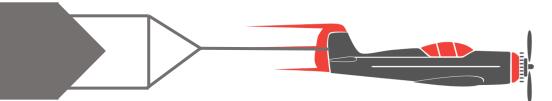


Team 508 SAE Aero Design: Geometric Integration EML 4551C

Team Members

Jacob Pifer Project Manager Materials Engineer CAD Engineer

Lauren Chin Controls Engineer Meeting Coordinator CAD Engineer



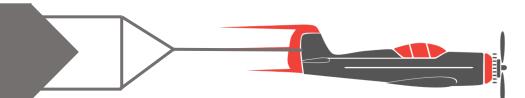
Joseph Figari Manufacturing Engineer Financial Coordinator CAD Engineer

Department of Mechanical Engineering

Sponsors

Florida Space Grand Consortium Financial Sponsor

Seminole RC Club Equipment Provider


Shayne McConomy, PhD Faculty Sponsor

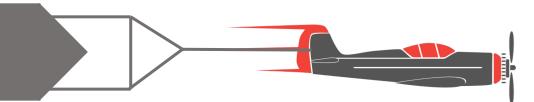
Advisors

Simone Hruda, PhD Faculty Advisor

Eric Adams Fablab Supervisor

4

Project Objective

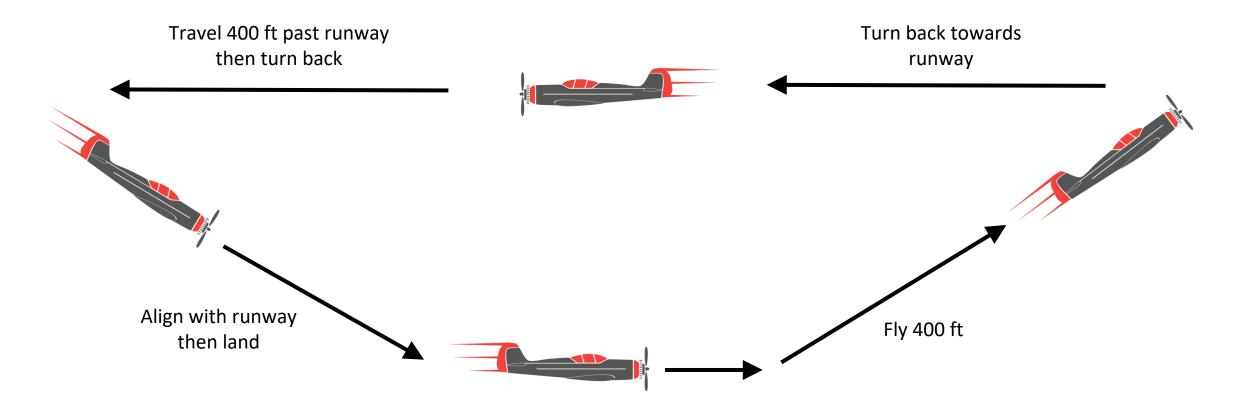

The objective of this project is to design and manufacture a 3D printed remote control airplane within the rules of the SAE Aero Design Competition

It will be able to take off, complete the needed flight path, and land while carrying the required cargo

Project Brief Summary

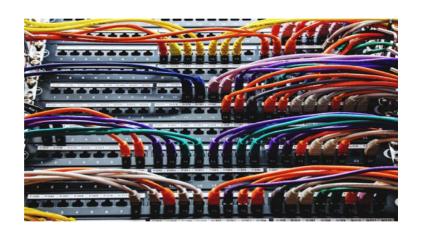
Competing in the Regular Class SAE Aero Design Competition


Plane is being built through additive manufacturing


Team 508 is overseeing the geometric design of the plane

Project Brief Summary

Targets & Metrics


- The SAE Competition Rulebook was used as a minimum guide in creating the targets and metrics
- Suggestions from Dr. McConomy were also used
- Our main goal is to design the most innovative plane at the competition

