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Relationship of Waste Characteristics to the Formation of Mineral Deposits in 

Leachate Collection Systems  

 

 

Antonio J. Cardoso 

 

 

ABSTRACT 

 

 

Landfill leachate is generated as a result of reactions between water percolating 

through the landfill and wastes. Under normal conditions leachate is found at the bottom 

of landfills and from there, its movement can be controlled with collection systems to be 

treated, discharged, or recirculated. Landfill leachate collection systems are positioned 

above the liner and are designed to collect liquid under gravitational flow for the entire 

active, closure, and post-closure periods. Clogging of any portion of the system can lead 

to higher hydraulic heads and increase the potential for leakage through the liner.  

 

To reduce the quantity of municipal solid wastes (MSW) requiring landfilling, 

many municipalities have adopted waste-to-energy (WTE) facilities that yield energy in 



 viii

the form of combustible gases and noncombustible residues. Disposal practices for WTE 

residuals include landfilling in monofills or co-disposal with MSW and other materials 

such as residues from water and wastewater treatment facilities.  There has been concern 

about co-disposal practices, because the impacts on leachate quality and waste 

interactions are not well known yet. 

 

 This research was conducted to evaluate clogging of leachate collection systems 

due to co-disposal of MSW and combustion residues from WTE facilities. The use of 

laboratory lysimeters in conjunction with batch tests to predict short-term and long-term 

leaching characteristics of noncombustible residues from WTE facilities was also 

evaluated.  

 

Laboratory lysimeters were used to simulate monofills (WTE residues and MSW) 

and co-disposal practices. Relationships between waste composition and leachate quality 

were evaluated over a seven month period. In addition, two different types of batch tests 

were used to analyze the leaching behavior of combustion residues from three different 

WTE facilities in Florida. 

  

Data from this research produced a better understanding of the implication of co-

disposal of MSW and WTE residuals in the production of precipitates in leachate 

collection systems. Lysimeter and batch tests proved to be useful tools for simulation of 

field conditions and predicting the degree to which WTE residuals contribute inorganic 

constituents to the leachate matrix.
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Introduction  

 

 

 Land disposal of solid waste has been practiced for centuries. In the past, 

constituents leached from solid waste were considered to be attenuated by soil and 

groundwater. However, since the 1950’s and due to increasing concerns for the 

environment, landfills have come under scrutiny and waste dumps have been transformed 

into engineered landfills (Bagchi, 1990). In addition, many municipalities have 

implemented the use of Waste-to-Energy (WTE) facilities with the goal of reducing the 

net volume and mass of wastes prior to landfilling while producing energy through mass 

burn or Refuse Derived Fuel (RDF) practices (FDEP, 2000). 

  

 Byproducts of thermal processing of solid waste include combustion gases, 

bottom and fly ash residues, and recoverable materials such as ferrous and nonferrous 

metals. Management approaches for ashes from WTE facilities include disposal in 

monofills, co-disposal with non-combusted Municipal Solid Waste (MSW) in landfills, or 

incorporation with other materials for various construction applications (Hjelmar, 1996). 

Typically, MSW landfills are permitted to receive a combination of MSW, fly and 

bottom ash from combustion processes, residuals from waste and wastewater treatment 

facilities, construction wastes, and other materials (USEPA, 2004). 

 

 In landfills, leachate is generated as a result of hydrological and biogeochemical 

reactions between water percolating through the landfill and wastes. Leachate is 

composed of the liquid that enters the landfill from external sources, such as surface 

drainage, rainfall, groundwater, and water from underground springs, liquid associate
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with the deposited wastes, and liquid produced from waste decomposition. Leachate 

composition changes as wastes degrade influencing microbial activity, solubility, and 

partitioning of many constituents (Johnson et al., 1999; Kylefors, 2003). 

 

 Leachate collection systems play an important role in landfill management to 

control the build up of leachate within the landfill and limit the advective flow of leachate 

through the liner system. Properly functioning, leachate collection systems serve to 

reduce potential for groundwater contamination and control the mass loading of 

contaminants available to pass through the barrier system (Rowe et al., 2002). The 

current design concept for engineered landfills consists of constructing a low 

permeability liner below the landfill to restrict leachate percolation, and a perforated pipe 

system within a granular drainage blanket to collect leachate generated within the 

landfills (USEPA, 1993).  

 

 A potential difficulty in landfill leachate collection systems is that solid material 

may deposit and accumulate in the pore spaces of drainage materials and in the perforated 

collection pipes, leading to clogging (Reinhardt and Townsend, 1998; Maliva et al., 2000; 

Rowe et al., 2002). Factors that have been implicated in promoting clogging of leachate 

collection systems include sedimentation and deposition of fines, biological activity, and 

biogeochemical precipitation (Paksy et at., 1998).  

  

 In this thesis, a lysimeter study on the formation of biogeochemical deposits in 

leachate collection systems is presented. Instead of the traditional Results and Discussion 

section, two articles are used to illustrate some of the factors affecting the formation of 

precipitates in leachate collection systems. The relationship of waste composition and 

leachate quality is presented in the first article, in which the clogging of leachate 

collection systems due to co-disposal of MSW, WTE combustion residues, and 

byproducts from water and wastewater treatment is evaluated. The second article deals 

with the leaching behavior and the role of combustion residues from WTE facilities for 
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providing calcium and other minerals, influencing the formation of precipitates that may 

cause malfunction of leachate collection systems. 

 

 Limited information is available on the specific mechanisms of clogging and the 

factors that influence reaction rates. From an engineering perspective, it is important to 

ensure that leachate collection systems remain operational throughout the lifespan and 

post-closure periods of landfills. Improved understanding of biological and mineral 

clogging is needed to develop strategies for preventing clogging and reducing the failure 

potential of the landfill barriers (Bennett et al., 2000). 
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Objectives 

 

 

This project was conducted to investigate the impact of co-disposal of municipal 

solid waste (MSW), waste-to-energy (WTE) combustion residues, and residuals from 

water and wastewater treatment, and associated characteristics of leachate on the 

development of mineral precipitates that lead to clogging of leachate collection systems. 

The specific objectives are: 

 

1. Use of laboratory lysimeter tests to compare leachate characteristics from 

monofills of MSW or WTE combustion residues to leachates generated by co-

disposal of MSW, WTE combustion residues, and residuals from water and 

wastewater treatment.  

 

2. Assess the use of laboratory lysimeters in conjunction with batch tests to predict 

short-term and long-term leaching characteristics of combustion residues from 

WTE facilities.  

 

3. Identify dominant chemical and biological factors that influence the formation of 

deposits in leachate collection systems. 
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Literature Review  

 

 

 A major issue associated with the disposal of municipal solid wastes in landfills is 

the management of leachates generated from reactions between waste materials and 

rainfall or other sources of moisture. In this section, the composition and formation of 

landfill leachates are discussed and relevant State and Federal regulatory requirements for 

landfill leachate management are presented. An area of concern in the operation of 

engineered landfill is the potential for clogging of the leachate collection systems and 

therefore, a review of previous research on the development of biogeochemical deposits 

in landfill leachate drainage systems is presented. A comparison of field and laboratory 

studies that used lysimeters to determine the effect of different factors on leachate 

composition and clog development is also provided. Finally, the literature review is 

concluded with a discussion on waste-to-energy (WTE) combustion residuals. 

 

 

Engineered Landfills 

 

 

 Landfilling or land disposal is the most commonly used method for disposal of 

municipal solid wastes around the world. The planning, design, and operation of landfills 

involve the application of scientific, engineering, and economic principles (Bagchi, 1990; 

Tchobanoglous et al., 1993). The construction and design of landfills is influenced by the 

topography, the hydrology, and potential environmental constraints associated with 

management of the landfill site. 
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 Landfills are engineered to prevent and control risks to human health and 

minimize the potential for negative effects on the environment associated with solid 

waste disposal. Landfill practice is dynamic in that it will change with both advances in 

technology and changes in regulations (EPA Ireland, 2000). A summary of relevant 

aspects to be considered in the design of engineered landfills is presented in Table 1. 

 

 

Table 1. Summary of Relevant Aspects to be Considered in Landfill Design. 
Aspect Consideration 

Nature and quantity of wastes The waste types accepted at the landfill dictates the 
control measures required. Quantities and rate of 
waste input determine the life of the site. 

Water control To reduce leachate generation, control measures are 
required to minimize the quantity of water contacting 
the landfill waste. 

Protection of soil and water A liner must be provided to prevent leachate 
migration to soil, groundwater, and surface water. 
The liner must meet prescribed requirements. 

Leachate management Leachate collection systems must be provided to 
ensure that leachate accumulation at the base of the 
landfill is kept to a minimum.  

Gas control The accumulation and migration of landfill gas must 
be controlled.  

Environmental nuisances Provisions must be incorporated to minimize and 
control nuisances such as odors, fires, noise, and 
dust. 

Stability The sub-grade and basal liner should be sufficiently 
stable to prevent excessive settlement. The method of 
waste emplacement should ensure stability of the 
waste mass against sliding and rotational failure. 

Adapted from EPA publication EPA625-R-01-012, Florida Administrative Code 62-
701.40000(4)(b), and EPA Ireland (2000). 
 

 

 MSW landfills are permitted to receive a combination of MSW, bottom and fly 

ash from combustion processes, residuals from water and wastewater treatment facilities, 

construction wastes, and other materials (USEPA, 1993). Regulatory requirements 

stipulate that MSW landfills must have liners and leachate collection systems to prevent 

the migration of leachate into groundwater systems (USEPA, 1993). To better understand 

the potential for clogging of leachate collection systems, it is important to evaluate the 
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composition and formation of landfill leachate, as well as current design and operating 

leachate management practices. 

 

Landfill Leachate 

 

 

 Leachate is generated as a result of reactions between water percolating through 

the landfill and wastes. It results from a complex interplay between hydrological and 

biogeochemical processes. Leachate is composed of the liquid that enters the landfill 

from external sources, such as surface drainage, rainfall, groundwater, and water from 

underground springs, liquid associated with the deposited wastes, and liquid produced 

from waste decomposition. While hydrological processes determine the extent of 

leaching, biogeochemical processes of the matrix components determine the major 

solution variables (Bagchi, 1990; Johnson et al., 1999).  

 

 Leachate generation from landfilled wastes occurs over time spans ranging from 

decades to centuries, depending on the size and depth of the landfill, precipitation 

patterns, and leachate management practices. Waste consolidation and pressure 

differentials promote the migration of leachate through the landfill layers. Under normal 

conditions, leachate is found at the bottom of landfills and from there, although some 

lateral movement may also occur, its movement can be controlled with collection systems 

to be treated, discharged, or recirculated (Tchobanoglous and Kreith, 2002). 

 

 

Leachate Characteristics 

 

 

 When water percolates through solid wastes, biological materials and chemical 

constituents are mobilized into the liquid. Dissolved and suspended materials in leachates 

are composed of varying concentrations of organic carbon, ammonia, chloride, iron, 
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sodium, potassium, carbonates, and other constituents (Levine and Kroemer, 1989). The 

quality and quantity of leachate generated in a landfill is influenced by waste 

characteristics, local precipitation patterns, landfill age and location, and other site 

specific variables (Peeling et at., 1999; Johnson et al., 1999).  

 

 The composition of the leachate is an indication of the state of the biological 

processes occurring within the waste matrix and the relative solubility of the chemical 

constituents. Movement of liquid through the waste layers and collection systems can 

promote biological activity which, coupled with chemical reactions, has the potential to 

produce mineral precipitates. Certain compounds like sodium, potassium, and chloride 

are readily soluble and their concentrations do not change significantly during 

degradation processes, although an abundance of these ions does influence the ionic 

strength of the leachate (EPA Ireland, 2000; Rhea, 2004). Other ions such as calcium, 

iron, and magnesium are particularly important with respect to the precipitation of solids 

(Islam and Singhal, 2004; VanGulck et al., 2003; Rowe et al., 2002; Maliva et al., 2000). 

 

 As a landfill ages, changes in the quantity and quality of the leachate occur due to 

the establishment of microbial communities and the degradation and solubilization of 

constituents from the waste. Over the last thirty years, many factors have contributed to 

changes in the composition of municipal solid waste and therefore, leachate (Rowe et al., 

2002; Rhea, 2004). Representative data on the characteristics of landfill leachates are 

reported in Table 2.  
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Table 2. Representative Data on the Characteristics of Landfill Leachates. 

Parameter Units Bagchi 
(1990) 

Owen and 
Manning 
(1997) 

Kjeldsen et 
al. (2002) 

Levine et al. 
(2005) 

General 
  pH pH units 3.7 – 8.9 6.3 – 8.1 4.5 – 9.0 5.8 – 7.8 
  Conductivity mS/cm n/a 1.1 – 29.3 2.5 – 35.0 5.0 – 20.7 
  Phosphorus,    
   Total mg/L PO4 BDL – 250 n/a 0.1 – 23.0 0.2 – 98.0 

  Solids, Total  
   Dissolved mg/L TDS 584 – 55,000 1,558 – 

91,057 n/a 3,202 – 
14,975 

  Solids, Total  
   Suspended mg/L TSS 2 – 140,900 n/a n/a n/a 

Biological Activity Indicators 
  Alkalinity,  
   Total 

mg/L as 
CaCO3 

BDL – 
15,000 n/a n/a 350 – 9,500 

  Organic Carbon,  
   Total mg/L TOC BDL – 

195,000 n/a 30 – 29,000 15 – 12,300 

  Volatile Acids mg/L as 
acetic acid n/a n/a n/a 8.3 – 1,950 

Anions 
  Chloride mg/L Cl 2 – 11,400 24 – 9,710 150 – 4,500 300 – 45,000 
  Sulphate mg/L SO4 BDL – 1,900 5 – 1,720 8 – 7,750 BDL – 1,000 
Cations 
  Calcium mg/L Ca 3 – 2,500 82 – 1,592 10 – 7,200 210 – 11,000 

  Iron mg/L Fe BDL – 4,000 BDL – 
118.5 3.0 – 5,500 6.8 – 1,400 

  Magnesium mg/L Mg 4 – 780 41 – 1,290 30 – 15,000 0.01 – 377.5 

  Manganese mg/L Mn BDL – 400 BDL – 
23.1 0.03 – 1,400 46 – 9,000 

  Potassium mg/L K BDL – 3,200 11 – 1,450 50 – 3,700 66 – 67,000 
  Sodium mg/L Na 12 – 6,010 10 – 4,790 70 – 7,700 60 – 2,869 
BDL = Below Detection Limits 
n/a = Not Available 
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Factors Affecting Leachate Composition 

 

 

 The variability of leachate characteristics complicates design and operation 

practices for leachate management and treatment (Kjeldsen et al., 2002; Tchobanoglous 

et al., 1993). The quality and quantity of leachate generated in a landfill is influenced by 

waste characteristics, local precipitation patterns, landfill age and location, and other site 

specific variables (Peeling et at. 1999; Johnson et al., 1999). A summary of the factors 

affecting leachate composition is presented in Table 3. 

 

 

Table 3. Summary of Factors Affecting Leachate Composition. 
Factor Effect Comments 

Waste characteristics Determines the types of compounds 
that leach into solution. Controls the 
type and extent of biological activity 
within the landfill. 

Amount of water that can be 
absorbed depends on the type 
of waste and physical 
characteristics (size, surface 
area, porosity, etc.). WTE 
residues and water and 
wastewater treatment 
processes have different 
properties than MSW.    

Local precipitation 
patterns 

Determines frequency and the 
amount of water available for 
leachate generation. Impacts the 
dilution, concentration, 
solubilization, and/or precipitation 
of leachate components. 

Biogeochemical processes are 
moisture limited. Changes 
between seasons (dry – wet) 
also play a role in 
dissolution/precipitation 
reactions.   

Landfill age and location Determines the degradation stage of 
the waste and the availability of 
certain compounds. Climatic factors 
and precipitation patterns are related 
to the location of the site. 

Location also determines the 
type of community served by 
the facility and therefore, the 
kinds of activities producing 
waste. 

Landfill operation Rate of waste input and practices 
such as co-disposal of residues and 
leachate recirculation affect leachate 
quality and quantity. 

Maintenance practices for 
collection system and gas 
control management are 
important too. 
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 Knowledge about leachate generation characteristics of a landfill is a prerequisite 

to the planning of a leachate management strategy. The potential for the formation of 

leachate can be assessed by preparing a water balance that involves the amounts of water 

entering the landfill, the amounts of water consumed in biochemical reactions, and the 

quantity leaving as water vapor. The potential leachate quantity is the quantity of water in 

excess of the field capacity of the waste (Tchobanoglous and Kreith, 2002). 

 

 There are four successive stages in the degradation of waste which lead directly to 

leachate and gas production: (1) aerobic stage; (2) hydrolysis and fermentation stage; (3) 

anaerobic acetogenic stage; and (4) anaerobic methanogenic stage (USEPA, 2000; 

Kjeldsen et al., 2002). These processes are dynamic, each stage being dependent on the 

creation of a suitable environment by the preceding stage. In each stage a number of 

biologically mediated reactions take place, depending on the competing ability of the 

microbiological community to function within a changing chemical environment (Bagchi, 

1990; Owen and Manning, 1997; EPA Ireland, 2000). Biological activity influences 

redox potential, pH, and temperature, which can impact the rate and extent of biological 

degradation and chemical equilibrium solubility affecting leachate composition. 

 

 Landfill management approaches also affect leachate characteristics. Typically, 

MSW landfills are permitted to receive a combination of MSW, fly and bottom ash from 

combustion processes, residuals from waste and wastewater treatment facilities, 

construction wastes, and other materials (USEPA, 2004). All these residues have very 

different compositions, leaching potentials, and properties that have an impact in the 

leachate (Hjelmar, 1996). 

 

 Interest in leachate recirculation and bioreactor landfills is intensifying around the 

world, because waste decomposition and the time to stabilization are accelerated through 

these kinds of practices (Reinhart, 1996; Morris et al., 2003; USEPA, 2000). Leachate 

recirculation can enhance the degradation of MSW, as it provides an aqueous 

environment that facilitates the provision of nutrients and microbes within the landfill 
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affecting leachate quality (Chan et al., 2002). Leachate quality changes occur as a result 

of a uniform distribution of moisture, higher quantities of inoculum, possible flushing and 

dilution of inhibitory products, and concentration of metals due to biological activity. 

