of a complex number. If c = cr + ici with cr and ci real
numbers, then ℜ(c) = cr. Note that c+ c∗ = 2ℜ(c).

rrr May indicate:

• The radial distance from the chosen origin of the coordinate system.
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• ri typically indicates the i-th Cartesian component of the radius vec-
tor ~r.

• Some ratio.

~r~r~r The position vector. In Cartesian coordinates (x, y, z) or xı̂ + ŷ + zk̂. In
spherical coordinates rı̂r. Its three Cartesian components may be indi-
cated by r1, r2, r3 or by x, y, z or by x1, x2, x3.

reciprocal The reciprocal of a number a is 1/a. In other words, it is the
multiplicative inverse.

rot The rot of a vector ~v is defined as curl~v ≡ rot~v ≡ ∇ × ~v.

scalar A quantity characterized by a single number.

sinsinsin The sine function, a periodic function oscillating between 1 and -1 as
shown in [4, pp. 40-]. Good to remember: cos2 α + sin2 α = 1 and sin 2α
= 2 sinα cosα and cos 2α = cos2 α− sin2 α.

spherical coordinates The spherical coordinates r, θ, and φ of an arbitrary
point P are defined as

x

y

z

r

θ

φ

P

Figure N.1: Spherical coordinates of an arbitrary point P.

In Cartesian coordinates, the unit vectors in the x, y, and z directions are
called ı̂, ̂, and k̂. Similarly, in spherical coordinates, the unit vectors in
the r, θ, and φ directions are called ı̂r, ı̂θ, and ı̂φ. Here, say, the θ direction
is defined as the direction of the change in position if you increase θ by
an infinitesimally small amount while keeping r and ϕ the same. Note
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therefore in particular that the direction of ı̂r is the same as that of ~r;
radially outward.

An arbitrary vector ~v can be decomposed in components vr, vθ, and vφ
along these unit vectors. In particular

~v ≡ vr ı̂r + vθ ı̂θ + vφı̂φ

Recall from calculus that in spherical coordinates, a volume integral of an
arbitrary function f takes the form

∫
f d3~r =

∫ ∫ ∫
fr2 sin θ drdθdφ

In other words, the volume element in spherical coordinates is

dV = d3~r = r2 sin θ drdθdφ

Often it is convenient of think of volume integrations as a two-step process:
first perform an integration over the angular coordinates θ and φ. Physi-
cally, that integrates over spherical surfaces. Then perform an integration
over r to integrate all the spherical surfaces together. The combined in-
finitesimal angular integration element

dΩ = sin θdθdφ

is called the infinitesimal “solid angle” dΩ. In two-dimensional polar co-
ordinates r and θ, the equivalent would be the infinitesimal polar angle
dθ. Recall that dθ, (in proper radians of course), equals the arclength
of an infinitesimal part of the circle of integration divided by the circle
radius. Similarly dΩ is the surface of an infinitesimal part of the sphere
of integration divided by the square sphere radius.

See the “∇” entry for the gradient operator and Laplacian in spherical
coordinates.

Stokes’ Theorem This theorem, first derived by Kelvin and first published
by someone else I cannot recall, says that for any reasonably smoothly
varying vector ~v, ∫

A

(∇× ~v) dA =

∮
~v · d~r

where the first integral is over any smooth surface area A and the second
integral is over the edge of that surface. How did Stokes get his name on
it? He tortured his students with it, that’s how!
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One important consequence of the Stokes theorem is for vector fields ~v
that are “irrotational,” i.e. that have ∇ × ~v = 0. Such fields can be
written as

~v = ∇f f(~r) ≡
∫ ~r

~r=~rref

~v(~r) · d~r

Here ~rref is the position of an arbitrarily chosen reference point, usually
the origin. The reason the field ~v can be written this way is the Stokes
theorem. Because of the theorem, it does not make a difference along
which path from ~rref to ~r you integrate. (Any two paths give the same
answer, as long as ~v is irrotational everywhere in between the paths.) So
the definition of f is unambiguous. And you can verify that the partial
derivatives of f give the components of ~v by approaching the final position
~r in the integration from the corresponding direction.

symmetry A symmetry is an operation under which an object does not
change. For example, a human face is almost, but not completely, mirror
symmetric: it looks almost the same in a mirror as when seen directly.
The electrical field of a single point charge is spherically symmetric; it
looks the same from whatever angle you look at it, just like a sphere does.
A simple smooth glass (like a glass of water) is cylindrically symmetric; it
looks the same whatever way you rotate it around its vertical axis.

ttt May indicate:

• Time.

triple product A product of three vectors. There are two different versions:

• The scalar triple product ~a · (~b× ~c). In index notation,

~a · (~b× ~c) =
∑

i

ai(bıcı − bıcı)

where ı is the index following i in the sequence 123123. . . , and ı the
one preceding it. This triple product equals the determinant |~a~b~c|
formed with the three vectors. Geometrically, it is plus or minus the
volume of the parallelepiped that has vectors ~a, ~b, and ~c as edges.
Either way, as long as the vectors are normal vectors and not opera-
tors,

~a · (~b× ~c) = ~b · (~c× ~a) = ~c · (~a×~b)

and you can change the two sides of the dot product without changing
the triple product, and/or you can change the sides in the vectorial
product with a change of sign.
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• The vectorial triple product ~a× (~b×~c). In index notation, component
number i of this triple product is

aı(bicı − bıci)− aı(bıci − bicı)

which may be rewritten as

aibici + aıbicı + aıbicı − aibici − aıbıci − aıbıci

In particular, as long as the vectors are normal ones,

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

uuu May indicate:

• The first velocity component in a Cartesian coordinate system.

• An integration variable.

VVV May indicate:

• Volume.

• “Volume” in n-dimensions (i.e. line segment length in one dimen-
sions, area in two, volume in three, etc.)

vvv May indicate:

• The second velocity component in a Cartesian coordinate system.

• Magnitude of a velocity (speed).

~v~v~v May indicate:

• Velocity vector.

• Generic vector.

vector A quantity characterized by a list of numbers. A vector ~v in index
notation is a set of numbers {vi} indexed by an index i. In normal three-
dimensional Cartesian space, i takes the values 1, 2, and 3, making the
vector a list of three numbers, v1, v2, and v3. These numbers are called
the three components of ~v.

vectorial product An vectorial product, or cross product is a product of
vectors that produces another vector. If

~c = ~a×~b,
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it means in index notation that the i-th component of vector ~c is

ci = aıbı − aıbı

where ı is the index following i in the sequence 123123. . . , and ı the one
preceding it. For example, c1 will equal a2b3 − a3b2.

www May indicate:

• The third velocity component in a Cartesian coordinate system.

• Weight factor.

~w~w~w Generic vector.

XXX Used in this book to indicate a function of x to be determined.

xxx May indicate:

• First coordinate in a Cartesian coordinate system.

• A generic argument of a function.

• An unknown value.

YYY Used in this book to indicate a function of y to be determined.

yyy May indicate:

• Second coordinate in a Cartesian coordinate system.

• A second generic argument of a function.

• A second unknown value.

ZZZ Used in this book to indicate a function of z to be determined.

zzz May indicate:

• Third coordinate in a Cartesian coordinate system.

• A third generic argument of a function.

• A third unknown value.
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in spherical coordinates, 312
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z, 315
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