Joseph Figari

Critical Targets

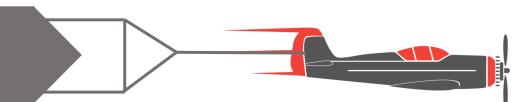
- Plane weighs less than 55 pounds
 - Ue lighter printer filament
 - Reduce amount of wiring in the plane
 - Reduce amount of screws and fasteners used on the plane

Joseph Figari

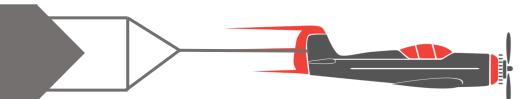
Department of Mechanical Engineering

10

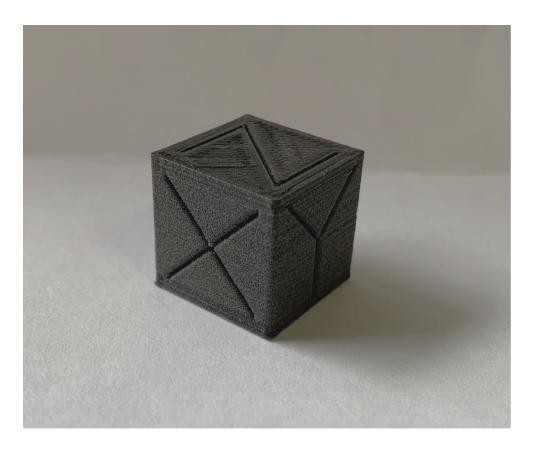

Joseph Figari


FAMU-FSU

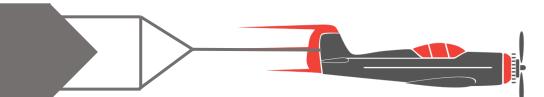
Engineering


Critical Targets

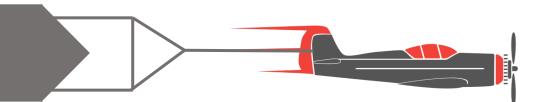
- The wingspan can not be greater than 120 inches
 - o Limited chord length
 - Aiming for 80 inch wingspan



Critical Targets

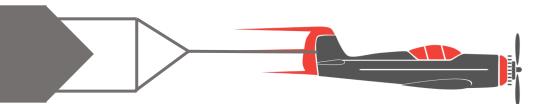

- The printing error will be ± 0.02 inches
 - Printing error can be measured using calibration cube

Joseph Figari

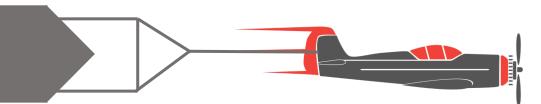

Critical Targets

- Landing gear can absorb a force of at least 22.8 lbf
 - Landing speed must be 1.3x the stall speed
 - Landing approach angle must be 15°

Joseph Figari

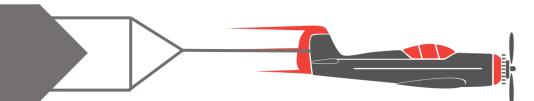


Traditional Tail

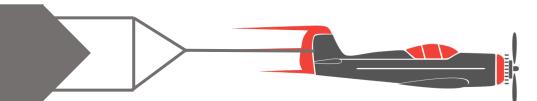

Traditional Tail

T-Tail

Traditional Tail

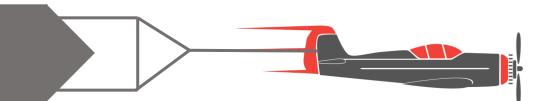

T-Tail

Wingless Tail



Pulling Propeller

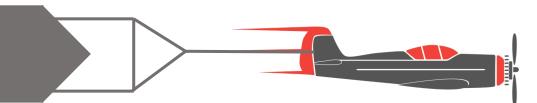
Pushing Propeller



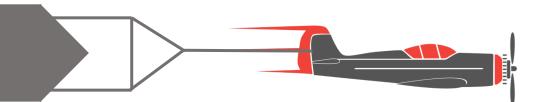
Rectangular



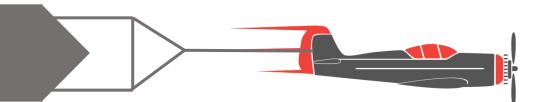
Rectangular


Elliptical

RectangularEllipticalTaperedImage: Descent restauranceImage: Descent restaurance</