 

 

Regulatory Requirements for Landfill Leachate Management 

 

 

The safe and reliable long-term disposal of solid waste residues is an important 

component of integrated waste management. There are many potential environmental 

problems associated with landfilling of solid wastes. In the past, many problems occurred 

as a result of non engineered facilities, poor management, and weak regulatory oversight. 

 

 Regulations for waste management and landfill design have been established to 

protect public health and prevent environmental contamination. Design, operation, and 

closure practices for MSW landfills are based on 40 CFR Part 258 of the Resource 

Conservation and Recovery Act (RCRA) Subtitle D requirements for control of leachates 

and gases generated during the life of the landfill (USEPA, 2000). In this section, 

regulatory requirements for landfill design, landfill operation, and landfill leachate 

management are summarized. The Federal regulations establish minimum standards and 

allow the States to make the necessary adjustment to compensate for local variations. 

 

 

Leachate Collection Systems 

 

 

 The main purpose of leachate collection systems is to allow the removal of 

leachate from the landfill and to control the depth of the leachate above the liner 

(USEPA, 2000; Tchobanoglous and Kreith, 2002). Typically, landfill leachate collection 

systems are positioned above the liner and are designed to collect liquid under 
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gravitational flow for the entire active, closure, and post-closure periods. Clogging of any 

portion of the system can lead to higher hydraulic heads within the waste zone and 

increase the potential for leakage through the liner. 

 

 A schematic of a leachate collection system is shown in Figure 1 and design 

requirements specified by the USEPA are summarized in Table 4. As shown, the 

composite liner serves as the landfill base and consists of an impermeable layer with a 

hydraulic conductivity of less than 10-7 cm/sec (USEPA, 1993). Typically, clay is used to 

construct this relatively impermeable layer. The clay layer is overlain by a flexible 

membrane liner that provides an additional barrier protection in case cracking occurs in 

the underlying clay due to shifts in the soil.  

 

 

 
Figure 1. Diagram of the Leachate Collection System of Engineered Landfills. Adapted 
from Rhea (2004). 
 

 

 

 

 

 

Perforated Leachate 
Collection Pipe 

Composite Liner 
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A 
B

D

E
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Table 4. Landfill Leachate Collection System Components Shown in Figure 1. 

Parameter Section Material and Specifications Label in 
Figure 1 

Base Soil with hydraulic conductivity less than 
1 x 10-7 cm/sec. Slope > 2%. A Composite liner 

Liner Flexible membrane. B 
Drainage 
layer 

Placed directly over liner; material based 
on availability of granular material or 
geosynthetic net. Conductivity greater 
than 1 x 10 -2 cm/sec. Slope > 2% 

C 

Collection 
pipes 

Perforated; minimum 6 inch diameter; 
embedded within the drainage layer; 
strong enough to support waste and 
drainage layer. 

D 

Leachate collection 
system 

Filter layer Geotextile and/or sand. Protects drainage 
layer from physical clogging. E 

Adapted from Rhea (2004), EPA publication EPA530-R-93-017, and Florida Administrative 
Code 62-701.40000(4)(b). 
 

 

If the leachate develops sufficient head (depth), it has potential to penetrate the 

composite liner. The leachate head is a function of leachate generation, bottom slope, 

pipe spacing, and the hydraulic conductivity of the drainage layer. To prevent 

accumulation of leachate above the composite liner, leachate collection systems are 

designed to maintain the leachate depth below 30 cm (Bagchi 1990; USEPA, 1993; EPA 

Ireland, 2000). However, during times of peak flow it is acceptable to exceed this value.  

 

The transport of leachate from waste matrices occurs through a series of 

perforated pipes embedded in a drainage layer. Regulatory requirements stipulate 

minimum requirements for perforated pipes to be at least 6-inch diameter plastic pipe 

capable of supporting the combined weight of the drainage layer and the waste at design 

capacity. If the pipes are not able to support this weight, the leachate collection system 

will fail. The conductivity of the drainage layer material must be at least 10-2 cm/sec, 

with a minimum slope of 2% so that the leachate will flow towards the collection pipes 

(USEPA, 1993). 
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 To prevent physical clogging of the collection pipes, the size of the drainage 

material must be larger than the perforations in the pipe. Another measure used to prevent 

physical clogging is the filter layer. This layer of geotextile and sand is placed above the 

drainage blanket and prevents waste from traveling into the drainage layer and the 

collection pipes creating physical blockages in the flow (USEPA, 1993). Leachate 

monitoring points and leachate collection sumps or a header pipe system may also be 

required for leachate control and removal. 

 

 Biological and chemical clogs can occur in the leachate collection system pipes 

(Fleming et al., 1999; Jefferies and Bath, 1999; Maliva et al., 2000; Missmer 

International, 2000; Paksy et al., 1998; Reinhardt and Townsend, 1998; Rittman et al., 

1996; Rowe and Fleming, 1998; Rowe et al., 2000a, b, c; Rowe et al., 2002; USEPA, 

1983). Within pipes, accumulation of deposits may be induced because of inadequate 

localized flows caused by areas of hydraulic perturbation (EPA Ireland, 2000). To help 

control the formation of mineral precipitates and biofilms, clean-out access ports are 

required in leachate collection systems. These ports must be placed at locations that allow 

cleaning equipment and chemicals to access the whole system (USEPA, 1993).  

 

 The suggested method for removal of mineral deposits is to flush the system with 

a liquid that contains biocides and cleaning agents. The cleaning is intended to remove 

mineral precipitates and biofilm buildup in the pipes, but does not prevent the formation 

of future clogs (USEPA, 1993). The cleaning frequency is determined by local 

regulations and landfill operating protocols.  

 

 

Clogging of Leachate Collection Systems 

 

 

 Typically, the design life of landfills spans several decades, depending on the 

available space and the quantity of waste received (Fleming et al., 1999). A common 
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reason for failure of leachate collection systems is clogging as a result of the growth of 

biofilms, accumulation of inorganic solids, and attachment of suspended particles in 

pipes, drainage layers, and/or the filter layer (VanGulck et al., 2003; Islam and Singhal, 

2004; Manning and Robinson, 1999; Rowe et al., 2002). The leachate characteristics 

which have an impact in the potential mechanisms related to the formation of deposits in 

leachate drainage systems are summarized in Table 5. 

 

 

Table 5. Potential Clogging Mechanisms and Leachate Characteristics of Concern. 
Potential Clogging Mechanism Leachate Characteristics of Concern 

Particulate pH and solids (TS, TDS, TSS). 
Biological pH, oxygen, organic content (COD, BOD, TOC), 

nutrients (total phosphorus and total nitrogen), oxidation-
reduction potential (ORP), temperature, and inhibitory 
metals (Zn, Cu, Fe, etc). 

Chemical Precipitate Formation pH, conductivity, alkalinity (CO3), calcium, chloride, 
magnesium, manganese, sodium, sulfate, and 
phosphorus. 

Biochemical pH, iron, manganese, partial pressure of CO2, redox 
potential, electron acceptors (sulfate, nitrate, oxygen), 
inhibitory metals (Zn, Cu, Fe, etc). 

Adapted from EPA Ireland (2000). 

 

 

 In some cases, evidence of clogging has been observed to occur within 4 years of 

landfill initiation (Rowe et al. 2002). Drainage media have been implicated in the 

formation of clogs in landfill leachate collection systems (Rowe et al. 2000c; USEPA, 

1991). While the initial hydraulic conductivity and porosity of different media may be 

similar, there are differences in the size of the pores and the available surface area for 

different types of media. For a given volume, smaller media provides a greater surface 

area, allowing for increased biofilm development that may influence the clogging rate 

(Koerner and Koerner, 1990; Rohde and Gribb, 1990; Rowe et al. 2000a).  

 

 Regardless of the medium, the flow of the leachate also affects the rate at which 

clogs form. Clogging has been found in both saturated and unsaturated zones of leachate 
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collection systems. In anaerobic environments, unsaturated regions tend to have less 

clogging than saturated regions due to differences in available substrate for microbial 

activity. Microbial activity can influence environmental conditions like redox potential 

and pH, which impact the rate and extent of biological degradation and chemical 

solubility (Kylefors et al. 2003). 

 

 During times of high leachate flow rates, the increased activity of the 

microorganisms can lead to biofilm production and the precipitation of insoluble 

minerals. In reality, the environment in the leachate collection system of a landfill cycles 

between saturated and unsaturated conditions depending on precipitation patterns. 

Unfortunately, deposition of precipitates is most pronounced in regions that experience 

changing flows, cycling between saturated and unsaturated conditions (Paksy et al., 1998; 

Rowe et al., 2000b).  

 

 The clogging process appears to pass through a number of microbial mediated 

stages which include, but may not necessarily be limited to, formation of surface 

biofilms, generation of slimes, and growth on interconnected mineral bio-concretions that 

gradually become denser and less pervious. Entrapment within these formations of 

recalcitrant particles (silt and sand particles or fines derived from the waste) may also 

accelerate clogging. The structural integrity of the clog may be developed by 

precipitation of low-solubility sulfide and carbonate minerals (Fleming et al. 1999). 

  

 Landfill leachates have been reported to contain significant numbers of 

microorganisms which are delivered to the drainage system, attach to surfaces, and form 

biofilms (Huang et al., 2003; 2004). It is hypothesized that bacteria growing within the 

decomposing waste detach from the developing biofilms, flow with the leachate into the 

leachate collection system, and colonize the granular drainage material (Rowe et al. 

2000a). 
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 The accumulation of clog material can be represented as being composed of a 

volatile and inorganic solid film (Cooke et al., 2001; Rowe et al., 2002). The volatile film 

contains an active component where microorganisms grow and substrate is utilized and 

an inactive component which consists of precipitate material, inorganic solids, and 

entrapped inorganic suspended particles (VanGulck and Rowe, 2004b). Unlike the active 

biofilm, the inactive film does not approach a steady state but continues to increase over 

time.  

 

 Leachates have abundant potential to precipitate minerals (Owen and Manning, 

1997). The most common precipitate is of calcium carbonate, but others are manganese 

carbonate, manganese sulfides, and silicates (EPA Ireland, 2000). Geochemical modeling 

studies have reported calcite (CaCO3) and dolomite (CaMg(CO3)2) to be supersaturated 

in landfill leachates (Owen and Manning, 1997; Bennett et al., 2000; Johnson et al., 

1999). Typically, leachates are also saturated with respect to FeCO3, MgCO3, and 

Ca5(PO4)3OH (Rowe et al., 2002). As leachate passes through the drainage material, 

depletion of calcium can be correlated with the loss of COD due to the fermentation of 

acetic acid and the consequent generation of carbon dioxide and formation of carbonic 

acid (Rittmann et al., 1996). The results are an increase in pH and carbonate 

concentration, both of which allow, or accelerate, the chemical precipitation of calcium 

carbonate and other compounds. 

 

 It has also been suggested that the amount of calcium carbonate in the precipitate 

can be estimated from the mass ratio of calcium to carbonate in leachates (Rowe and 

Booker, 1998). If precipitation were the only mechanism for calcium accumulation 

within the clog material, and all calcium within the clog material were bound to 

carbonate, a mass balance consideration of calcium carbonate precipitation (equation 1) 

requires the theoretical calcium to carbonate ratio to be 0.667 (40 g Ca2+/60 g CO3
2-).  

 

 CO3
2- + Ca2+  CaCO3 (s)       (equation 1) 
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 Calcium to carbonate mass ratios larger than 0.667 suggest that calcium may 

precipitate as compounds other than calcium carbonate, while ratios less than 0.667 

suggest metals other than calcium may precipitate with carbonate (VanGulck et al., 2003; 

VanGulck and Rowe, 2004a, b). From this approach, it was determined that the 

availability of calcium rather than the carbonate limits the formation of the calcite in 

leachate drainage and collection systems (Rowe et al. 2002). 

 

 Several field studies have reported the composition of the clog material found in 

landfill leachate collection systems. Brune et al. (1991) conducted studies in German 

landfills, while Fleming et al. (1999) reported organic and inorganic materials in a 

Toronto landfill. Maliva et al. (2000) detected a low magnesium form of calcite in clog 

scale obtained from a leachate collection pipe in a Florida landfill that received 

combustion residues from a WTE facility. Levine et al. (2005) also reported the 

composition of clog materials collected at different locations of the leachate collection 

system in the same Florida landfill. The results of these studies are presented in Table 6. 

 

 

Table 6. Comparison of Composition of Material Precipitated in Landfill Leachate 
Collection Systems (Values Reported in Percentages). 

Material Brune et al. (1991) Fleming et al. (1999) Levine et al. (2005) 
 Ca 21 20 75 – 85 
 CO3  34 30 n/a 
 Si 16 21 1 – 5 
 Mg 1 5 <1 
 Fe 8 2 <1 
n/a = Not Available 

 

 

 Samples removed in these studies ranged from soft clog material containing solid 

sand-size particles, to hard solid material with the appearance and consistency of a weak 

concrete or rock. The precipitate is generally mixed with a biological slime, which is 

quite adherent and can block flow through the drainage system. Precipitates produced as 

a result of biochemical activity are generally quite different in form and structure from 
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those resulting in chemical processes alone and may show a greater tendency to clogging. 

This clogging tendency is apparent in the case of adherence to plastic piping (EPA 

Ireland, 2000). 

 

 

Lysimeter Studies 

 

 

 In addition to observations from active landfills, laboratory studies have been 

used to assess different aspects of landfilling practices. Various tests have been 

developed to determine the leaching behaviors of materials (Hage and Mulder, 2003). 

Tests used to establish the leaching characteristics of wastes include field tests, simulator 

(lysimeter) tests, and batch tests. A comparison of these tests is given in Table 7. 

 

 

Table 7. Comparison of Types of Tests Used to Evaluate Waste Leaching Potentials. 
Category Description Advantages Disadvantages 

Field Monitors leachate 
characteristics 
produced by wastes in 
an established landfill. 

Establishment of 
microbial 
communities; 
heterogeneity of waste 
constituents. 

Can take several years; 
limited access to the reacting 
materials; inability to 
determine the contribution of 
waste constituents to leachate 
quality. 

Simulator Waste is placed in a 
column, commonly 
called a lysimeter, and 
allowed to react over 
several months. 

Establishment of 
microbial populations; 
mimics a landfill; 
controlled flow of 
leachant; access to the 
reacting materials in 
select locations. 

Can take months to 
complete; inability to 
determine the contribution of 
the individual waste 
constituents to the 
characteristics of the 
leachate. 

Batch Select wastes are 
placed in non-reactive 
containers with 
leachant for a specific 
length of time. 

Can be completed in 
weeks; identification 
of the contribution of 
waste constituents to 
leachate quality. 

Missing microbial activity; 
limited interaction among 
different types of waste. 

Adapted from Rhea (2004). 
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 Simulators or lysimeters tests require less time than field tests but can still take 

several months to be completed. Lysimeters can be used to simulate specific landfill 

conditions under a controlled environment, evaluated the relationships between waste 

composition and leachate quality, and provide an opportunity to observe the 

establishment of microbial communities in relation to leachate flow patterns. In these 

tests, wastes are placed in parallel reactors where temperature, moisture content, and the 

degree of leachate recirculation can be controlled and gas production and leachate 

composition can be monitored. In addition, the composition of the wastes can be 

characterized more completely than in a landfill setting.  

 

In many ways lysimeters are black boxes, since the ability to determine a direct 

relationship between individual materials and leachate characteristics is unknown (Rhea, 

2004). The design, placement, and operation of the reactors depend on the purpose of the 

study and can influence the results. In a laboratory, the results may not correlate with 

field tests due to differences in temperature, time, and liquid to solid contact frequency 

(van der Sloot, 1998). Lysimeter design parameters from published studies are compared 

in Table 8, while different lysimeter operation aspects are summarized in Table 9. 
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Table 8. Design Parameters Used in Lysimeter Studies. 
Reference Aspect Column Material Packing Material 

Blight et al. (1999) 3.12 m2 X 1.06 m 
deep 

Brick and concrete Liner: HDPE 
Drainage layer: 100 mm   
   gravel 
MSW 

Chan et al. (2002) 150 mm diameter;  
150 cm length 

Stainless steel MSW, sewage sludge, 
marine dredging 

Cooke et al. (2001) 51 mm diameter;  
760 cm length 

PVC 6-mm diameter glass 
beads 

Fleming et al. (1999) 0.25 X 0.6 X 0.70 m PVC Drainage blanket: clear  
   stone 
MSW: 5 – 10 yr old  
   waste 
Geotextile 

Islam and Singhal 
(2004) 

50 mm diameter;  
500 mm length 

n/a Clean sand: 0.21 – 0.61  
   mm in size 

Karnchanawong et al. 
(1995) 

1.9 m diameter;  
6.14 m length 

Steel coated with 
coal tar resin 

Drainage layer: gravel 
Cover layer: soil 
MSW 

Paksy et al. (1998) 350 mm diameter;  
900 mm length 

MDPE/HDPE Drainage layer: limestone 
   and Thames gravel 
MSW:  4 – 5 yr old waste 

Peeling et al. (1999) 220 mm diameter;  
910 mm length 

MDPE/HDPE Drainage layer: limestone 
   and Thames gravel 
MSW:  4 – 5 yr old waste 

Rowe et al. (2000) 50 mm diameter;  
700 mm length 

PVC Schedule 40 4, 6, 15 mm diameter 
glass beads. 

Sallam, M. (2002) 150 mm diameter;  
122 cm length 

PVC Drainage layer: silica  
   gravel 
MSW 
Geotextile 

San and Onay (2001) 35 cm diameter;  
100 cm length 

PVC Drainage layer: gravel 
MSW: shredded and  
   compacted synthetic  
   solid waste. 

VanGulck and Rowe 
(2004) 

51 mm diameter;  
700 mm length 

PVC Schedule 40 6 mm diameter glass 
beads. 

n/a = Not Available 
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Table 9. Operational Aspects of Lysimeter Studies. 

