

Temperature Sensitive Medication Storage During Natural Disaster

Team Introductions

Zoe Dillehay Systems Integration Engineer Travis Amaral Project Manager & Research Engineer

Nick Georgevich Design Engineer Keon Glass Entrepreneurial Leader & Research Engineer Diego Mendoza Electrical Engineer Andrew Sayers Quality Control Engineer

Advisors & Sponsor

Dr. Shayne McConomy

Dr. Michael Devine

Our objective is to develop a device that stores and maintains the quality of temperature sensitive medication in the event of a long-term power outage

7

Targets & Metrics

Concept Generation

How it works

Power is applied and current runs through the conductors

Bottom side of the plate gets hot

Top side of the plate gets cold

Use the cold side to cool the system

Final Concept Selected

Departments of Mechanical & Electrical Engineering

11

Final Concept Selected

RE

FAMILY

OF-

534

Cooler Hous

00

Juice

Medi-Kool

vouue

sides

ront and Back

sing Adjacent

osite TEC

m Aluminum Cold Plate

Electrical System Schematic

Power System Schematic

16

Control System Schematic

17

Steps to Concept Validation

Reaching our temperature target

Ensuring the entire cold plate is within range

Observe long term power & temperature

Keeping temperature within range for 14 days

Steps to Concept Validation

Diego Mendoza

Temperature vs. Time

Time (minute:seconds)

20

Test Summary

- Temperature difference was 4°C at its worst and 3°C at its best without insulation
- Temperature difference is acceptable to keep medicine within 2°C and 8°C
- Additional TEC will not be needed
- Cold plate was fully in range after about 27 minutes

3

Observe long term power & temperature

Test Objectives

- Observe long-term temperature fluctuations
- Take temperature from 3 spots every 30 seconds
- Extrapolate long term power requirements
- Confirm cold plate gradient is

acceptable

Temperature vs. Time

Test Summary

- Power only turned off 12 times in 22 hours
- Cool down time was 12.5 min
- System was off for 7.5 min at a time in power saving mode
- Maximum temperature at 10.5°C
- Lots of condensation in cooler after test

3

Observe long term power & temperature

Buck Converter

- Dissipated more heat than expected
- Overheated entire system when attached to cooler
- Additional cooling needed

Observe long term power & temperature

Larger Fan Test

- Attached larger fan to heat sink
- Secured buck converter behind fan for cooling
- Sealed off holes
- Larger fan ended up using too much power

Observe long term power & temperature

Battery Test

- Reattached smaller fan and got rid of buck converter
- Powered circuit with one lithium battery
- Observed temperatures in 3 spots
- Observe how long it runs

Temperature vs. Time

30

Test Summary

- System preforms better without buck converter and large fan
- Cool down time was 10 min
- Operational for 5 hours and 20 minutes
- Proper control system performance was achieved

Keeping temperature within range for 14 days

Double Battery Supply:

- Double battery operation time
- Increase opportunity for solar charging
- Only add 3 pounds to total design weight

Increase Solar Supply:

- Significant increase in generated power
- Reduce necessary charge time

Lessons Learned

- Condensation formed during long-term test
- Spray-foam used to seal; more testing needed
- Wool insulation easily fell
 - apart
- Not sterile or appropriate for medicine storage

Lessons Learned

Temperature Control Switch

Buck Converter

Temperature Control Switch

- Would break easily and often
- Sometimes temperature readings differed by 1°C - 2 °C

Buck Converter

- Overheats during long-term test
- Didn't improve system performance

- Prototyping should have begun a lot earlier
- Original CAD needed more

detail

 Didn't originally CAD extra components and wiring

Lessons Learned

- Needed a better method to collect data
- Data was lost multiple times during long term test

Project Summary

Completed Work

Getting device to target temperature range

Portability of the device

Continued Work

Complete a 14-day test

Electrical equipment

Power Consumption vs. Generation

Entrepreneurship

MEDI-KOOL FLORIDA STATE UNIVERSITY

ACC INVENTURE PRIZE

Contact Information

Zoe Dillehay zcd15@my.fsu.edu (407) 592-0313

Travis Amaral tja16@my.fsu.edu (646) 734-0137

Nick Georgevich ndg14b@my.fsu.edu (727) 410-3717

Keon Glass keon1.glass@famu.edu (850) 443-2507

Diego Mendoza dm17b@my.fsu.edu (973) 902-3837

Andrew Sayers aes17d@my.fsu.edu (813)-428-3112