Swept Back

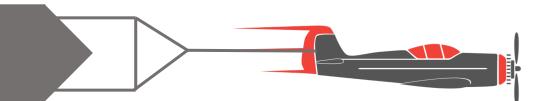
Swept Back



Delta



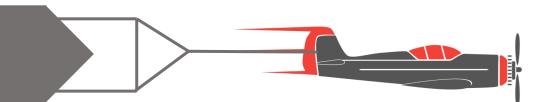
Flying Boat

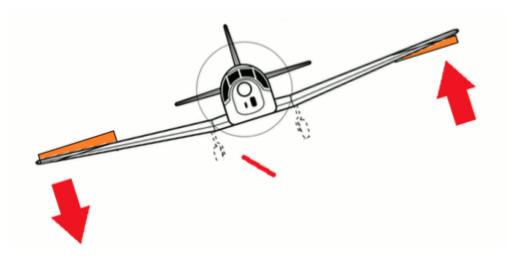

Flying Boat

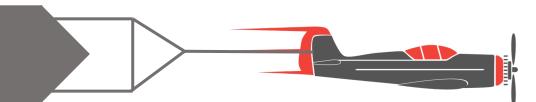
Subsonic

Flying Boat

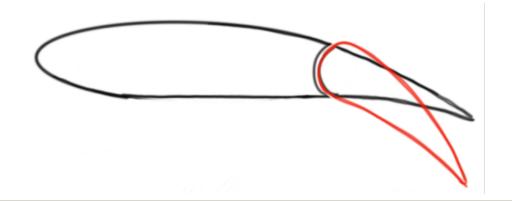
Subsonic

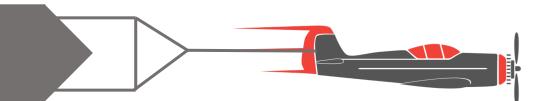

Boom



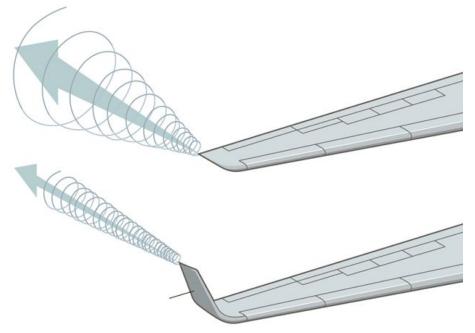

• Ailerons

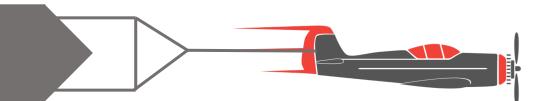
- Controls rotation about roll axis
- Trailing edge of each wing
- Typically 15-25% of total wing area



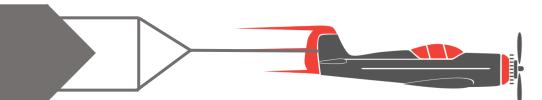

• Flaps

- Adjusts lift produced by wings
- o Reduces stall speed
- Trailing edge of each wing
- Typically 40% of total wingspan





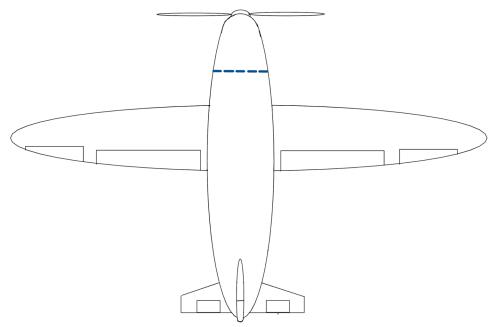
- Grantz Winglets
 - Reduces vortices produced by wings
 - Reduces overall drag of aircraft