Reference Liquid source and flow 
rate 

Time span and 
temperature 

Gas and leachate collection 

Blight et al. 
(1999) 

Rainfall 865 days 
17 – 20 °C 

Leachate: single base    
  drainage orifice 

Chan et al. 
(2002) 

Distilled water (500 ml) 
added weekly; leachate 
recirculation 

69 – 78 days 
38 °C 

Gas: gas-venting valve on the 
  lid, connected to water-filled 
  glass column 
Leachate: weekly samples  
  from valve at the bottom 

Cooke et al. 
(2001) 

Liquid: landfill and  
  synthetic leachate 
Flow rate: continuous,  
  upward (1.12 L/d) 

280 days 
22 °C 

Allowed escape of gas 

Islam and 
Singhal (2004) 

Liquid: landfill leachate 
Flow rate: continuous,  
  upward (0.33 – 7.2 L/d) 

58 – 126 days 
18 – 30 °C 

n/a 

Karnchanawong 
et al. (1995) 

Rainfall 853 days 
n/a 

Leachate samples collected 
weekly 

Paksy et at. 
(1998) 

Liquid: landfill and  
  synthetic leachate 
Flow rate: continuous,  
  vertically down  
  (0.6 – 10 L/d) 

800 days 
18 – 37 °C 

Gas outlet port in the lid 

Peeling et at. 
(1999) 

Liquid: synthetic leachate 
  with recirculation 
Flow rate: continuous,  
  vertically down 
  (0.62, 1.30, 2.59 L/d) 

350 – 500 days 
n/a 

Gas: flow meters; headspace  
  gases sampled with syringes 

Rowe et al. 
(2000) 

Liquid: landfill and  
  synthetic leachate 
Flow rate: continuous,  
  upward (1, 2, 4 L/d) 

121 – 422 days 
26 – 37 °C 

Gas: Tedlar gas collection  
  bag; piezometer connection 
Leachate: valve above the top 
  of the beads 

Sallam, M. 
(2002) 

Liquid: landfill and  
  synthetic leachate with  
  recirculation 
Flow rate: continuous,  
  vertically down  
  (0.04 L/d) 

180 days 
17 – 28 °C 

Gas valve at the top 

San and Onay 
(2001) 

Liquid: tap water;  
  leachate recirculation 
Flow rate: continuous,  
  vertically down 

275 days 
34 °C 

Gas: measured using the  
  inverted cylinder technique 
Leachate: screen and tubing 

VanGulck and 
Rowe (2004) 

Liquid: landfill leachate 
Flow rate: continuous,  
  upward (1.02 L/d) 

245 days 
21 °C 

Gas: Tedlar gas collection  
  bag; piezometer connection 
Leachate: valve above the top 
  of the beads 

n/a = Not Available 
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 Lysimeter studies have been used for leachate characterization and modeling of 

MSW co-disposed with incinerated residuals. Based on reported results from tests on 

leachate quality, co-disposal of MSW and incinerated residuals provides an efficient 

method of waste disposal, since the organic content of the leachate is lower than for 

leachates produced during the traditional disposal method (Gau and Chow, 1998). It was 

also found that a shallower waste layer produces lower concentrations of pollutants in the 

leachate, although higher amounts of leachate volume and extracted substances per dry 

weight of waste may be produced (Karnchanawong et al., 1995). 

 

 Identification of the effects of leachate recirculation on biogas production and 

leachate quality has been subject of several lysimeter studies (Blight et al., 1999; Chan et 

al., 2002; San and Onay, 2001). The conclusions of these studies suggests that leachate 

recirculation could maximize the efficiency and waste volume reduction rate of landfill 

sites, with the additional benefit of overall leachate loading reduction for treatment. 

Waste decomposition can be improved by an increase in the moisture flow, as a result of 

increased flushing and dilution of the inhibitory products, maintenance of favorable 

environmental conditions by uniform distribution of moisture, and addition of higher 

quantities of inoculums and nutrients (USEPA, 2000). 

 

 Laboratory lysimeter studies have been used to assess the clogging process. Paksy 

et al. (1998) demonstrated that the clogging rates in anaerobic drainage systems are 

highly sensitive to the particle size of the drainage material, and that drains subjected to 

alternating periods of saturation and unsaturation may become more uniformly and more 

extensively clogged. These studies recommended that drainage material consisting of 

sand or gravel with a nominal particle size less than 10 mm should be avoided, and that it 

is preferable to keep the whole system fully saturated. 

 

 Cooke et al. (2001) used lysimeter tests to compare calcium removal and COD 

consumption in landfill leachate drainage systems. They found that calcium removal goes 

through three stages: a lag period, a period of rapidly increasing removal, and a steady-
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state period. Calcium removal paralleled changes in the COD. This correspondence 

underscores the importance of microbial reactions in stimulating the precipitation of 

calcium carbonate. In addition, VanGulck and Rowe (2004a) and VanGulck et al. (2003) 

demonstrated through the use of column experiments, that the anaerobic fermentation of 

volatile fatty acids (mainly acetate) is the primary driver of calcium carbonate 

precipitation in leachate drainage collection systems. 

 

 Several physical, geochemical, and biological interactions have been reported 

from column studies (Peeling et al., 1999; Rowe et al., 2002; VanGulck and Rowe, 

2004b). Leachate transport in soils resulted in a reduction of its permeability, possibly 

due to impermeable barriers formed through stimulation of anaerobic activity at the base 

of landfills (Islam and Singhal, 2004). Experimental observations suggested simultaneous 

reduction of manganese and iron accompanied by sulfate degradation and methane 

production. 

 

 From lysimeter studies, Rowe at al. (2000b) concluded that mass loading has a 

significant impact on the rate and extent of clogging in a granular medium. The increased 

mass of inorganic material available for precipitation on the granular medium, coupled 

with the higher mass loading near the collection pipes tends to accelerate clogging. 

Reducing the distance between the leachate collection pipes can decrease the total 

volume of leachate collected by each pipe and reduce the mass loading and the rate of 

clogging around the pipe. 

 

 The placement of a geotextile filter/separator between the unsaturated stone layer 

and the overlying waste was studied by McIsaac et al. (2000). In this study, the presence 

of a separator minimized the occlusion of the voids with waste material at the top of the 

unsaturated stone layer. The presence of a geotextile decreased the amount of fines and 

sand sized particles, resulted in less clog material present in the drain material. Visually 

more clog material was observed in the drainage system in lysimeters with no geotextile 

separator. 
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 The information obtained from lysimeter studies provides a means to understand 

the factors and identify environmental conditions that influence the clogging process. 

From an engineering perspective, it is important to ensure that landfill leachate collection 

systems remain operational throughout the lifespan and post-closure periods of landfills 

(Bennett et al. 2000). Therefore, improved understanding of biological and mineral 

clogging is needed. 

 

 

Waste-To-Energy Residuals 

 

 

 WTE combustion is an important technology that can be a significant factor in an 

overall fully integrated solid waste management strategy. These technologies offer great 

opportunities for reducing the volume and mass of waste to be landfilled up to 90% and 

75% respectively, as well as for generating heat and power (USEPA, 2004). The major 

constraints on WTE combustion facilities are their cost, the level of sophistication needed 

to operate them safely, control of air emissions, and the fact that the public lacks 

confidence in their safety (Tchobanoglous and Kreith, 2002).  

 

 Byproducts of thermal processing of solid waste include combustion gases, ash 

residues, and recoverable materials such as ferrous and nonferrous metals. Ash residues 

are produced and discharged at various locations in a WTE facility. Combustion residues 

vary in composition depending on the source of the combusted material, degree of pre-

processing (mass-burn, RDF, material recovery), the efficiency of the combustion 

process, the ash management practices, emission control systems, and the methods of 

residue collection (Berenyi, 1996; Brereton, 1996; USEPA, 2004). Different types of ash 

and their characteristics are summarized in Table 10. 
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Table 10. Summary of Different Types of Ash Residues from a WTE Facility. 
Residue Location Characteristics 

Bottom ash Discharged from the bottom of 
the furnace, primarily the 
grate, after the waste has 
progressed down the stoker. 

Consists of inert residues, glass 
and metallic objects, and 2 to 10 
percent carbon. It is usually 
quenched with water, although it 
can also be collected in a dry 
state. 

Stoker grate siftings Fall through clearances in the 
grates and are collected with 
bottom ash. 

May include unburned organic 
matter.  

Boiler ash Carried by combustion gases. 
It may fall onto the stoker into 
the bottom ash, or it may be 
collected in hoppers. 

Consists of flying particles and 
condensable metal vapor which 
may attach to refractory and 
water-cooled walls. 

Fly ash Carried by combustion gases 
through the furnace, boiler, 
and scrubber. It is collected by 
the particulate control device. 

Reaction products of primarily 
calcium chlorides and un-reacted 
lime. Includes volatiles 
condensed during flue gas 
cooling. 

Scrubber reaction products Collected at the bottom of 
spray-dry or dry lime-injection 
acid gas scrubbers. 

Include fly ash and reacted or 
partially reacted alkaline reagent 
(such as lime) and some carbon. 

Mixed ash Various locations from the 
combustion and emission 
control equipment. 

May contain siftings, bottom ash, 
boiler deposits, scrubber 
residues, fly ash, and scrubber 
products. 

 Adapted from Hasselriis (2002) and Wiles (1996). 

 

 

 Disposal of ash residues imposes a substantial increment to the total cost of 

operation of a WTE facility. Since 1994, when the Supreme Court ruled that ash from 

MSW combustion must be treated as other hazardous wastes in City of Chicago vs. 

Environmental Defense Fund, all WTE facilities have been required to test the ash using 

the Federal Resource Conservation and Recovery Act testing requirements for hazardous 

waste, prior to disposal in lined landfills (FDEP, 2000). There are over 150 WTE plants 

in operation today in the United States and since they have become an integral part of 

waste management around the country, more are either planned or under construction 

(Tchobanoglous and Kreith, 2002). 
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Ash Management and Disposal 

 

 

 Over the past several years there has been significant controversy concerning the 

proper management of the residues from WTE facilities and their regulatory 

classification as hazardous or non-hazardous waste. This controversy and other factors, 

such as the lack of Federal guidance and heavy metal content, have resulted in 

inconsistent management requirements among several States and uncertainty about 

beneficial utilization of the residues (Wiles, 1996). 

 

 Ash residues can be processed at the WTE facility to reduce the rate of release of 

contaminants into the environment, facilitate disposal, improve the quality of the 

residues, remove valuable and useful materials, and to prepare portions of the ash for 

beneficial use (Hasselriis, 2002). Treatment options include processing to recover ferrous 

and nonferrous metals, compaction aging during storage, solidification/stabilization, 

vitrification, and chemical extraction. Major utilization options include aggregate for road 

base, embankments, asphalt pavements, and aggregate in Portland cement for 

construction (Wiles, 1996). Utilization, however, must follow sound scientific and 

engineering principles and be conducted with appropriate measures to assure that it is 

acceptable to the environment and to human health. 

 

 Although there are options for using ash residues and for treating them prior to 

use or as a requirement for disposal, most of the WTE combustion residues generated in 

the United States are disposed either in monofills, or co-disposed with MSW and/or 

residuals from water and wastewater treatment facilities (Hjelmar, 1996; Wiles, 1996; 

Levine et al., 2005). Placing ash residues in monofills has the advantage that a solid, 

relatively impervious mass is created, over which trucks can drive as soon as it is placed. 

Ash monofills can be so impervious to water that 90% or more of rainfall runs off, 

without leaching much of the soluble material in the ash (Hasselriis, 2002). There has 
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been concern about co-disposal practices because the impacts on leachate quality and 

waste interactions are not well known yet. 

 

 Due to the potential leaching of contaminants, landfilling of WTE combustion 

residues may have long-term consequences for the environment. It has been suggested 

that monofill or co-disposal of WTE combustion residues and MSW may lead to sub-

optimal management solutions in terms of resource conservation and environmental 

safety (Hjelmar, 1996). Co-disposal of combustion residues with MSW has the potential 

to introduce metals, minerals and other non-biodegradable materials to the leachate 

matrix; the acids generated by decomposing MSW could increase concentrations of 

soluble toxic metals in the collected leachate (Hasselriis, 2002). WTE ash would provide 

minerals while MSW would provide biomass, carbonate species, and alternative electron 

acceptors, resulting in clogging of leachate collection systems due to mineral 

precipitation (Levine et al., 2005). 

 

 

Leachate from WTE Combustion Residues 

 

 

 From a technical perspective, the development of strategies for disposal of WTE 

combustion residues and management of the leachate should be based on extensive 

knowledge of leaching behaviors. The degree to which combustion residues contribute to 

landfill leachate characteristics is influenced by the type of combustion residue, the 

disposal practices, the net volume of liquid that percolates through the landfill, biological 

activity, the age of the landfill, and site-specific factors (Johnson et al., 1999).  

 

 The potential for leaching of minerals from combustion residues has been 

evaluated by several researchers (Abbas et al., 2003; Bruder-Hubscher et al., 2002; Hage 

and Mulder, 2003; Kim et al., 2003; Kim and Batchelor, 2001; Kylefors et al., 2003; 

Song et al., 2004; van der Sloot, 1998).  In addition, differences in the properties of 
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combustion residues from different types of processing have been identified (Brereton, 

1996; Dijkstra et al., 2002; Song et al., 2004). WTE combustion residues show systematic 

leaching patterns, and the leaching behaviors are controlled by such factors as pH, redox 

potential, ionic strength, complexing inorganic ions and organics, and L/S ratios.  

 

 The leachate from WTE residues usually contains roughly 50% of soluble salts 

resulting from the removal of acid gases by emission controls, and low organic contents. 

The major elements include Ca, Cl, Fe, K, Na, O, and SO4, while minor elements are Cr, 

Cu, Mg, Mn, Pb, and Zn (Wiles, 1996). A comparison of leachate characteristics from 

ash monofills is given in Table 11.  

 

 

Table 11. Comparison of Leachate Quality from Ash Monofills. 

Parameter Bagchi (1990) Cambotti and 
Roffman (1993) Hjelmar (1996) Lundtorp et al. 

(2003) 
pH (pH units) 8.47 – 9.94 5.7 – 7.5 8.7 – 10.5 11.19 – 11.20 
Conductivity 
(mS/cm) 2.5 – 18.7 n/a 1,400 – 3,900 2.4 – 310 

Aluminum 
(mg/L) 2.3 – 88.8 n/a n/a 0.230 – 0.420 

Arsenic (mg/L) < 0.187 BDL – 0.40 0.005 – 0.025 n/a 
Cadmium (mg/L) 0.004 – 0.300 BDL – 0.60 BDL – 0.001 BDL – 3.50 
Calcium (mg/L) n/a 1,300 – 16,000 32 – 1,000 450 – 4,500 
Chloride (mg/L) 32.6 – 305.0 n/a 2,400 – 11,400 25 – 390,000 
Chromium 
(mg/L) < 0.010 – 0.044 BDL – 0.03 BDL – 0.080 0.220 – 0.460 

Copper (mg/L) 0.026 – 0.103 BDL – 0.60 BDL – 0.210 BDL – 0.035 
Iron (mg/L) < 0.01 – 0.10 BDL – 32.0 < 0.010 – 0.760 0.020 – 0.054 
Lead (mg/L) 0.15 – 0.60 BDL – 0.14 BDL – 0.040 0.008 – 1,600 
Magnesium 
(mg/L) 0.006 – 0.057 n/a n/a n/a 

Mercury (mg/L) < 0.0002 BDL BDL – 0.003 BDL – 0.003 
Nickel (mg/L) 0.01 – 0.03 n/a n/a 0.001 – 0.017 
Potassium 
(mg/L) 3.66 – 79.80 520 – 6,900 600 – 4,300 98 – 85,000 

Sodium (mg/L) 11.5 – 48.5 3,000 – 9,300 2,800 – 7,300 800 – 70,000 
Sulfate (mg/L) 105 – 1,400 n/a 2,000 – 7,200 n/a 
Zinc (mg/L) 0.002 – 0.012 BDL – 1.60 < 0.010 – 0.590 0.016 – 0.068 
BDL = Below Detection Limits 
n/a = Not Available 
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 The concentrations of trace elements in the leachate are low due to the reducing 

environment (redox potential is low due to microbiological degradation of the residual 

organic material) and the favorable pH regime. Aging or weathering of ash normally 

results in a decrease of leachate pH towards neutral. One aging reaction results from 

uptake of CO2 and self-neutralization of the ash. Other aging reactions that promote metal 

immobilization include hydrolysis of oxides to hydroxides, and the oxidation of 

elemental metals to form oxyhydroxide surface deposits. These changes result in 

decreased solubility of many elements and consequently decreased release (Wiles, 1996; 

Hjelmar, 1996). 

 

 Landfill practices have evolved from very basic beginnings to become a 

sophisticated activity, with careful planning to ensure containment of gases and leachate, 

and to ensure achievement of waste and landfill site stabilization. Knowledge about the 

relationship between waste composition and leachate quality, from the point of view of 

environmental protection, is needed to improve landfill management practices. As new 

waste treatment technologies are developed and society consumption habits are modified, 

the production and composition of the waste, as well as the products of waste 

degradation, are also in constant change. Understanding leaching behaviors of the 

different types of wastes could result in better landfill design, landfill operation, and 

improved leachate management practices.  
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Abstract: A common operational problem in leachate collection systems is clogging due 

to deposits formation within pore spaces and collection pipes. This study was conducted 

to evaluate clogging of leachate collection systems due to co-disposal of Municipal Solid 

Waste (MSW) and combustion residues from Waste-to-Energy (WTE) facilities. Five 

parallel lysimeters were filled (monofills or mixtures) with combinations of MSW, WTE 

combustion residues, and water/wastewater treatment byproducts. Each lysimeter 

received a regular application of leachate to simulate flooding and drying conditions; 

chemical tests of the leachates were conducted over a seven month period. Waste 

composition and the presence/absence of biological activity influenced leachate 

properties such as redox potential, pH, and alkalinity, which impacted the rate and extent 

of biological degradation and chemical solubility. Calcium carbonate was identified as 
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one of the most abundant chemical precipitates. Leachates from ash monofills had high 

levels of pH, calcium and other minerals such as potassium and sodium, while carbonate 

levels were limited due to the lack of biological activity. The MSW monofill generated 

leachates with high levels of biological activity, lower concentrations of calcium, and a 

rich carbonate system. The co-disposal of MSW, combustion and treatment process 

residues generated leachates not limited in either calcium or carbonate, creating ideal 

conditions for precipitates formation.  

 

Keywords: Clogging; Co-disposal; Leachate collection systems; Lysimeter; Municipal 

Solid Waste; WTE combustion residues 

 

 

1. INTRODUCTION  

 

 One of the principal considerations in the planning, design, and operation of 

engineered landfills is the management of leachate. Leachate collection systems consist 

of a series of perforated pipes within a granular drainage blanket to collect the leachate. 

Low permeability liners are installed below the leachate collection system to restrict 

leachate percolation. These systems are managed to prevent build-up of leachate within 

the landfill and to reduce the mass loading of contaminants available to pass through the 

liner (Rowe et al. 2002). A common operational problem in leachate collection systems is 

clogging due to the formation of deposits in the pore spaces and collection pipes. In 

general, clogging of leachate management systems has been attributed to several factors 

including sedimentation and deposition of fines, biological activity, and biogeochemical 

precipitation (Paksy et at. 1998). 

 

 From an engineering perspective, it is important to ensure that leachate collection 

systems remain operational throughout the lifespan and post-closure periods of landfills; 

therefore, improved understanding of biological and mineral clogging is needed. The 

objective of this paper is to evaluate the clogging of leachate collection systems due to 
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co-disposal of Municipal Solid Waste (MSW) and combustion residues from Waste-to-

Energy (WTE) facilities. 

 

2. BACKGROUND  

 

 Safe and reliable long-term disposal of solid wastes in engineered landfills is 

widely practiced (Tchobanoglous et al. 1993), however due to limited availability of sites 

for new landfills, particularly in highly populated urbanized regions, municipalities are 

under increasing pressure to reduce the quantity of landfilled waste. WTE facilities 

provide a means to reduce waste volumes in landfills and to recover energy through mass 

burn or Refuse Derived Fuel (RDF) practices. Byproducts of thermal processing of solid 

waste include combustion gases, bottom and fly ash residues, and recoverable materials 

such as ferrous and nonferrous metals. Management approaches for ashes from WTE 

facilities include disposal in monofills, co-disposal with non-combusted MSW in 

landfills, or incorporation with other materials for various construction applications. 

Typically, MSW landfills are permitted to receive a combination of MSW, fly and 

bottom ash from combustion processes, residuals from waste and wastewater treatment 

facilities, construction wastes, and other materials (USEPA, 2004). 

 

 

2.1. Leachate characteristics   

 

 

 Leachate is generated as a result of reactions between water percolating through 

the landfill and wastes. Waste consolidation and pressure differentials promote the 

migration of leachate through the landfill layers. Dissolved and suspended materials in 

leachates are composed of varying concentrations of organic carbon, ammonia, chloride, 

iron, sodium, potassium, carbonates, and other constituents (Levine and Kroemer, 1989; 

Tchobanoglous et al. 1993). The quality and quantity of leachate generated in a landfill is 

influenced by waste characteristics, local precipitation patterns, landfill age and location, 
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and other site specific variables (Peeling et at. 1999). Movement of liquid through the 

waste layers and collection systems can promote microbial activity which, coupled with 

chemical reactions, has the potential to produce mineral precipitates. Representative data 

on the characteristics of landfill leachates are reported in Table 12. 

 

 

 Table 12. Representative Data on the Characteristics of Landfill Leachate. 

Parameter Units Bagchi 
(1990) 

Tchobanoglous 
et al. (1993) 

Kjeldsen et 
al. (2002) 

Levine et al. 
(2005) 

General 
    pH pH units 3.7 – 8.9 4.5 – 7.5 4.5 – 9.0 5.8 – 7.8 
   Phosphorus,   
   Total  mg/L PO4 BDL – 234 5 – 100 0.1 – 23.0 n/a 

   Solids, Total mg/L 586 – 
195,900 n/a 2,000 – 

60,000 
1,200 – 
88,000 

Biological related 

   Alkalinity, Total mg/L as 
CaCO3 

BDL – 
15,050 1,000 – 10,000 n/a 350 – 9,500 

   Organic Carbon,  
   Total 

mg/L 
TOC 

BDL – 
195,000 1,500 – 20,000 30 – 29,000 n/a 

Anions 

    Chloride mg/L Cl 2 – 11,375 200 – 3,000 150 – 4,500 300 – 
45,000 

    Sulfate mg/L SO4 
BDL – 
1,850 50 – 1,000 8 – 7,750 BDL – 

1,000 
Cations 

    Calcium mg/L Ca 3 – 2,500 200 – 3,000 10 – 7,200 210 – 
11,000 

    Copper mg/L Cu BDL – 9.0 n/a 0.005 – 10.0 n/a 

    Iron mg/L Fe BDL – 
4,000 50 – 1,200 3.0 – 5,500 1 - 900 

    Magnesium mg/L Mg 4 – 780 50 – 1,500 30 – 15,000 6.8 – 1,400 
    Manganese mg/L Mn BDL – 400 n/a 0.03 – 1,400 n/a 

    Potassium mg/L K BDL – 
3,200 200 – 1,000 50 – 3,700 46 – 9,000 

    Sodium mg/L Na 12 – 6,010 200 – 2,500 70 – 7,700 66 – 67,000 
    Zinc mg/L Zn BDL - 731 n/a 0.03 – 1,000 n/a 
BDL = Below Detection Limit; n/a = not available 

 

 

 Laboratory and field studies on clogging of leachate collection systems have 

identified calcium carbonate to be the dominant component of the clog material (Rowe at 
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al. 2000b; Cooke et al. 2001). It has been postulated that a mixed community of 

facultative anaerobes, iron-related bacteria, sulfate-reducing bacteria, slime formers, and 

enterics may act as catalysts for calcite nucleation and precipitate formation (Rowe et al. 

2000a; Maliva et al. 2000; Kylefors et al. 2003). The structural integrity of the clog 

material is influenced by precipitation of low solubility carbonate and sulfate minerals 

(Fleming et al. 1999). Biological activity influence redox potential, pH, and temperature, 

which can impact the rate and extent of biological degradation and chemical equilibrium 

solubility. 

 

 

2.2. Lysimeter studies  

 

 

 In addition to observations from active landfills, laboratory lysimeter studies have 

been used to assess the clogging process. Lysimeters are reactors that can be used to 

simulate landfill reactions and to assess the variability of leachate composition under 

different controlled conditions. In these tests, wastes are placed in column reactors for an 

extended period of time allowing for direct comparison of leachate properties. Lysimeter 

design parameters from published studies are compared in Table 13. 

 

 Lysimeter studies have reported that clogging rates under anaerobic conditions are 

highly sensitive to the particle size of the drainage material, and that drains subjected to 

alternating periods of saturation and unsaturation tend to be clogged more extensively 

(Paksy et al. 1998). Based on these studies, it has been suggested to avoid drainage 

material consisting of sand or gravel with a nominal particle size less than 10 mm. 

 

 

 

 

 

 



 37

Table 13. Design Parameters Used in Lysimeters Studies. 
Lysimeter Geometry 

and Size Lysimeter Structure Packing Material Reference 

Column: 
   Diameter:      50 mm 
   Height:        700 mm 

PVC: Schedule 40 6-mm diameter glass 
beads Rowe et al. (2002) 

Box: 
   Width:        250 mm 
   Length:       600 mm 
   Height:       700 mm 

PVC 

Drainage blanket: clear  
    stone 
MSW: 5-10 yr old waste 
Geotextile: separating  
    MSW from drainage    
    blanket 

Fleming et al. (1999) 

Box: 
   Width:      1760 mm 
   Length:     1060 mm 
   Height:     1760 mm 

Brick and Concrete 

Liner: HDPE 
Drainage layer: 100-mm  
   gravel 
MSW 

Blight et al. (1999) 

Column: 
   Diameter:    230 mm 
   Height:        900 mm 

MDPE/HDPE 

Drainage layer:  
   limestone/Thames  
   gravel 
MSW: 4-5 yr old waste 

Paksy et al. (1998) 

 

 

 Lysimeter tests have also been used to compare calcium removal and COD 

consumption in landfill leachate drainage systems (Cooke et al. 2001). They found that 

calcium levels paralleled COD removal, suggesting that microbial reactions may be 

involved in precipitation of calcium carbonate. The rate and extent of clogging in 

drainage layers has also been correlated to mass loading rates (Rowe et al. 2000b). The 

placement of a geotextile filter/separator between the drainage layer and the overlying 

waste was reported to decrease the amount of fines and sand sized particles and resulted 

in less clog material present in the drainage layer as compared to parallel lysimeters 

without geotextile separation (McIsaac et al. 2000). 
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3. MATERIALS AND METHODS   

 

 

 In this project, laboratory lysimeters were used to assess the potential for 

development of mineral deposits in relation to waste composition and flow patterns. The 

lysimeter design, operation and monitoring methods are summarized in this section. 

 

 

3.1. Lysimeter design  

 

 

 The lysimeters were designed as cylindrical reactors with a volume of 0.42 m3 

and a surface area of 0.30 m2. Each of the five lysimeters was constructed using 1.4 m 

long, 30.5 cm diameter, schedule 40 PVC pipes. Leachate generated in the lysimeters was 

collected in 32 mm diameter PVC pipe with 9.5 mm diameter perforations, which were 

spaced at intervals of 15 cm with two staggered rows separated by 120°. The materials 

surrounding the collection pipes were combinations of gravel, sand, geotextiles, geonet, 

and liners. Peristaltic pumps and leachate reservoirs were attached to the lysimeters as 

shown in Figure 2.  

 

 The leachate application system consisted of an inverted funnel and a perforated 

plate as shown in Figure 3. This system helped to limit excessive channeling of the water, 

and promoted exposure of the entire lysimeter contents to liquid on a regular basis. 
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 Figure 2. Schematic of Lysimeter Design Used in this Study. 

 

                 

   
Figure 3. Leachate Application System Consisting of Inverted Funnel and Perforated Plate. 
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3.2. Composition and distribution of waste in the reactors  

 

 

 The lysimeters included two ash monofills, one MSW monofill (RDF process 

rejects), and 2 reactors to simulate co-disposal of RDF process rejects, combustion 

residues, and water and wastewater treatment plant byproducts (chemical sludge and 

biosolids). The co-disposal reactors (Mixture 1 and Mixture 2) were started up by 

combining the materials in a 60 L container and manually mixing the contents prior to 

introduction into the lysimeters. The distribution of waste materials in each lysimeter is 

shown in Table 14.  

 

 

Table 14. Composition and Distribution of Waste Sources in the Lysimeters (by Mass). 
WTE ash Treatment plant residues 

Lysimeter MSW Fly ash Bottom ash Water 
treatment 

Wastewater 
treatment 

Monofills 
  Ash 
  MSW  

 
0% 

100% 

 
20% 
0% 

 
80% 
0% 

 
0% 
0% 

 
0% 
0% 

Co-disposal 60% 6% 24% 5% 5% 
 

 

 All materials used for this study were obtained in April 2004 from the North 

County Resource Recovery Facility in Palm Beach County, FL. This facility started 

accepting wastes in 1989 and it was designed with a footprint of 1.35 km2 (334 acres). 

The landfill accepts ash and residues from a WTE Plant that burns RDF, unprocessed 

MSW, wastewater and water treatment residuals, dead animals, and other non-hazardous 

wastes as defined by their by Solid Waste Authority’s Household Hazardous Waste 

Facility.   

 

 After emplacement of the wastes, distilled water was applied to each lysimeter to 

saturate the wastes to field capacity. A measured quantity of water was slowly added to 

the top of each lysimeter until the wastes were completely submerged. The lysimeters 
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were then covered and allowed to absorb the water for a 72 hour period.  Following the 

absorption period, excess water was drained and the volume recovered was measured. 

The difference between the amount of distilled water added and the amount of water 

recovered was considered to be the net field capacity of each lysimeter, equal to the water 

absorbed by the wastes to reach saturation. The estimated liquid to solid ratios needed to 

reach field capacity for each type of lysimeter are shown in Table 15. 

 

 

Table 15. Field Capacity of Each Type of Lysimeter. 
Lysimeter Volume added 

(L) 
Volume 

recovered (L) 
Volume 

absorbed (L) 
Liquid/Solid 

ratio (g/g) 
Monofills 
  Ash 
  MSW 

 
40 
70 

 
24 
52 

 
16 
18 

 
0.09 
0.13 

Co-disposal 50 33 17 0.11 
 

 

 3.3. Lysimeter operation and monitoring   

 

 

 After reaching field capacity, an additional four liters of distilled water were 

applied to each lysimeter to generate leachate and initiate waste degradation. Every 24 

hours, three liters of leachate was pumped from the lower to the upper reservoir and 

applied to each lysimeter through the leachate application system, simulating a rain event 

of 15 to 20 minutes. This mode of operation was intended to provide alternating cycles of 

flooding and draining within each lysimeter in an effort to accelerate the leaching 

reactions and provide adequate moisture for biological activity.  

 

 Leachate characteristics were monitored to identify dominant electron acceptors, 

redox conditions, dissolved mineral contents, and buffer capacities. Samples were 

collected routinely over a seven month period and analyzed for the parameters listed in 

Table 16. The volume of leachate that was withdrawn for each sampling event was 



 42

replaced with an equal amount of distilled water to maintain a constant volume of liquid 

within the lysimeter. 

 

 

3.4. Microbiological testing 

 

 

 Microbiological testing involved monitoring the concentration of bacteria once 

per week using a staining technique. 10 mL of sample was obtained from each lysimeter 

and filtered. The filters were stained using the 4, 6-diamidino-2-phenylindole (DAPI) 

stain, which binds to the DNA of cells and makes them appear blue under a fluorescence 

microscope. This technique measures the total number of bacteria per unit volume, but 

does not indicate viability. 
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 Table 16. Summary of the Chemical Test Performed on the Leachate Samples. 

Test MethodA Instrument Detection 
Limits 

General 
  ConductivityT 2510 B. Laboratory Method inoLab  conductivity meter 1 μS/cm 
  ORPT 2580 B. Electrometric Method Hach ORP probe 1 mV 

  pHT 4500-H+ B. Electrometric 
Method 

Fisher Scientific AR50 pH 
meter  0.01 

  Solids  
  (TS, TVS)O 

2540 B. Total Solids and 2540 
E. Total Volatile Solids 

AG245 Mettler Toledo and 
Fisher Scientific Isotemp® 
Muffle 

6.0 mg/L 

  TemperatureT 2550 B. Laboratory Method inoLab temperature probe 0.1 °C 
NutrientsO 

  Nitrogen, Total 4500-N C. Persulfate Method Hach DR/4000U 
Spectrophotometer 0.2 mg/L 

  Phosphorus,    
  Total 

4500-P C. 
Vanadomolybdophosphoric 
Acid Colorimetric Method 

Hach DR/4000U 
Spectrophotometer 0.2 mg/L 

Biological related 

  Alkalinity, TotalT 2320 B. Titration Method Burette 20 mg/L as 
CaCO3 

  Organic Carbon, 
  TotalO 

5310 C. Persulfate - 
Ultraviolet Method 

Sievers 800 Portable TOC 
Analyzer 0.1 mg/L 

  Volatile AcidsT DiLallo and Albertson (1961). 
Dual Titration Method Burette 10 mg/L as 

acetic acid 
AnionsO 

  Chloride 

  Sulfate 

4140 B. Capillary Ion 
Electrophoresis with indirect 
UV Detection 

Beckman P/ACE System 
5500 Capillary 
Electrophoresis 

0.1 mg/L 

CationsO 
  Calcium 
  Iron 
  Magnesium 
  Potassium 
  Sodium 

3111 B. Direct Air-Acetylene 
Flame Method 

PerkinElmer AAnalyst 100 
Atomic Absorption 
Spectrometer 

0.01 mg/L 

A All methods from Standard Methods 20th edition (1998). 
T Twice per week sampling frequency. 
O Once per week sampling frequency 
 

  

4. RESULTS AND DISCUSSION 

 

 

 To facilitate comparison of all data, the lysimeters were categorized either as 

monofills or mixtures as defined in Table 13. The monofills include the ash monofills 
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(Ash 1 and Ash 2) and the MSW monofill (MSW); the mixtures include the lysimeters 

simulating co-disposal of MSW, ash, and treatment plant residues (Mixture 1 and 

Mixture 2). The focus of this paper is to compare factors that influence precipitate 

formation including pH, alkalinity, the concentrations of dissolved minerals, carbonate, 

and the presence/absence of biological activity. 

 

 

4.1. pH and Alkalinity   

 

 

 The leachates generated from the ash monofill lysimeters were relatively clear 

and free of particles, biomass and were significantly different from the other leachates in 

terms of pH and alkalinity. As shown in Figure 4, the pH associated with the ash 

lysimeters was significantly higher (t-test p value of 0.62) than the pH of leachates from 

the MSW or the co-disposal lysimeters; the high pH levels may have inhibited biological 

activity in the lysimeters containing WTE combustion residues. 

 

 Alkalinity levels in leachates from ash dominated lysimeters were fairly 

consistent, whereas alkalinity levels decreased with time in leachates from MSW 

dominated lysimeters at a rate of about 9 to 18 mg/L-day for the MSW monofill and 4 to 

9 mg/L-day for leachates from lysimeters containing mixtures. All alkalinity levels 

converged at approximately 2000 mg/L as CaCO3 under steady-state conditions, but the 

composition of the alkalinity varied for each group of reactors. The carbonate alkalinity 

of the leachates from ash lysimeters was only 10% of the total alkalinity, whereas the 

carbonate fraction of the total alkalinity for the MSW monofill and mixtures leachates 

ranged from 75 to 95%.     
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 Figure 4. Comparison of the pH and Alkalinity in Leachates from Lysimeters Containing 
Monofills or Co-disposal. 
 

 

4.2. Total Volatile Solids and Total Dissolved Solids  

 

 

 The Total Volatile Solids (TVS) can be used as an estimate of the organic content 

of the leachates, while the concentration of Total Dissolved Solids (TDS) provides an 

estimate of the amount of minerals available for formation of precipitates and the ionic 

strength of the leachate. A comparison of the concentrations of total volatile and 

dissolved solids in leachates from the lysimeters is shown in Figure 5. As shown, the 

TVS content of the MSW monofill leachate was four to six times higher than the TVS 
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content of the leachate from ash monofills, particularly during the first few months of 

operation. The volatile fraction of the co-disposal leachates tended to be higher than the 

MSW monofill fraction most likely due to contributions of the wastewater treatment 

byproducts.  
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Figure 5. Comparison of the Concentration of Total Volatile and Dissolved Solids in 
Leachates from Lysimeters Containing Monofills or Co-disposal. 
 