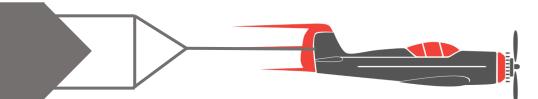


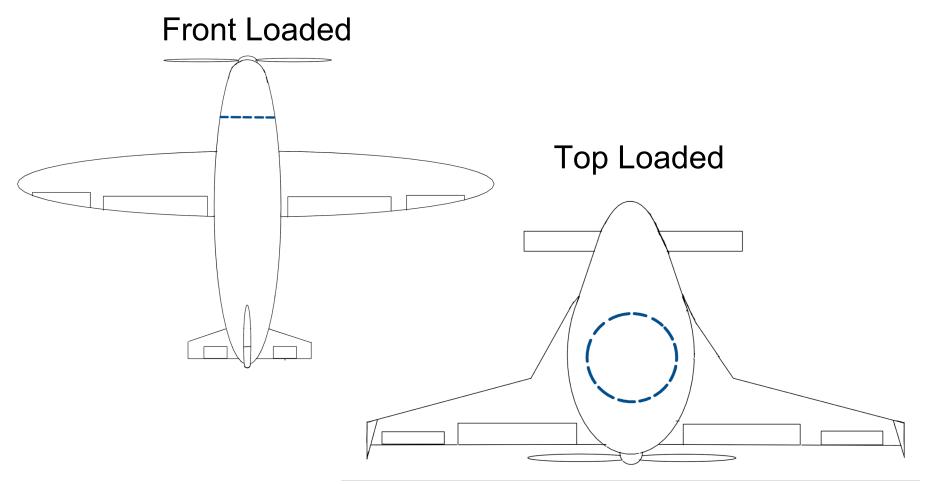
Tail Dragger



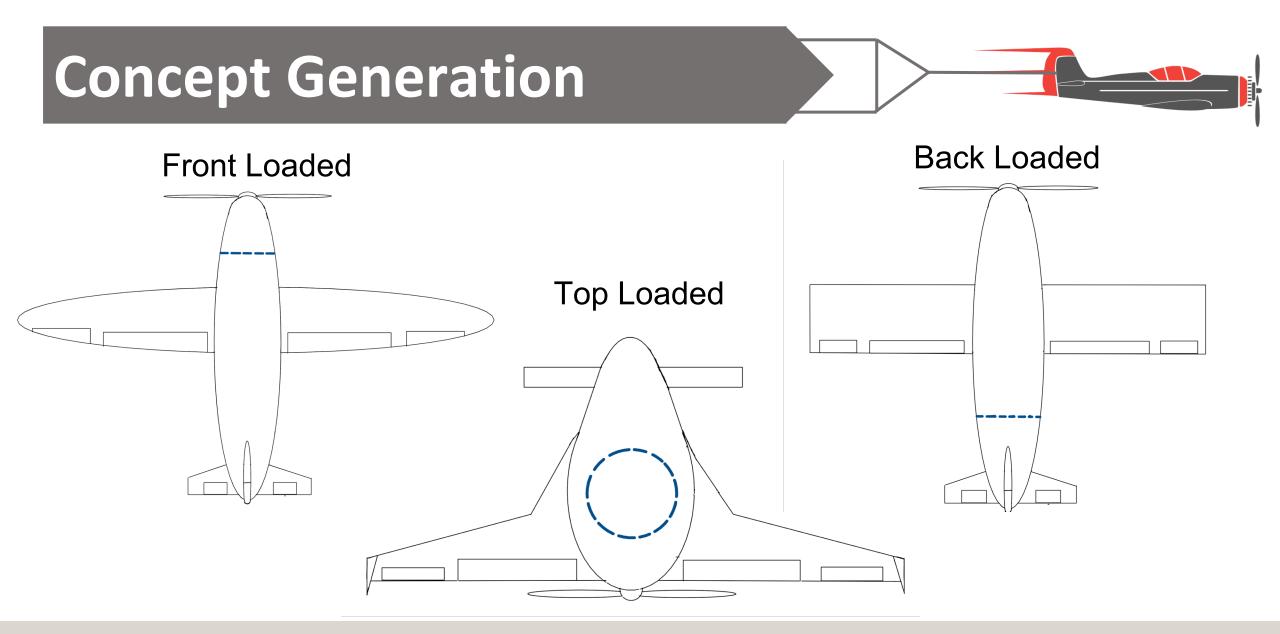
Tricycle



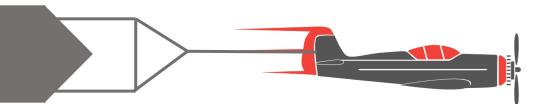




Front Loaded



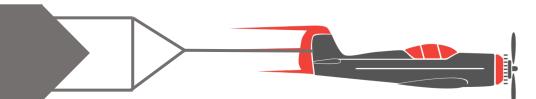
30


FAMU-FSU Engineering

Material Testing

Two possible printing filaments were chosen

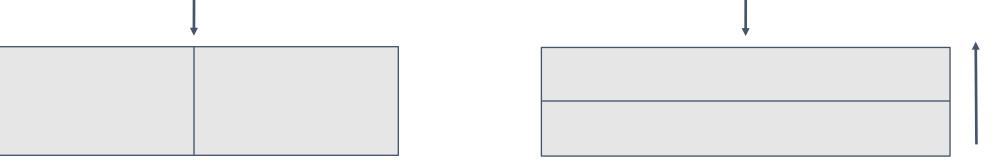
PLA (Polylactic Acid)


- o Prints accurately
- o Easy to get
- Heavy in regards to building aircraft
- LW-PLA (Light Weight Polylactic Acid)
 - Foaming action makes reduces density and weight
 - Harder to buy
 - Warping more likely than with normal PLA

Material Testing

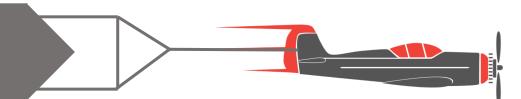
- Two main stresses the plane must endure
 - Flexural stress