 

 Conversely, the TDS content of leachates derived from the ash monofills was two 

to three times higher than the TDS from the MSW monofill leachate, due to the higher 

mineral content of the ashes. Typically, the solids concentrations in the co-disposal 
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leachates reflected the relative quantity of ash (30%) and MSW (60%) within each 

lysimeter.  

 

4.3. Volatile Acids and Microbial Concentrations 

 

 

 The degradation of organic matter in landfills is a sequential process initiated by 

hydrolysis of complex organic matter into simple carbohydrates, amino acids, and fatty 

acids. The simple carbohydrates and acids provide energy for growth by fermenting 

bacteria, producing volatile acids and hydrogen. The volatile acids are then partially 

oxidized to produce additional hydrogen and acetic acid, which are the main substrates 

used by methanogens to produce methane (Tchobanoglous et al. 1993). The volatile acids 

concentration therefore can be used as a key indicator of microbial activity. Volatile acids 

and microbial concentrations are shown in Figure 6. 

 

 The concentrations of volatile acids in leachates from the MSW monofill 

lysimeter were significant higher than the concentrations associated with leachates from 

the co-disposal lysimeters, especially during the first few months of operation, when 

concentrations up to 1,000 mg/L as acetic acid were observed. The accumulation of 

volatile acids suggested that it took longer for the methanogenic population to develop in 

the MSW monofill than in the co-disposal lysimeters, which contained biosolids that may 

have provided a more diverse microbial population. The volatile acids levels within 

leachates from the ash monofill lysimeters were almost negligible and constant during the 

entire experimental period, suggesting the lack of microbial populations in that 

environment.  
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 Figure 6. Comparison of Volatile Acids and Microbial Concentrations in Leachates from 
Lysimeter Containing Monofills or Co-disposal. 
 

 

 The highest microbial concentrations in the lysimeter leachates were associated 

with the co-disposal of MSW, ash and treatment plant byproducts. Microbial 

concentrations in the leachates from the ash monofill lysimeters (Ash 1 and Ash 2) were 

below detection limits as determined by DAPI staining. During the first month of 

operation, the DAPI cell count in the leachates obtained from the other lysimeters 

increased consistently. After about a month, the cell numbers in these leachates started 

decreasing and then the counts appeared to stabilize suggesting the emergence of a stable 

population of microorganisms as the readily degradable material was consumed.  
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4.3. Calcium, Calcium/Alkalinity Ratio, and Calcium/TDS Ratio. 

 

 

 Because calcium carbonate has been reported to be the most common precipitate 

to form in leachate collection systems (Jefferies and Bath, 1999; Manning and Robinson, 

1999; Reinhart and Townsend, 1998), examination of the ratio of calcium to alkalinity 

can provide some insight into the overall stability of the leachate. A relatively high ratio 

of calcium to alkalinity suggests that the formation of precipitates is limited by the 

availability of carbonate. Leachates with these characteristics may be susceptible to 

forming precipitates under conditions that favor biological activity or promote exposure 

of the leachate to atmospheric carbon dioxide (Bagchi, 1990).  

 

 A comparison of calcium concentrations of the leachates from the lysimeters is 

shown in Figure 7. Calcium levels ranged from about 350 to over 4,000 mg/L. There was 

a trend of decreasing calcium concentrations over time in each lysimeter at a rate ranging 

from 7 to 10 mg/L-day for the monofills (correlation coefficient, R2, 0.8 to 0.9) and 3 to 5 

mg/L-d for the co-disposal. 
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Figure 7. Comparison of the Calcium Concentrations in Leachates from Lysimeters 
Containing Monofills or Co-disposal. 
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 A comparison of the relationship of calcium to total dissolved solids and calcium 

to alkalinity is shown in Figure 8. Calcium to TDS ratios tended to be higher for the 

leachates from lysimeters containing MSW (either monofill or co-disposal), whereas 

calcium to alkalinity ratios tended to be higher for the ash monofills than for lysimeters 

containing MSW. These ratios reflect the relative sources of carbonate in the ash 

dominated lysimeters as compared to the MSW dominated lysimeters. Also, the ratios of 

calcium to TDS tended to exhibit a more pronounced decrease over time in the ash 

dominated leachates as compared to the MSW dominated leachates from the co-disposal 

with the rate of decrease about 0.05% per day (correlation coefficient, R2, 0.9). Similar 

trends were observed for the calcium to alkalinity ratios with the rate of decrease about 

0.004 mg calcium per mg alkalinity per day.  

 

 

4.4. Development of solid deposits. 

 

 

 After about 4 months of lysimeter operation, operational problems developed 

within the leachate management system due to the development of deposits within the 

leachate collection tubing of MSW dominated lysimeters (monofill and mixtures). No 

deposits developed in the ash dominated lysimeters. The tubing was replaced and the 

elemental composition of the deposits was analyzed. Deposits in the MSW monofill 

tubing tended to contain more biomass and less granular material than did the deposits 

from the lysimeters containing mixtures of MSW, ash, and treatment plant residuals as 

shown in Figure 9. 
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 Figure 8. Comparison of the Calcium/Alkalinity and Calcium/TDS Ratios in Leachates 
from Lysimeters Containing Monofills or Co-disposal. 
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 (a) 

    
 (b) 

Figure 9. Photograph of Deposits in Leachate Collection Tubing from a.) MSW Monofill 
Lysimeter, and b.) Co-disposal Lysimeters. Tubing has an ID of 8 mm and OD of 10 mm. 
 

 

 To provide additional insight into the characteristics of the clogged material in the 

lysimeter tubing, Scanning Electron Microscopy (SEM) and Energy Dispersive 

Spectroscopy (EDS) were used to analyze the surface characteristics of the deposits. 

Deposits were preserved using 2.5% glutaraldehyde, dehydrated in ethanol, and sputter 

coated with carbon. Example electron micrographs and distributions of dominant 

elements associated with the deposits from lysimeters containing MSW monofill or co-

disposal are shown in Figure 10.  
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 Figure 10. Scanning Electron Micrographs and Dominant Elements of Deposits in 
Leaching Collection Tubing from a.) MSW Monofill Lysimeter, and b.) Co-disposal 
Lysimeters. 
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 The dominant elements associated with the deposits included calcium, silica, 

phosphorus, sulfur, and iron. The deposit composition varied among the samples, but 

calcium levels tended to be higher in deposits formed in the lysimeters containing a 

combination of MSW, ash, and treatment plant residuals as would be expected from the 

leachate characteristics. There was evidence of bacteria in all of the deposits suggesting 

that microorganisms play a role in the deposition process.  

 

 

4.5. Comparison of leachates from lysimeters and landfill leachates 

 

 

 The co-disposal lysimeters in this study were designed to simulate conditions at 

the North County Resource Recovery Facility landfill in Palm Beach County, FL, and to 

identify factors that may contribute to the development of deposits within the leachate 

collection systems. Monitoring data for a four year period from Cell 6 at the Palm Beach 

landfill was used to compare the characteristics of landfill leachates to laboratory 

generated leachates which reflected relatively short-term waste degradation conditions. 

 

 A comparison of pH, temperature, and the ratios of calcium to TDS and to 

alkalinity for the leachates from the Palm Beach landfill and leachates from the five 

lysimeters is shown in Figure 11 in a boxplot format. The boxes represent 50% of the 

data, the horizontal line represents the median value, and the lines extending above and 

below the boxes represent the 95% confidence intervals. The relative height of the boxes 

provides a measure of the degree of variability associated with each measurement. 

 

 The pH levels of leachates from the MSW dominated lysimeters and the landfill 

were not significant different, while significantly higher temperatures were associated 

with field conditions. The percent of the TDS that consisted of calcium was slightly 

higher in the lysimeters than the landfill leachates. The calcium to alkalinity ratios were 

highly variable in the landfill leachate, reflecting changes in biological activity; less 
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variability was observed in the lysimeters, perhaps due to the relatively consistent 

application of moisture. 
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 Figure 11. Comparison of pH, Alkalinity, and the Calcium to TDS and Calcium to 
Alkalinity Ratios from Monitoring Data for Landfill (4 years) and Lysimeters Leachates (7 
Months). 
 

 

5. SUMMARY 

 

 

 Based on operation of laboratory lysimeters for a period of seven months, several 

trends were observed. Leachates from ash dominated lysimeters tended to have high 

levels of pH, TDS, and calcium to alkalinity ratios than did MSW dominated leachates. 
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The higher pH levels inhibited biological activity and the production of volatile acids, 

while the potential for formation of solid precipitates was modulated by the relatively 

high ionic strength which can increase the solubility of minerals.  

 

 MSW dominated leachates tended to contain higher alkalinity, volatile solids, and 

calcium to TDS ratios than ash dominated leachates. Leachates from the MSW monofill 

lysimeter had the lowest calcium to alkalinity ratios, suggesting that the formation of 

precipitates was not limited by the availability of carbonate but by the sources of 

available calcium and other minerals. The co-disposal of MSW, combustion residues, and 

treatment plant byproducts generated leachates with calcium to alkalinity ratios in a 

higher range than leachates associated with the MSW monofill, but a lower range than 

that observed in leachates from ash monofill lysimeters. The results from this study 

suggest that, when MSW is co-disposed with residues from combustion processes and 

treatment plant byproducts, the contributions from each type of waste produce a more 

susceptible environment for formation of mineral precipitates, due to the relatively higher 

quantities of constituents that could co-precipitate.  

 

 The chemical composition of leachates from lysimeter tests were within the range 

of reported values for landfill leachates (Table 1 and Figure 9). Although leachate 

compositions vary widely depending on moisture content, age of landfill, and the events 

preceding the time of sampling (Tchobanoglous et al. 1993), laboratory lysimeters 

provided an effective model system for study of the reactions that might impact clogging 

of leachate collection systems.  

 

 It is important to evaluate the degree to which the lysimeter leachates simulate 

leachates produced in landfills. Besides the differences in the amount of moisture 

available for waste degradation and landfill age, different temperature ranges are 

associated with biologically active landfill as compared to the laboratory environment. 

Landfill leachate temperatures have been reported to range from 15 to 38 oC (Figure 9). 

Laboratory lysimeters were operated at room temperature with typical leachate 
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temperatures ranging from 21 to 30 oC. Temperature variations can impact mineral 

solubility, biological growth rates, and reaction kinetics.  

 

 

6. CONCLUSIONS 

 

 

 This study has provided an opportunity to investigate relationships among waste 

characteristics, leachate composition, and the potential for clogging. Based upon 

experimental results obtained during the investigation, the following conclusions can be 

drawn: 

 

1. Leachates from lysimeters containing actively degrading MSW have higher levels 

of microbial activity and bicarbonate, but contain lower levels of calcium species 

than do ash dominated lysimeters. Calcium to alkalinity ratios in leachates from 

the MSW monofill lysimeter ranged from 0.8 to 0.4.  

 

2. Leachates from ash monofill lysimeters are dominated by high concentrations of 

dissolved calcium and high pH levels, but contain relatively low levels of 

carbonates with calcium to alkalinity ratios ranging from 3.8 to 0.5. When the 

carbonate alkalinity is related to the concentration of calcium in the leachates, 

these ratios can range from 20 to 4.5.  

 

3. The solids concentrations in leachates derived from the co-disposal lysimeters 

reflected the relative quantity of ash and MSW within each reactor. Although 

lysimeters containing MSW either alone or co-disposed with combustion residues 

generated leachates with higher calcium to TDS ratios, these ratios in leachates 

from lysimeters containing WTE ash exhibited a more pronounced decrease over 

time. 

 



 58

4. The use of monofills appears to lead to less clogging of leachate collection 

systems. For ash monofills, the lower degree of microbial activity in the leachate 

results in lower concentrations of carbonate species, thus restricting the extent of 

chemical precipitation, while leachates from MSW monofills contain adequate 

carbonate, but fewer sources of calcium and other insoluble minerals. 

 

5. Landfills practicing co-disposal of WTE ash and MSW appear to be more 

susceptible to clogging due to the relative contributions of each waste stream. The 

WTE ash provides the minerals while the MSW provides biomass, carbonate 

species, and alternative electron acceptors. Additional inputs of treatment plant 

residuals can introduce more minerals (water treatment) and more biomass 

sources (wastewater treatment), further exacerbating the problem. 
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Abstract: Laboratory lysimeters were used in conjunction with batch tests to predict 

short- and long-term leaching characteristics of un-combusted residues from Waste-to-

Energy (WTE) facilities. Two parallel laboratory lysimeters were filled with refuse 

derived fuel (RDF) combustion residuals (fly ash and bottom ash) and saturated to field 

capacity using distilled water to simulate rainfall and generate leachate. Leachates were 

recirculated daily and solubilization of inorganic constituents was assessed over a seven 

month period. In addition, ash samples obtained from three WTE facilities in Florida 

(two mass-burn and one RDF) were used in batch tests to assess leaching potential as a 

function of contact time and liquid to solid ratios. Field leachates and laboratory leachates 

were similar in chemical composition, although field leachates had higher concentrations 

of TDS and more neutral pH levels. The tests proved to be useful tools for simulation of 

field conditions and predicting the degree to which WTE residuals contribute inorganic 

constituents to the leachate matrix.  The role of inorganic constituents leached from WTE 

residuals in forming precipitates in leachate collection systems is discussed. 

 

Keywords: Batch tests; Leachate collection systems; Lysimeters; WTE combustion 

residues 
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1. INTRODUCTION 

 

 

 To reduce the quantity of Municipal Solid Wastes (MSW) requiring landfilling, 

many municipalities have adopted Waste-to-Energy (WTE) facilities that yield energy in 

the form of combustible gases and noncombustible residues (fly ash and bottom ash). 

There are options for using ash residues in different construction applications, but the 

most common practices for disposal of WTE residuals include landfilling in monofills or 

co-disposal with MSW and other materials such as residues from water and wastewater 

treatment facilities (Tchobanoglous and Kreith, 2002; Wiles, 1996) 

 

 Due to the potential leaching of contaminants, landfilling of WTE residues may 

have long-term consequences for the environment. Since properties of WTE residues are 

very different from those of un-combusted MSW, it is important to understand factors 

that influence leaching characteristics of wastes for effective management of leachates 

generated in landfills (Hjelmar, 1996). The purpose of this article is to assess the use of 

laboratory lysimeters in conjunction with batch tests to predict short-term and long-term 

leaching characteristics of noncombustible residues from WTE facilities.  

 

 

2. BACKGROUND 

 

 

 From a technical perspective, the development of strategies for disposal of WTE 

combustion residues and management of the leachate should be based on extensive 

knowledge of leaching behaviors. The relative contribution of solubilized minerals from 

WTE residues in landfill leachates depends on the relative amount of residues that are 

entombed in landfills in conjunction with the net combustion efficiency, ash handling 

practices, the net volume of liquid that percolates through the landfill, biological activity, 
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the age of the landfill, whether ashes are disposed in monofills or co-disposed with other 

material, along with site-specific factors (Kylefors et al., 2003). The short- and long-term 

leaching and release of contaminants constitute the most important potential 

environmental problems related to disposal of WTE residues (Johnson et al., 1999).  

 

 

2.1. Waste-to-Energy residues  

 

 

 Ash residues are produced and discharged at various locations in a WTE facility. 

Combustion residues vary in composition depending on the source of the combusted 

material, degree of pre-processing (mass-burn, refuse derived fuel, material recovery), the 

efficiency of the combustion process, the ash management practices, emission control 

systems, and the methods of residue collection (Berenyi, 1996; Brereton, 1996; USEPA, 

2004). These residues differ in terms of water solubility and the potential of leaching and 

release of components, which are important properties in relation to landfilling of the 

residues and management of leachates. In general, WTE residues have low organic 

contents and the major elements include Al, C, Ca, Cl, Fe, K, Na, and O, while minor 

elements are Cr, Cu, Mg, Mn, Pb, and Zn (Hjelmar, 1996; Wiles, 1996). Different types 

of ash and their characteristics are summarized in Table 17. 

 

 Over the past several years there has been significant controversy concerning the 

proper management of the residues from WTE facilities and their regulatory 

classification as hazardous or non-hazardous waste. It has been suggested that monofill or 

co-disposal of WTE combustion residues and MSW may lead to sub-optimal 

management solutions in terms of resource conservation and environmental safety 

(Hjelmar, 1996). Co-disposal of combustion residues with MSW has the potential to 

introduce metals, minerals and other non-biodegradable materials to the leachate matrix; 

the acids generated by decomposing MSW could increase concentrations of soluble toxic 

metals in the collected leachate (Hasselriis, 2002). WTE ash would provide minerals 
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while MSW would provide biomass, carbonate species, and alternative electron 

acceptors, resulting in clogging of leachate collection systems due to mineral 

precipitation (Levine et al., 2005). 

 

 

Table 17. Summary of Different Types of Ash Residues from a WTE Facility. 
Residue Location Characteristics 

Bottom ash Material discharged from the 
bottom of the furnace, 
primarily the grate, after the 
waste has progress down the 
stoker. 

Consists of inert residues, glass 
and metallic objects, 2 to 10% 
carbon. It is usually quenched 
with water, although it can also 
be collected in a dry state. 

Stoker grate siftings Fall through clearances in the 
grates and are collected with 
bottom ash. 

May include unburned organic 
matter.  

Boiler ash Carried by combustion gases. 
It may fall onto the stoker into 
the bottom ash, or it may be 
collected in hoppers. 

Consists of flying particles and 
condensable metal vapor which 
may attach to refractory and 
water-cooled walls. 

Fly ash Carried by combustion gases 
through the furnace, boiler, 
and scrubber. It is collected by 
the particulate control device. 

Reaction products of primarily 
calcium chlorides and un-reacted 
lime. Includes volatiles 
condensed during gas cooling. 

Scrubber reaction products Collected at the bottom of 
spray-dry or dry lime-injection 
acid gas scrubbers. 

Include fly ash and reacted or 
partially reacted alkaline reagent 
(such as lime) and some carbon. 

Mixed ash Various locations from the 
combustion and emission 
control equipment. 

May contain siftings, bottom ash, 
boiler and scrubber residues, fly 
ash, and scrubber products. 

 

 

 2.2. Leachates from Waste-to-Energy residues  

 

 

 Leachates are the longest lasting emission from landfills and the development of 

strategies for leachate management should be based on knowledge of wastes leaching 

behavior. Leachate collection systems consist of a series of pipes within a granular 

drainage blanket with low permeability liners installed below to restrict leachate 

percolation. It has been reported that in some landfills, solid precipitates deposit in the 

collection system resulting in clogging and malfunctions of the drainage system. The 
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formation of precipitates is linked to the chemical and biological stability of the leachate 

generated within the landfill. A comparison of leachate characteristics from ash monofills 

is given in Table 18.  

 

 

Table 18. Comparison of Leachate Quality from Ash Monofills. 

Parameter Bagchi (1990) Cambotti and 
Roffman (1993) Hjelmar (1996) Lundtorp et al. 

(2003) 
pH (pH units) 8.47 – 9.94 5.7 – 7.5 8.7 – 10.5 11.19 – 11.20 
Conductivity 
(mS/cm) 2.5 – 18.7 n/a 1,400 – 3,900 2.4 – 310 

Aluminum 
(mg/L) 2.3 – 88.8 n/a n/a 0.230 – 0.420 

Arsenic (mg/L) < 0.187 BDL – 0.40 0.005 – 0.025 n/a 
Cadmium (mg/L) 0.004 – 0.300 BDL – 0.60 BDL – 0.001 BDL – 3.50 
Calcium (mg/L) n/a 1,300 – 16,000 32 – 1,000 450 – 4,500 
Chloride (mg/L) 32.6 – 305.0 n/a 2,400 – 11,400 25 – 390,000 
Chromium 
(mg/L) < 0.010 – 0.044 BDL – 0.03 BDL – 0.080 0.220 – 0.460 

Copper (mg/L) 0.026 – 0.103 BDL – 0.60 BDL – 0.210 BDL – 0.035 
Iron (mg/L) < 0.01 – 0.10 BDL – 32.0 < 0.010 – 0.760 0.020 – 0.054 
Lead (mg/L) 0.15 – 0.60 BDL – 0.14 BDL – 0.040 0.008 – 1,600 
Magnesium 
(mg/L) 0.006 – 0.057 n/a n/a n/a 

Mercury (mg/L) < 0.0002 BDL BDL – 0.003 BDL – 0.003 
Nickel (mg/L) 0.01 – 0.03 n/a n/a 0.001 – 0.017 
Potassium 
(mg/L) 3.66 – 79.80 520 – 6,900 600 – 4,300 98 – 85,000 

Sodium (mg/L) 11.5 – 48.5 3,000 – 9,300 2,800 – 7,300 800 – 70,000 
Sulfate (mg/L) 105 – 1,400 n/a 2,000 – 7,200 n/a 
Zinc (mg/L) 0.002 – 0.012 BDL – 1.60 < 0.010 – 0.590 0.016 – 0.068 
BDL = Below Detection Limits 
n/a = Not Available 
 

 

 WTE combustion residues show systematic leaching patterns that have been 

evaluated by several researchers (Abbas et al., 2003; Bruder-Hubscher et al., 2002; Hage 

and Mulder, 2003; Kim et al., 2003; Kim and Batchelor, 2001; Kylefors et al., 2003; 

Song et al., 2004; van der Sloot, 1998). The most significantly variables which impact 

solubility, leaching, and release potential of minerals in WTE residues are final pH of the 

solution, biological activity, redox conditions, ionic strength, complexing inorganic ions 
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and organics, and the liquid-to-solid ratio. The major leachate constituents are salts and 

hydroxides, while the main salts constituents are chloride, sulfate, calcium, potassium, 

and sodium (Johnson et al, 1999).  

 

 

2.3. Leaching tests  

 

 

 Tests that can be used to evaluate the leaching characteristics of WTE residues 

include field tests, simulator (lysimeter) tests, and batch tests. A comparison of these tests 

is given in Table 19. The tests differ mainly in duration and the presence or absence of 

biological activity; the results from these tests can be used to help predict the short- and 

long-term leaching behavior of noncombustible residues from WTE facilities (Hage and 

Mulder, 2003).  

 

 

 Table 19. Tests Used to Characterize the Leaching Potential of Landfill Materials. 
Category Description Advantages Disadvantages 

Field Monitors leachate 
characteristics 
produced by wastes in 
an established landfill. 

Established microbial 
communities; 
heterogeneity of waste 
constituents. 

Can take several years; 
limited access to the reacting 
materials; inability to 
determine the contribution of 
waste constituents to leachate 
quality. 

Simulator Waste is placed in a 
column, commonly 
called a lysimeter, and 
allowed to react over 
several months. 

Establishment of 
microbial populations; 
mimics a landfill; 
controlled flow of 
leachant; access to the 
reacting materials in 
select locations. 

Can take months to 
complete; inability to 
determine the contribution of 
the individual waste 
constituents to the 
characteristics of the 
leachate. 

Batch Select wastes are 
placed in non-reactive 
containers with 
leachant for a specific 
length of time. 

Can be completed in 
weeks; identification 
of the contribution of 
waste constituents to 
leachate quality. 

Missing microbial activity; 
limited interaction among 
different types of waste. 
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 In lysimeter tests, wastes are placed in parallel reactors where temperature, 

moisture content, and the degree of leachate recirculation can be controlled and gas 

production and leachate composition can be monitored. In addition, the composition of 

the wastes can be characterized more completely than in a landfill setting. In many ways 

lysimeters are black boxes, since the ability to determine a direct relationship between 

individual materials and leachate characteristics is unknown. To determine leaching 

characteristics of individual wastes, batch tests can be used having as main variables the 

liquid to solid mass ratio (L/S), the leaching medium, temperature, contact time, and the 

separation technique. 

 

 

3. MATERIAL AND METHODS 

 

 

 Laboratory lysimeters and batch tests were used to assess the leaching potential of 

WTE combustion residues as a function of contact time and liquid to solid ratios. Details 

on lysimeter design and operation, batch tests, and monitoring methods are summarized 

in this section. 

 

 

3.1. Lysimeter design and operation  

 

 

 Two lysimeters were designed as cylindrical reactors with a volume of 0.42 m3 

and a surface area of 0.30 m2. Each lysimeters was constructed using 1.4 m long, 30.5 cm 

diameter, schedule 40 PVC pipes. Leachate generated in the lysimeters was collected in 

32 mm diameter PVC pipe with 9.5 mm diameter perforations, which were spaced at 

intervals of 15 cm with two staggered rows separated by 120°. Peristaltic pumps and 

leachate reservoirs were attached to the lysimeters as shown in Figure 12. 
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 Figure 12. Schematic of Lysimeter Design Used in this Study. 

 

 

 A geonet was placed above the drainage layer and WTE residuals were introduced 

into each lysimeter above the geonet.  The WTE residues were obtained from a Refuse 

Derived Fuel (RDF) WTE facility (Palm Beach County, FL.). The depth of the WTE 

layer was about 2.4 ft (0.73 m) and consisted of a mixture of 159 kg (350.54 lbs) of 

bottom ash and 22 kg (48.5 lbs) of fly ash.  The relative amounts of bottom ash (80%) 

and fly ash (20%) were intended to simulate conditions typical of WTE facilities.   

 

 After compacting the WTE residues, the contents of each lysimeter were saturated 

to field capacity using distilled water. An additional four liters of distilled water was 

applied to each lysimeter to generate leachate and the lysimeters were capped and sealed.  

On a daily basis, three liters of leachate was pumped to the upper reservoir and 
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distributed to the top of each lysimeter through a 12 inch horizontal perforated plate 

designed to simulate a rain event of 15 to 20 minutes.  Leachate samples were collected 

over a seven month period and analyzed as depicted in Table 20. The volume of leachate 

that was withdrawn for each sampling event was replaced with an equal amount of 

distilled water to maintain a constant volume of liquid within the lysimeter. 

 

 

3.2. Batch tests 

 

 

 Two different types of batch tests were used in this project: contact time (CT) and 

sequential extraction (SE). The CT batch test was used to assess the rate at which 

different elements reach equilibrium while SE batch tests were developed to predict the 

net capacity of soluble material to be released from combustion residues based on liquid 

to solid ratios spanning the range of conditions likely to be encountered over the lifespan 

of a landfill. 

  

 Batch testing methodology was adapted from the Method for Accelerated 

Leaching of Solidified Waste (Department of Nuclear Energy, 1990) as shown in Figure 

13. All tests were conducted using Nalgene amber high-density polyethylene (HDPE) 

wide mouth bottles. Distilled water was used as a leachant to mimic the chemical 

composition of rainwater.  To simulate internal landfill temperatures, batch tests were 

incubated at 35°C.  Leachates from batch tests were analyzed following the parameters 

described in Table 20. 
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Figure 13. Overview of Contact Time and Sequential Extractions Batch Tests. 

 

 

 The contact time batch test was designed to yield a static view of the interaction 

between the waste material and the leachant. To insure a broad view of the interaction 

between combustion residues and leachant, the tests were conducted up to 21 days with 

three replicates per time interval. On the other hand, the sequential extraction batch test 

was designed to provide a dynamic view of the interaction between WTE residuals and 

leachants. The time interval between extractions was set at 72 hours, to allow apparent 

equilibrium to be reached while providing adequate time to test each sequential step. The 

duration of the sequential extraction tests was determined by the L/S ratio, which started 

at 10 g/g and increased with each subsequent extraction until the cumulative ratio reached 

100 g/g. 
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3.3. Analytical Methods and Equipment 

 

 

 Water quality analyses were conducted on the leachate samples to identify 

dominant electron acceptors, redox conditions, dissolved mineral content, and buffer 

capacity. Chemical characterization of the leachates from lysimeters, CT, and SE tests 

were analyzed following the parameters listed in Table 20. 

 

 

Table 20. Summary of the Chemical Test Performed on the Leachate Samples. 

Test MethodA Instrument Detection 
Limits 

General 

  Alkalinity, Total 2320 B. Titration Method Burette 20 mg/L as 
CaCO3 

  Conductivity 2510 B. Laboratory Method inoLab  conductivity meter 1 μS/cm 
  Organic Carbon, 
  Total 

5310 C. Persulfate - 
Ultraviolet Method 

Sievers 800 Portable TOC 
Analyzer 0.1 mg/L 

  ORP 2580 B. Electrometric Method Hach ORP probe 1 mV 

  pH 4500-H+ B. Electrometric 
Method 

Fisher Scientific AR50 pH 
meter  0.01 

  Solids  
  (TS, TDS) 

2540 B. Total Solids and 2540 
C. Total Dissolved Solids 

AG245 Mettler Toledo and 
Fisher Scientific Isotemp® 
Muffle 

6.0 mg/L 

  Temperature 2550 B. Laboratory Method inoLab temperature probe 0.1 °C 
Anions 

  Chloride 

  Sulfate 

4140 B. Capillary Ion 
Electrophoresis with indirect 
UV Detection 

Beckman P/ACE System 
5500 Capillary 
Electrophoresis 

0.1 mg/L 

Cations 
  Calcium 
  Iron 
  Magnesium 
  Potassium 
  Sodium 

3111 B. Direct Air-Acetylene 
Flame Method 

PerkinElmer AAnalyst 100 
Atomic Absorption 
Spectrometer 

0.01 mg/L 

A All methods from Standard Methods 20th edition (1998). 
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4. RESULTS AND DISCUSSION 

 

 

 A comparison of selected results from the Contact Time (CT) tests and the 

Sequential Extraction (SE) tests is provided and compared to characteristics of leachates 

from laboratory lysimeters (Ash 1 and Ash 2) and field samples. Key leachate variables 

include pH, alkalinity, concentrations of dissolved minerals, and concentrations of 

calcium in the systems. 

 

 

4.1. pH and Alkalinity 

 

 

 The leachates generated from lysimeters and batch tests were relatively clear and 

free of particles and biomass. All samples had relatively high levels of pH regardless of 

residue source or leachate extraction method, probably due to the presence of Ca(OH)2 

and alkali metal hydroxides. The pH associated with leachates from an ash monofill in 

Florida (mass burn) ranged from 7.0 to 11.0, suggesting that environmental factors and 

biological activity may have impacted leachate characteristics. 

 

 Alkalinity levels in lysimeter leachates were fairly consistent, converging at 

approximately 2000 mg/L as CaCO3 after seven months of operation. Only 10% of the 

total alkalinity in the lysimeter leachates was attributed to carbonate alkalinity. Alkalinity 

levels in batch test leachates varied with the source of the ash. Alkalinity concentrations 

tended to decrease with increasing liquid to solid ratios in the SE tests and during the first 

six extractions, alkalinity values decreased by 18% to 83%. After encountering a mass of 

water equal to 100 times the initial mass of ash, the final alkalinity values were similar to 

those of typical groundwater ranging from 60 to 110 mg/L as CaCO3. Alkalinity and pH 

levels for leachates from lysimeters and batch tests are summarized in Table 21. 
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Table 21. Summary of pH and Alkalinity for Lysimeter and Batch Tests Leachates. 

pH Alkalinity (mg/L as 
CaCO3) Test 

Mean Range Mean Range 
LysimeterA 
   Ash 1 11.7 11.4 – 12.0 1,872 1,064 – 2,133 
   Ash 2 11.7 11.4 – 12.1 1,905 1,227 – 2,250 
Contact Time (0 – 500 hours) 
   Mass burn bottom and fly ash 1  11.7 11.6 – 12.0 1,407 1,057 – 1,590 
   Mass burn bottom and fly ash 2  11.8 11.7 – 12.0 1,292 850 – 1,557 
   Bottom ash from RDF 11.6 11.4 – 11.9 613 470 – 667 
   Fly ash from RDF 11.6 11.4 – 11.7 1,537 1,953 - 1323 
Sequential Extraction 
Liquid to Solid Ratio  10 g liquid/g ash 
   Mass burn bottom and fly ash 1  11.8 11.8 – 11.8 1,217 1,216 – 1,218 
   Mass burn bottom and fly ash 2  11.7 11.7– 11.8 1,167 1,163 – 1,171 
   Bottom ash from RDF 12.1 12.0 – 12.1 637 635 – 639 
   Fly ash from RDF 11.2 11.1 – 11.2 1,303 1,302 – 1,304 
Liquid to Solid Ratio  100 g liquid/g ash 
   Mass burn bottom and fly ash 1  10.7 10.7 – 10.7 127 124 – 130 
   Mass burn bottom and fly ash 2  11.0 11.0 – 11.0 107 105 – 109 
   Bottom ash from RDF 11.2 11.2 – 11.2 113 110 – 116 
   Fly ash from RDF 11.5 11.5 – 11.6 390 388 – 393 
A Seven months of continuous operation 

 

 

4.2. Total Dissolved Solids 

 

 

 Concentrations of Total Dissolved Solids (TDS) provide an estimate of the 

amount of minerals available for formation of precipitates and the ionic strength of the 

leachate. A comparison of the concentrations of TDS in the leachates from the batch tests 

and the lysimeters is shown in Figure 14. The TDS concentrations in the lysimeter 

leachates ranged from 10,000 to 15,000 mg/L, reflecting the relative contributions of the 

bottom and fly ash in the reactors. 
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 Figure 14. Comparison of TDS Concentrations Leached from Combustion Residues in a) 
Lysimeters; b) Contact Time Tests; c) Sequential Extraction Tests; and d) mg TDS/g Ash in 
Sequential Extraction Tests. 
 

 

 In the CT tests, the fly ash yielded about a three fold higher concentration of TDS 

than did the mixed combustion residues. During the SE test, the greatest decrease in TDS 

concentration for all samples occurred during the first three extractions, suggesting that 

the readily soluble ions were washed out of the ash quickly, leaving behind less soluble 

constituents. Most of the samples had a decrease greater than 80% from the initial TDS 

values after six or seven extractions.  

 

 The mass of solids solubilized from the bottom ash and mixed ashes ranged from 

0.35 to 0.55 g TDS/kg of ash per liter of liquid, whereas about a fourfold higher mass of 
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solids was leached from fly ash (about 1.30 g/kg per unit increase in L/S ratio).  Even at 

L/S ratios of 100 g/g, dissolution of solids had not stabilized.  The L/S mass ratio of the 

lysimeters after seven months of operation was about 0.15 g/g. TDS concentrations in 

field leachate samples ranged from 20,000 to 25,000 mg/L, suggesting higher liquid to 

solid ratios than the ones attained in lysimeter tests. 

 

 

4.3. Concentrations of Dissolved Minerals 

 

 

 The dominant ions in the leachates from batch tests and lysimeters were calcium, 

potassium, sodium, chloride, and sulfate. Sodium, potassium, and chloride ions are 

readily soluble and not usually found in deposited materials. Since calcium can 

precipitate with several ions including carbonate, sulfate, and hydroxide, it will be 

discussed in a different section. A summary of the concentration of the main ions present 

in leachates from lysimeters, CT, and SE tests is presented in Table 22. 