 - Torsional stress
- Stresses measured in two ways
 - \circ Three point bending test
 - Tinius-Olsen torsion testing machine
- Specimens of each material needed to be tested to compare their stress behavior

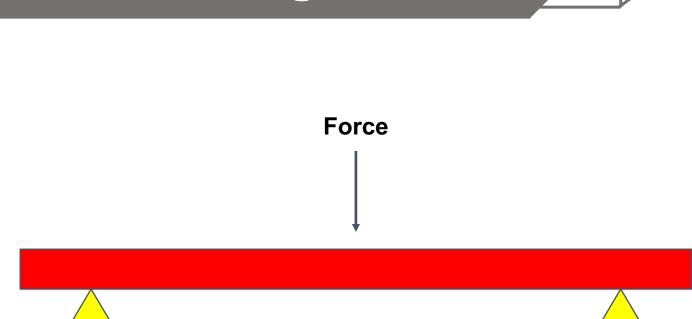
Three Point Bending Test


- ASTM D790 is the standard testing procedure
- Requires a 1/8" x 1/2" x 5" specimen
- Two specimens of each material were used
 - One printed "vertically" and one "horizontally"
 - Same print settings used for all samples
 - Printing direction is crucial when applying stress

Three Point Bending Test

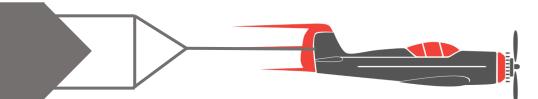
Force




Force

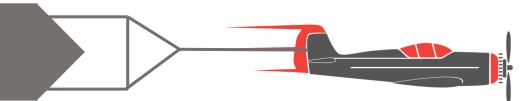
Printing Direction

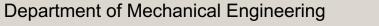
4"