 

 The sodium, potassium and chloride ions are dominant constituents of the TDS in 

all leachate samples, influencing the ionic strength of the leachate and changing the 

activities of precipitate-forming ions. It is interesting to note that the concentrations of 

potassium in leachates from the lysimeters increased at a rate of about 4 mg/L-d 

(correlation coefficient, R2, about 0.75).  The rate of potassium increase is about 0.25% 

of the rate of calcium decrease (~0.1 meq/day for potassium and ~0.4 meq/d for calcium) 

suggesting some type of ion exchange occurring within the solid matrix or the drainage 

layer. The results for the batch tests followed the same patterns as seen above; the CT 

tests established equilibrium while the SE tests showed the most important reduction in 

concentrations during the first six or seven extractions. 
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 Table 22. Summary of Concentrations (mg/L) of Main Ions Present in Leachate Samples. 
Cl SO4 K Na Test Mean Range Mean Range Mean Range Mean Range 

LysimeterA 

  Ash 1 5,150 3,330 – 
7,430 72 25 – 

123 1,065 350 – 
1,500 1,985 808 – 

2,502 

  Ash 2 4,565 1,240 – 
8,210 97 25 – 

460 950 255 – 
1,340 1,865 568 – 

2,870 
Contact TimeB 
  Mass burn bottom  
   and fly ash 1  2,080 1,805 – 

2,615 266 168 – 
334 171 150 – 

200 404 330 – 
456 

  Mass burn bottom  
   and fly ash 2  1,546 1,230 – 

1,856 324 190 – 
577 143 110 – 

205 265 212 – 
342 

  Bottom ash (RDF) 76 36 – 
120 11 4.2 – 

18 22 19 – 
26 50 43 – 58

  Fly ash (RDF) 8,470 7,450 – 
9,055 366 71 – 

624 1,043 830 – 
1,137 1,650 1,378 – 

2,350 
Sequential Extraction 
L/S Ratio 10 g liquid/g ash 
  Mass burn bottom  
   and fly ash 1  2,152 1,984 – 

2,300 244 235 – 
251 243 238 – 

250 446 436 – 
480 

  Mass burn bottom  
   and fly ash 2  1,463 1,188 – 

1,710 320 316 – 
333 150 133 – 

161 256 249 – 
263 

  Bottom ash (RDF) 35 22 –  
41 16 12 – 

20 52 50 – 
55 61 55 –  

67 

  Fly ash (RDF) 7,652 7,590 – 
7,900 512 505 – 

520 1,164 995 – 
1,210 1,834 1,750 – 

1,990 
L/S Ratio 100 g liquid/g ash 
  Mass burn bottom  
   and fly ash 1  3.0 2.6 – 

3.5 40 37 – 
44 3.2 2.9 – 

3.4 1.6 0.9 – 
2.2 

  Mass burn bottom  
   and fly ash 2  2.0 1.9 – 

2.2 35 30 – 
37 0.1 0.1 – 

0.2 0.7 0.2 – 
1.5 

  Bottom ash (RDF) 0.4 0.3 – 
0.5 30 28 – 

33 0.2 0.1 – 
0.2 0.5 0.1 – 

1.1 

  Fly ash (RDF) 15 13 –  
18 20 15 – 

25 7.0 6.0 – 
9.0 0.3 0.2 – 

0.3 
A Seven months of continuous operation. 
B 0 – 500 hours. 
 

 

4.4. Calcium Concentrations 

 

 

 Based on analysis of clogged materials from leachate collection systems and on 

previous studies (Manning and Robinson, 1999; Rowe et al., 2002; VanGulck et al., 
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2003; VanGulck and Rowe, 2004), it has been established that calcium plays an 

important role in the formation of precipitates. A comparison of calcium levels observed 

in leachates from lysimeters and batch tests is shown in Figure 15.  
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predictive capability of the batch tests is shown in Figure 16 in terms of saturation indices 

for calcite and gypsum associated with each of the WTE combustion residues in the CT 

tests.  As shown, the fly ash yields a highly supersaturated solution for both calcite and 

gypsum, but the degree of supersaturation decreases with contact time for gypsum, 

perhaps due to the participation of sulfate in other complexing reactions.  Leachate 

derived from bottom ash was unsaturated for calcite and gypsum. These results suggest 

that further stabilization of fly ash or development of alternative disposal practices may 

help to reduce the extent of mineral precipitation and clogging of landfill leachate 

collection systems. 
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Figure 16. Comparison of Saturation Indices for Calcite (Left) and Gypsum (Right) from 
CT Batch Tests. 
 

 

4.5. Formation of Precipitates 

 

 

 Leachates associated with different types of WTE combustion residues can be 

supersaturated with respect to minerals that tend to precipitate. Some type of perturbation 

to the leachate chemistry such as modification of the oxidation-reduction potential, 

stimulation of the growth of bacteria, or addition of various cleaning agents can induce 
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deposit formation. One type of cleaning agent that is widely applied for clean-out of 

leachate collection systems is the use of acid with the goal of solubilizing minerals. 
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b) 

Figure 17. SEM/EDS Analysis of Precipitates Formed from the Addition of Sulfuric Acid to 
Leachates from CT Tests at a L/S Mass Ratio of 10; a) Bottom Ash, and b) Fly Ash. 
 

 

 In this study, acid was added to samples from lysimeters and batch testing as a 

preservative. However, precipitates formed within the leachate solutions upon the 

addition of sulfuric acid.  Examples of the precipitates that formed are shown in Figure 

17 for samples of bottom ash batch test leachates at a liquid to solid mass ratio of 10 and 
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for fly ash batch leaching test samples. As discussed above, all of these samples were 

undersaturated for gypsum due to the relatively low concentrations of sulfate. It is 

interesting to note that in addition to the plate-like gypsum material that formed, other 

calcium and magnesium dominated precipitates were also present, perhaps due to 

changes in the oxidation-reduction conditions. It should also be noted that there was no 

evidence of microbial interactions in these reactions, since the pH level in the leachates 

samples was an inhibitory factor. 

 

 

5. CONCLUSIONS 

 

 

 This study has provided the opportunity to evaluate the leaching behavior of 

different WTE combustion residues through the use of lysimeters, contact time, and 

sequential extraction batch tests. Predictions of the contributions of the different WTE 

residuals and the potential for the formation of mineral precipitates were discussed. The 

major conclusions of this study are: 

 

1. Lysimeter tests allowed for a detailed evaluation of one-set of conditions over an 

extended time period allowing for examination of changes in leachate 

composition. The reactors were useful tools to simulate landfill conditions in a 

laboratory environment. 

 

2. Batch leaching tests provided a means to estimate the rate and extent of mineral 

leaching as a function of contact time and liquid to solid ratios. The contact time 

(CT) test provided insight into the dominant solubilizable components and the 

chemical stability of leachates generated by WTE combustion residues, while the 

sequential extraction (SE) test provided a means to quantify the leaching behavior 

resulting from sequential exposure to rainwater as it percolates through a landfill. 
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3. Comparisons between batch tests, lysimeter tests, and field samples suggest that 

laboratory solubilization studies may provide useful tools for predicting the 

impacts of alternative ash management practices and various combinations of 

wastes on leachate composition and stability.  

 

4.  All leachates samples from lysimeter and batch tests contained high 

concentrations of calcium, potassium, sodium, chloride, and sulfate. Although 

sodium, potassium, and chloride were highly soluble, these ions increased the 

ionic strength of the leachate, thereby reducing the activity of the less soluble ions 

in the leachate. 

 

5.  The high degree of calcium solubilization associated with WTE residue leachates 

can impact the stability of landfill leachates, particularly when combustion 

residues are co-disposed with MSW. Results from leaching and solubilization 

studies can help to predict the potential for formation of calcium-based 

precipitates in leachate collection systems and possibly lead to the development of 

improved leachate management practices. 
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Conclusions 

 

 

 This study has provided an opportunity to investigate relationships among waste 

characteristics, leachate composition, and the potential for formation of precipitates. The 

goal was to provide a means for predicting the contributions of different waste streams to 

potential clog formation in landfill leachate collection systems. The major conclusions 

from this project are: 

 

1. The use of monofills appears to lead to less clogging of leachate collection 

systems. For ash monofills, the lower degree of microbial activity in the leachate 

results in lower concentrations of carbonate species, thus restricting the extent of 

chemical precipitation, while leachates from MSW monofills contain adequate 

carbonate, but fewer sources of calcium and other insoluble minerals. 

 

2. Landfills practicing co-disposal of WTE combustion residues and MSW appear to 

be more susceptible to clogging of leachate collection system due to the relative 

contributions of each waste stream. The WTE ash provides the minerals while the 

MSW provides biomass, carbonate species, and alternative electron acceptors. 

Additional inputs of treatment plant residuals can introduce more minerals (water 

treatment) and more biomass sources (wastewater treatment), further exacerbating 

the problem. 

 

3. Clogging seems to occur when the equilibrium of calcium species is disrupted by 

microbial activity, the additional leaching of minerals, and/or a change in 

oxidation conditions. Microbial activity, as evidenced by volatile acids and 
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monitoring of microbial concentrations, influenced the rate and extent of clogging 

that occurred in lysimeter tubing. 

 

4. Batch leaching tests provided a means to estimate the rate and extent of mineral 

leaching as a function of contact time and liquid to solid ratios. The contact time 

(CT) test provided insight into the dominant solubilizable components and the 

chemical stability of leachates generated by WTE combustion residues, while the 

sequential extraction (SE) test provided a means to quantify the leaching behavior 

resulting from sequential exposure to rainwater as it percolates through a landfill. 

The use of this test to screen ash stabilization methods may help to reduce the 

incidence of clogging in landfill leachate collection systems. 

 

5. Comparisons between batch tests, lysimeter tests, and field samples suggest that 

laboratory solubilization studies may provide useful tools for predicting the 

impacts of alternative ash management practices and co-disposal of different 

types of wastes on leachate composition and stability. All the tests correctly 

predicted the identities of the dominant ions and the supersaturated or unsaturated 

nature of the leachate. 

 

6. The high degree of calcium solubilization associated with WTE residue leachates 

can impact the stability of landfill leachates, particularly when combustion 

residues are co-disposed with MSW. Results from leaching and solubilization 

studies can help to predict the potential for formation of calcium-based 

precipitates in leachate collection systems and possibly lead to the development of 

improved leachate management practices. 

 

 
 
 
 
 
 



 82

 
 

 

Engineering Implications 

 

 

 Landfills are designed to prevent and control the migration of contaminants to the 

surrounding environment. Landfill leachate collection systems are integral components of 

landfill management. This research has provided an initial evaluation of the chemical and 

microbiological factors that may impact the formation of biogeochemical deposits in 

leachate collection systems. It is important to develop tools for preventing and correcting 

problems associated with clogging of landfill drainage material and collection pipes. 

 

Monofills appear to be a better disposal option for WTE combustion residues, 

rather than co-disposal with MSW and byproducts from water and wastewater treatment. 

The monofill practice would prevent two leachates with different characteristics from 

interacting and producing precipitates. WTE combustion residues leachate provides the 

minerals while the MSW leachate provides biomass, carbonate species, and alternative 

electron acceptors, creating ideal conditions for the formation of precipitates. Clogging of 

leachate collection systems allows for accumulation of liquid within the landfill, 

increasing the failure potential of the liner.  

 

Routine monitoring of biologically related parameters such as volatile acids, 

chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in landfill 

leachates may be instrumental in relating the extent of biological activity with the 

potential for formation of biogeochemical deposits. Comparison of the time period of 

decreasing calcium to alkalinity ratios with the time periods associated with leachate pipe 

clogging might provide insight into the potential use of this ratio as a diagnostic or 

predictive tool for control and establishment of maintenance frequencies for leachate 

collection system. 
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Methods for prevention and control of clogging in leachate collection pipes 

should be evaluated taking into account leachate characteristics and waste interactions.  

Detailed testing of the impacts of practices such as chemical augmentation with acids and 

chelating agents is needed to identify the optimum approach for clogging prevention. The 

equilibrium of supersaturated leachates may be easily disrupted with the addition of 

cleaning chemicals, increasing the potential for precipitates formation. 

 

 The impacts of current combustion technologies and ash handling protocols on 

the leaching characteristics of residues from WTE combustion facilities may help to 

develop protocols for stabilization of residues prior to landfilling or beneficial reuse. 

Laboratory lysimeters and batch tests can provide useful information during the 

development of treatment alternatives and also in the selection of appropriate materials 

for construction of landfill leachate drainage systems. 
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Additional Research 

 

 

 Recommendations for further research of the impacts of co-disposal of MSW, 

WTE combustion residues, and byproducts of water and wastewater treatment are: 

 

1. Evaluate leachate characteristics through the use of laboratory lysimeters without 

leachate recirculation. This approach would allow studying the interactions 

between different types of waste and leachate quality, as new liquid is added 

every time and a better control on the liquid to solid ratio in the reactors is 

achieved. This operational mode would also mimics a landfill environment in 

which the moisture content is an important factor affecting biological activity, 

redox conditions, and solubility of minerals.  

 

2. Determine the role of increasing temperatures on the formation of biogeochemical 

deposits. Landfill environments reach higher temperatures than the ones usually 

found in laboratories. Temperature affects biological activity as well as redox 

conditions and solubility of minerals in the leachate. By running laboratory 

lysimeters and batch tests at different temperatures, a relationship between this 

factor and leachate characteristics can be established. 

  

3. Examine the impact of co-disposal of MSW and byproducts of water and 

wastewater treatment. Since this type of residuals are also co-disposed in landfills, 

the use of laboratory lysimeter and batch tests may help in the identification of the 

individual contributions to the biomass and mineral content of the leachate, due to 

the presence of biosolids and/or water treatment sludge.  
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4. Evaluate the production and composition of the biogas during laboratory 

lysimeter tests. Analyses of the biogas will allow establishing stronger 

relationships among biological activity, degradation of wastes within the reactors, 

leachate quality, and formation of precipitates.  

 

5. Develop a relationship to predict the formation of precipitates by studying the 

sources of carbonate and the depletion of calcium in the leachate. The generation 

and consumption of volatile acids affects the pH and the carbonate concentration 

of the leachate. Identification of the composition and behavior of volatile acids 

may help to identify chemical and biological factors that play a role in the 

leachate chemical stability. 

 

6. Study the impact of having an anaerobic versus aerobic environment on the 

clogging of leachate collection system. New landfill management practices 

include the aeration of landfilled waste to promote faster degradation. Biological 

activity, redox conditions, and solubility of minerals are affected by this practice 

and the implications on the formation of biogeochemical deposits are not well 

understood yet. 

 

7. Perform a statistical analysis of waste disposal practices and the incidences of 

leachate management problems related to the formation of biogeochemical 

deposits. This could be achieved by conducting a large scale survey of landfills 

and comparing the disposal practices (monofills versus co-disposal of MSW, 

WTE combustion residues, and residuals from water and wastewater treatment) 

and the formation of precipitates in leachate collection systems. 
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Appendix A: Chemical Characterization Tests 

 

 

Metals: Flame AA  

 

 

Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium, Zinc 

 

Source: Standard Methods for the Examination of Water and Wastewater, 20th edition, 

3111 B Direct Air-Acetylene Flame Method 

 

Equipment: PerkinElmer AAnalyst 100, Atomic Absorption Spectrometer 

 

Time Frame: 6 months with preservation, store at 4°C. 

 

Preservation of Sample: Preserve by adding 5 mL of concentrated nitric acid to 1 L of 

sample and the sample can be stored for up to 6 months (EPA Method 3005). 

 

Preparation of Reference Standards: Make up at least three standards. The first should be 

below the expected concentration, the second should be near the expected concentration 

and the final standard should be above the expected concentration. The middle standard 

will be used to re-slope. Prepare by adding the appropriate amount of reference standard 

to reagent grade water. 

 

Preparation of Sample: If there are large amounts of particulate matter the sample needs 

to be filtered. If not, there is no preparation required. 
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Appendix A (continued) 
 
Table A-1: Conditions from Analytical Methods for Atomic Absorption Spectrometry, 2000. 
PerkinElmer  
Metal Wavelength 

(nm) 
Slit 

(nm) 
Relative 
Noise 

 

Characteristic 
Concentrations 

(mg/L) 
 

Characteristic 
concentration checks 

(mg/L) 

Linear 
Range 
(mg/L) 

Ca 422.7 0.7 1.00 0.092 4.00 5.0 
Cu 324.8 0.7 1.00 0.077 4.00 5.0 
Fe 248.3 0.2 1.00 0.110 6.00 6.0 
Mg 285.2 0.7 1.00 0.008 0.30 0.5 

766.5 0.7 1.00 0.043 2.00 2.0 K 
769.9 0.7 1.40 0.083 4.00 20.0 

Na 589.0 0.2 1.00 0.012 0.50 1.0 
 330.2 0.7 0.63 1.700 80.00 --- 
Zn 213.9 0.7 1.00 0.018 1.00 1.0 
Recommended Flame: Air-acetylene, oxidizing (lean, blue) 

 

 

Anions: Capillary Ion Electrophoresis  

 

 

Chloride, Bromide, Nitrate, Nitrite, Sulfate, Fluoride, o-Phosphate 

 

Source: Standard Methods for the Examination of Water and Wastewater, 20th edition, 

4140 B: Capillary Ion Electrophoresis with Indirect UV Detection 

 

Equipment: Beckman P/ACE 5000 Series Capillary Electrophoresis System 

eCap Capillary Tubing in cartridge: 375 µm O.D., 75 µm I.D., 50 cm L 

 

Preparation: The samples need to be filtered if it contains a high concentration of 

suspended solids. Once completed the sample may need to be diluted.  
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Appendix B: Lysimeter Star-up and Operation 
 

 

Lysimeter Star-up 

 

 

Placement of the Waste and Field Capacity Test. 

 

Procedure: 

1. Select the amount of each type of waste according to its weight and volume. For 

the co-disposal lysimeters, the wastes were mixed in 60-Liter containers prior to 

be placed in the reactor. 

2. Place the waste in the reactors and close the outlet/sampling valve at the end of 

the leachate collection pipe. Add distilled water until the wastes are completely 

submerged. Record the amount of distilled water added to each reactor. 

3. Leave the reactors in the submerge mode for 72 hours to allow the waste to 

absorb enough water to reach its saturation point. 

4. Open the outlet/sampling valve and drain the reactors. Measure the amount of 

water/leachate recovered. Save samples for complete chemical and biological 

characterization. 

5. The amount of water absorbed by the waste, considered to be the field capacity, is 

going to be the difference between the amount of water added and the amount of 

water/leachate recovered.   

6. Cap the reactors and make sure there are no leaks. Connect the tubing from the 

top containers to the water/leachate distribution system.  

7. Add four liters of distilled water to each lysimeter through the distribution 

systems to start the generation of leachate. 
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Appendix B (continued) 

 

Lysimeter Operation 

 

Procedure: 

1. After addition of four liters of distilled water or recirculation of three liters of 

leachate, provide enough time to the liquid so it will travel through the reactor and 

generate leachate. 

2. Once most of the four/three liters have been recovered in the bottom container, 

close the outlet/sampling valve to avoid changes of pressure inside the reactor. 

3. Take samples for chemical and biological characterization.  

4. Replace the same amount of leachate taken during the sampling event with 

distilled water and open again the outlet/sampling valve. 

5. The removed leachate needs to be promptly tested or preserved. 

6. Set the timer for the pumps to start after the samples have been taken. Pumping 

time should be enough to transfer three liters of leachate from the bottom 

container to the upper one. 

7. Recirculate three liters of leachate into each reactor by tipping the upper 

containers to simulate a rain event of 15 to 20 minutes. 

8. Repeat steps 1 through 7 with a 24 hours time interval.  
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Appendix C: Summary of Leachate Characteristics from Laboratory Lysimeter 

Tests Conducted from May 5 through November 29, 2004
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Table C-1. Lysimeter Leachate Monitoring Summary. Ash 1: 80% Bottom Ash, 20% Fly Ash. 
Parameter Mean Median Minimum Maximum Standard 

Deviation 
Standard 

Error 
Skewness Kurtosis Sample 

Variance 
n 

pH 11.74 11.76 11.4 12.01 0.16 0.02 -0.28 -0.93 0.03 99 
Conductivity (µS/cm) 20.68 23.3 13.41 26.5 4.21 0.42 -0.44 -1.46 17.71 99 
Temperature (°C) 22.28 22.3 19.3 24.8 1.43 0.16 -0.34 -0.68 2.04 77 
ORP (mV) -46.91 -44 -140 -0.2 28.09 3.20 -0.83 0.93 788.99 77 
Turbidity (NTU) 0.98 0.74 0.15 5.07 0.89 0.09 2.06 5.92 0.79 99 
Ammonia (mg/L NH3) 246.30 54.99 0.51 1,189 314.1 59.35 1.34 1.35 98,640 28 
Total Alkalinity  
(mg/L as CaCO3) 

1,872 1,866 1,064 2,133 160.9 18.97 -1.85 8.32 25,904 72 

Volatile Acids 
 (mg/L as Acetic Acid) 

19.2 16.7 16.7 33.3 5.85 0.83 2.09 2.48 34.17 49 

Total Solids (mg/L) 13,118 12,863 11,626 17,826 1,303 217.24 2.40 6.52 1.7E+06 36 
Volatile Solids (mg/L) 1,367 916.65 726.7 4,873 932.3 155.39 2.23 5.19 869,253 36 
Estimated TDS (mg/L) 11,973 11,999 8,803 14,975 1,547 257.95 -0.001 -0.35 2.4E+06 36 
Total Nitrogen  
(mg/L as N) 

8.60 9 < 0.2 20 5.48 0.91 0.44 0.45 29.99 36 

Total Phosphorus (mg/L 
as PO4) 

5.40 5.1 1.5 10.9 2.31 0.38 0.52 -0.21 5.34 36 

Silica (mg/L as SiO2) 4.7 3.8 < 0.3 18.3 4.24 0.71 1.89 4.13 18.01 36 
Bromide (mg/L) 172.71 171.6 66.5 305.43 52.92 9.36 -0.009 0.24 2,800.5 33 
Chloride (mg/L) 5,148 4,989 3,325 7,431 964.3 167.86 0.49 0.21 929,882 36 
Sulfate (mg/L) 71.73 71.4 23.97 122.8 30.97 6.76 -0.03 -1.27 958.95 21 
Calcium (mg/L) 1,826 1,556 638.7 4,360 978.9 163.15 1.23 1.14 958,265 36 
Magnesium (mg/L) 0.038 0.011 < 0.01 0.855 0.141 0.023 5.920 35.330 0.020 36 
Copper (mg/L) 0.176 0.165 0.054 0.376 0.085 0.014 0.618 -0.238 0.007 36 
Iron (mg/L) 0.180 0.187 0.073 0.296 0.058 0.010 0.218 -0.412 0.003 36 
Manganese (mg/L) 0.023 0.021 < 0.01 0.088 0.022 0.004 1.448 2.147 0.001 36 
Zinc (mg/L) 0.250 0.234 0.033 0.362 0.065 0.011 -0.581 2.296 0.004 36 
Potassium (mg/L) 1,065 1,217 350.4 1,494 335.6 55.94 -0.691 -0.818 112,650 36 
Sodium (mg/L) 1,984 1,974 808 502 730.2 121.71 1.785 7.74 533,240 36 
Aluminum (mg/L) 0.099 0.055 < 0.002 0.65 0.121 0.020 2.950 11.627 0.015 36 
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Table C-2. Lysimeter Leachate Monitoring Summary. Ash 2: 80% Bottom Ash, 20% Fly Ash. 
Parameter Mean Median Minimum Maximum Standard 

Deviation 
Standard 

Error 
Skewness Kurtosis Sample 

Variance 
n 

pH 11.73 11.77 11.4 12.05 0.17 0.02 -0.22 -1.06 0.03 99 
Conductivity (μS/cm) 20.06 22.9 12.2 24.8 4.34 0.44 -0.67 -1.24 18.80 99 
Temperature (°C) 22.24 22 19.3 24.7 1.45 0.17 -0.18 -0.84 2.09 77 
ORP (mV) -117 -122 -159 121 34.56 3.94 4.38 29.20 1,195 77 
Turbidity (NTU) 1.13 0.62 0.13 8.57 1.61 0.16 2.87 8.36 2.58 99 
Ammonia (mg/L NH3) 475.06 86.02 1.36 3,816 864.70 163.41 2.83 8.65 747,698 28 
Total Alkalinity 
 (mg/L as CaCO3) 

1,904 1,900 1,226 2,250 179.48 21.15 -0.69 2.13 32,211 72 

Volatile Acids  
(mg/L as Acetic Acid) 

22.68 16.7 8.33 35.7 8.37 1.20 0.49 -1.63 70.12 49 

Total Solids (mg/L) 12,104 11,993 10,700 15,873 1,066 177.66 1.65 3.86 1.1E+06 36 
Volatile Solids (mg/L) 1,313 963.35 633.3 3,346 777.17 129.53 1.79 2.05 603,991 36 
Estimated TDS (mg/L) 10,922 11,268 7,295 13,425 1,249 208.29 -0.77 1.11 1.5E+06 36 
Total Nitrogen  
(mg/L as N) 

7.20 8.5 < 0.2 20 4.41 0.74 -0.07 0.94 19.44 36 

Total Phosphorus  
(mg/L as PO4) 

4.71 4.15 0.9 16.5 2.90 0.48 1.94 6.71 8.40 36 

Silica (mg/L as SiO2) 4.44 3 < 0.3 19.4 3.98 0.66 1.89 5.02 15.81 36 
Bromide (mg/L) 178.01 162.7 43.1 777.08 111.42 18.57 4.59 25.21 12,414 36 
Chloride (mg/L) 4,562 4,478 1,237 8,209 1,208 201.43 0.09 2.99 1.5E+06 36 
Sulfate (mg/L) 96.57 57.96 24.49 460.24 108.07 26.21 2.63 8.19 11,679 17 
Calcium (mg/L) 1,727 1,380 640.5 4,526 948.49 158.08 1.14 0.96 899,626 36 
Magnesium (mg/L) 0.052 0.01 < 0.01 0.775 0.154 0.026 4.116 16.79 0.024 36 
Copper (mg/L) 0.092 0.109 < 0.01 0.16 0.052 0.009 -0.680 -0.996 0.003 36 
Iron (mg/L) 0.174 0.165 0.028 0.35 0.067 0.011 0.638 0.628 0.005 36 
Manganese (mg/L) 0.023 0.023 < 0.01 0.073 0.021 0.004 1.022 0.498 0.001 36 
Zinc (mg/L) 0.240 0.238 0.11 0.344 0.060 0.010 -0.009 -0.618 0.004 36 
Potassium (mg/L) 944.5 1,057 254.2 1,340 308.38 51.40 -0.843 -0.486 95,099 36 
Sodium (mg/L) 1,864 1,879 568 2,869 580.86 96.81 -0.467 -0.302 337,398 36 
Aluminum (mg/L) 0.153 0.16 < 0.002 0.53 0.136 0.023 0.769 0.181 0.019 36 
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Table C-3. Lysimeter Leachate Monitoring Summary. MSW: 100% MSW. 
Parameter Mean Median Minimum Maximum Standard 

Deviation 
Standard 

Error 
Skewness Kurtosis Sample 

Variance 
n 

pH 6.58 6.7 5.84 7.08 0.31 0.03 -0.87 -0.23 0.10 99 
Conductivity (μS/cm) 5.01 5.42 1.80 7.64 1.61 0.16 -0.47 -0.79 2.61 99 
Temperature (°C) 22.17 22.1 19.3 24.6 1.45 0.17 -0.19 -0.94 2.10 77 
ORP (mV) -87.38 -83 -137 -14 25.44 2.90 -0.09 -0.38 647.11 77 
Turbidity (NTU) 208.54 205 60.1 377 85.79 8.62 0.16 -1.02 7,359 99 
Ammonia (mg/LNH3) 1,029 78.2 0.51 8,715 1,984 374.98 2.74 8.24 4E+06 28 
Total Alkalinity 
 (mg/L as CaCO3) 

3,177 3,083 2,066 4,600 680.8 80.23 0.28 -0.85 463,493 72 

Volatile Acids  
(mg/L as Acetic Acid) 

307.16 100 16.7 1,025 314.52 44.93 0.63 -0.93 98,922 49 

Total Solids (mg/L) 6,785 7,272 2,940 10,686 2,699 449.85 -0.05 -1.53 7.3E+06 36 
Volatile Solids (mg/L) 3,527 4,292 1,160 6,080 1,661 276.97 -0.10 -1.59 2.8E+06 36 
Estimated TDS (mg/L) 5,006 4,963 3,201 7,490 1,237 206.23 0.43 -0.62 1.5E+06 36 
Total Nitrogen  
(mg/L as N) 

84.56 60 40 180 50.99 8.50 0.85 -1.06 2,600.37 36 

Total Phosphorus  
(mg/L as PO4) 

16.89 14.7 0.6 42 13.12 2.19 0.48 -1.01 172.19 36 

Silica (mg/L as SiO2) 172.97 164.5 100 268 43.24 7.21 0.50 -0.44 1,869 36 
Bromide (mg/L) 2.45 1.65 0.79 9.17 2.49 0.79 2.65 7.44 6.18 10 
Chloride (mg/L) 107.67 96.78 39.39 191.69 35.97 5.99 0.93 0.50 1,293 36 
Phosphate (mg/L) 417.77 466 17.03 826.71 347.33 96.33 -0.16 -1.92 120,640 13 
Sulfate (mg/L) 82.94 36.43 10.85 222 88.10 29.37 0.80 -1.48 7,761 9 
Calcium (mg/L) 1,128 1,194 423.7 1,899 452.15 75.36 0.11 -1.26 204,437 36 
Magnesium (mg/L) 50.27 50.35 27 73.5 9.66 1.61 -0.12 0.32 93.35 36 
Copper (mg/L) 0.045 0.053 < 0.01 0.089 0.033 0.006 -0.202 -1.556 0.001 36 
Iron (mg/L) 15.19 13.16 0.829 49.08 13.84 2.307 0.602 -0.694 191.61 36 
Manganese (mg/L) 2.996 3.116 0.086 7.65 2.52 0.420 0.375 -1.097 6.352 36 
Potassium (mg/L) 102.90 94.85 27.3 165.3 40.42 6.74 -0.24 -0.71 1,633 36 
Sodium (mg/L) 177.61 178 60 279 49.53 8.26 -0.31 0.58 2,453 36 
Aluminum (mg/L) 0.644 0.685 0.12 0.99 0.215 0.036 -0.451 -0.535 0.046 36 
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Table C-4. Lysimeter Leachate Monitoring Summary. Mix 1: 60% MSW, 30% WTE Ash, 10% Treatment Residuals. 
Parameter Mean Median Minimum Maximum Standard 

Deviation 
Standard 

Error 
Skewness Kurtosis Sample 

Variance 
n 

pH 6.45 6.56 5.82 6.79 0.25 0.03 -0.85 -0.48 0.06 99 
Conductivity (μS/cm) 7.13 7.53 1.96 12.15 2.91 0.29 -0.41 -0.67 8.48 99 
Temperature (°C) 22.11 22 19.1 24.4 1.44 0.16 -0.28 -0.74 2.08 77 
ORP (mV) -77.3 -83 -147 -7 30.88 3.52 0.42 -0.23 953.27 77 
Turbidity (NTU) 144.54 139 51.7 430 53.43 5.37 1.94 7.84 2,854.98 99 
Ammonia (mg/LNH3) 2,995 75.56 3.06 17,296 4,913 928.53 1.84 2.90 2.4E+07 28 
Total Alkalinity 
 (mg/L as CaCO3) 

2,670 2,250 1,733 4,533 842.46 99.28 0.61 -1.18 709,734 72 

Volatile Acids  
(mg/L as Acetic Acid) 

132.69 33.3 16.7 875 189.86 27.12 1.93 3.88 36,047 49 

Total Solids (mg/L) 7,719 5,520 4,526 14,940 3,390 565.02 0.98 -0.36 1.1E+07 36 
Volatile Solids (mg/L) 3,307 2,210 1,720 7,593 1,739 289.91 1.11 0.03 3E+06 36 
Estimated TDS (mg/L) 5,916 4,870 3,457 9,835 1,845 307.55 0.81 -0.52 3.4E+06 36 
Total Nitrogen  
(mg/L as N) 

82.78 61 30 240 55.78 9.30 1.89 2.46 3,110 36 

Total Phosphorus  
(mg/L as PO4) 

4.94 5 < 0.2 9.8 2.78 0.46 -0.16 -0.84 7.72 36 

Silica (mg/L as SiO2) 170.75 145 103 327 57.65 9.61 1.04 0.18 3,323 36 
Bromide (mg/L) 39.18 27.985 10.09 172.05 32.48 5.93 2.80 9.21 1,054.8 30 
Chloride (mg/L) 1,084 1,052 243.86 1,890 291.12 50.68 0.17 2.60 84,748 36 
Phosphate (mg/L) 744.86 659.25 16.13 1,705 665.99 200.81 0.11 -1.82 443,553 11 
Sulfate (mg/L) 215.04 65.01 13.77 719 280.64 81.01 1.13 -0.50 78,758 12 
Calcium (mg/L) 1,182 842.95 416.1 2,961 712.32 118.72 1.42 1.11 507,399 36 
Magnesium (mg/L) 189.55 184.7 123.5 300.7 33.25 5.54 1.14 2.78 1,105.7 36 
Copper (mg/L) 0.081 0.060 < 0.01 0.384 0.095 0.016 2.091 4.50 0.01 36 
Iron (mg/L) 11.11 6.341 1.527 38.59 10.29 1.715 1.356 1.421 105.87 36 
Manganese (mg/L) 1.191 0.414 < 0.01 4.679 1.524 0.254 1.348 0.380 2.322 36 
Potassium (mg/L) 128.46 130.1 76.7 229.3 31.29 5.53 0.995 2.389 979.27 36 
Sodium (mg/L) 389 377.15 219 520 58.15 9.97 -0.343 1.513 3,381 36 
Aluminum (mg/L) 0.5 0.48 0.18 0.86 0.152 0.025 0.477 0.191 0.023 36 
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 Table C-5. Lysimeter Leachate Monitoring Summary. Mix 2: 60% MSW, 30% WTE Ash, 10% Treatment Residuals. 
Parameter Mean Median Minimum Maximum Standard 

Deviation 
Standard 

Error 
Skewness Kurtosis Sample 

Variance 
n 

pH 6.63 6.66 6.11 6.93 0.17 0.02 -0.80 0.59 0.03 99 
Conductivity (μS/cm) 6.84 7.62 1.9 11.22 2.62 0.26 -0.72 -0.46 6.87 99 
Temperature (°C) 22.12 22 19 24.6 1.49 0.17 -0.21 -0.89 2.23 77 
ORP (mV) -99.64 -102 -131 -57 16.44 1.87 0.51 -0.30 270.16 77 
Turbidity (NTU) 187.92 171 71.5 331 62.97 6.33 0.43 -0.71 3,965 99 
Ammonia (mg/L NH3) 3,590 101.32 3.4 15,031 5,309 1,003 1.20 0.02 2.8E+07 28 
Total Alkalinity 
 (mg/L as CaCO3) 

2,896 2,866 1,666 4,800 690.29 81.35 0.45 -0.36 476,500 72 

Volatile Acids  
(mg/L as Acetic Acid) 

172.76 33.3 16.7 675 213.64 30.52 0.94 -0.73 45,640 49 

Total Solids (mg/L) 7,009 5,950 4,353 13,540 2,514 419.15 1.18 0.65 6.3E+06 36 
Volatile Solids (mg/L) 2,829 2,313 1,853 5,453 1,023 170.60 1.02 0.02 1.1E+06 36 
Estimated TDS (mg/L) 5,846 5,696 3,831 9,246 1,472 245.43 0.64 -0.15 2.2E+06 36 
Total Nitrogen  
(mg/L as N) 

119.89 109 80 220 38.42 6.40 1.59 1.67 1,476.1 36 

Total Phosphorus  
(mg/L as PO4) 

8.11 8.5 < 0.2 20 4.87 0.81 0.26 -0.37 23.67 36 

Silica (mg/L as SiO2) 160.81 128 55 424 81.01 13.50 1.52 2.22 6,563.2 36 
Bromide (mg/L) 30.92 25.03 12.83 82.58 18.43 3.07 2.36 4.31 339.51 36 
Chloride (mg/L) 900.01 882.91 427.88 1,323 233.73 38.96 -0.02 -0.49 54,628 36 
Phosphate (mg/L) 1,241 1,302 496.56 1,715 385.47 128.49 -0.78 0.44 148,584 9 
Sulfate (mg/L) 165.71 39.70 12.22 449 194.19 68.66 0.71 -1.92 37,707 8 
Calcium (mg/L) 1,120 1,065 396.4 2,326 497.73 82.96 1.16 0.95 247,734 36 
Magnesium (mg/L) 156.90 156 121.3 189.9 16.50 2.75 0.09 -0.41 272.31 36 
Copper (mg/L) 0.067 0.068 < 0.01 0.34 0.069 0.011 1.904 5.906 0.005 36 
Iron (mg/L) 8.699 3.376 0.801 28.95 9.130 1.522 0.948 -0.631 83.348 36 
Manganese (mg/L) 0.819 0.477 < 0.01 3.381 0.899 0.150 1.497 1.587 0.808 36 
Potassium (mg/L) 115.76 118.55 75.8 146.5 16.72 2.79 -0.53 0.041 279.53 36 
Sodium (mg/L) 306.99 301.25 240 407 34.65 5.78 0.76 1.25 1,200.9 36 
Aluminum (mg/L) 0.481 0.485 0.1 0.86 0.189 0.032 -0.180 -0.542 0.036 36 
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