Three Point Bending Test

Department of Mechanical Engineering

37

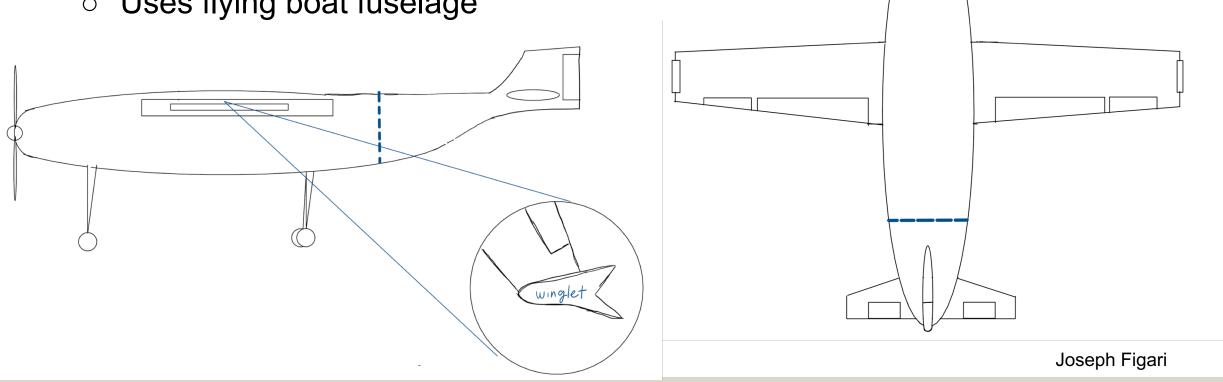

Three Point Bending Test



- Force is applied until failure occurs
 - \circ Fracture
 - Enough plastic deformation for specimen to slip from blocks
- Fracture stress is calculated with the formula:

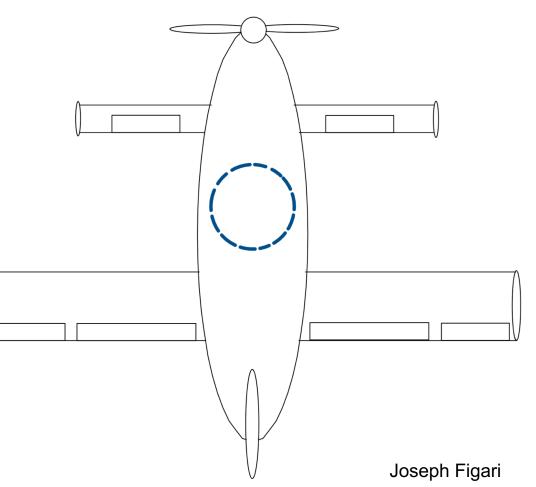
$$\sigma = \frac{3FL}{2wh^2}$$

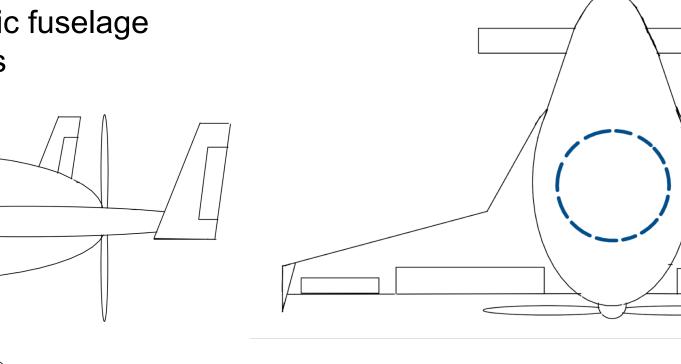
Three Point Bending Test

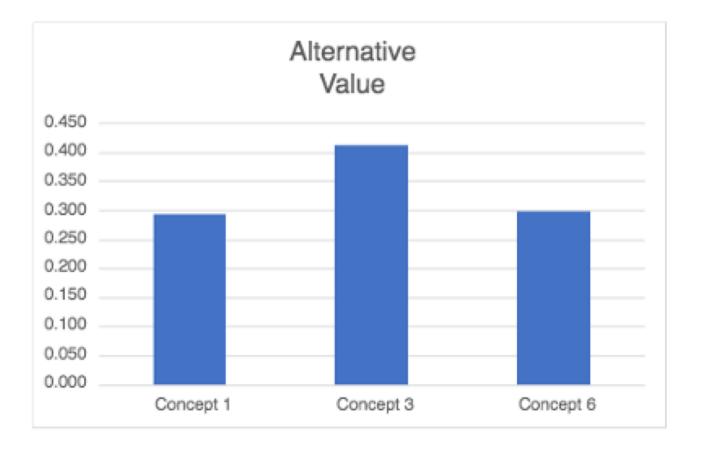


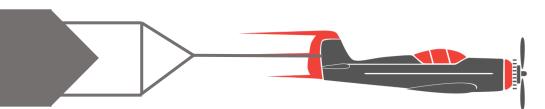
- House of quality chart shows the planes weight is the most important factor to our team
- Came up with 8 concepts for our final design
 - Collaborated with team 507 to come up with concepts

Joseph Figari

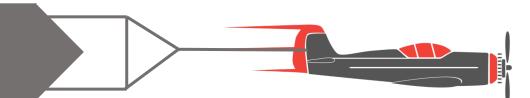

- Concept 1 is our groups first high fidelity concept
 - Includes ailerons and flaps
 - Uses flying boat fuselage


- Concept 3 was the last high fidelity concept
 - \circ $\,$ Includes flaps and ailerons $\,$
 - $\circ~$ Uses flying boat fuselage
 - Uses canards



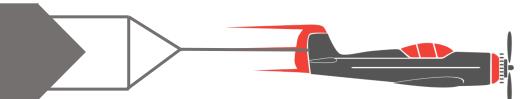

- Concept 6 was our third medium fidelity concept
 - $\circ~$ Includes flaps and ailerons
 - \circ Uses subsonic fuselage
 - Uses canards

Joseph Figari


- Group decides concept 3 is the design to go forward with
- Concept 3 meets most of the criteria we deem important

Joseph Figari

44



Future Work

Key Takeaways

References

Wing Configuration. (2020, May 28). Retrieved from https://en.wikipedia.org/wiki/Wing_configuration

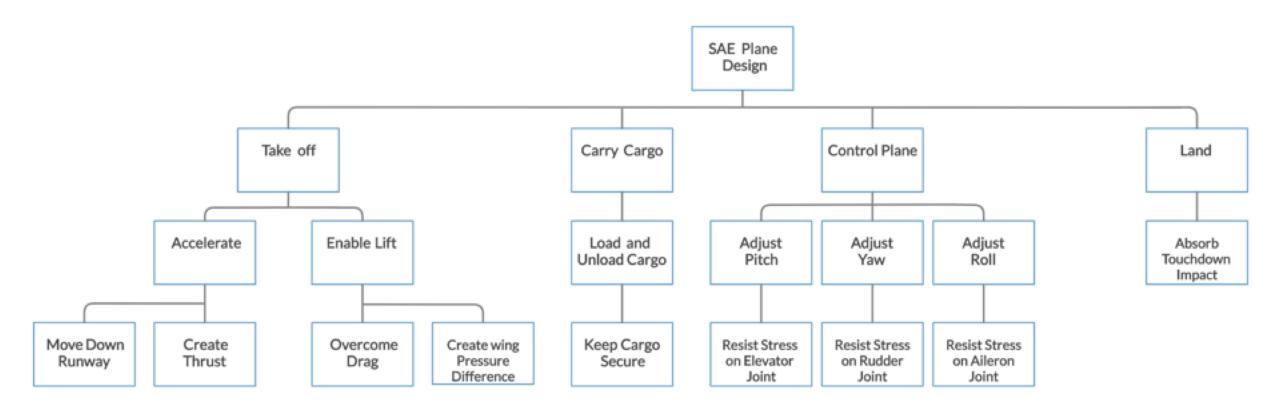
Tail Design. (n.d.). Retrieved from http://what-when-how.com/flight/tail-designs/

Lennon, A. (1996). R/C Model Aircraft Design. Air Age Media Inc.

Aircraft Structure. (n.d.). Retrieved from https://mae.ufl.edu/haftka/structures/FAA.pdf

Two Aileron Types. (2014, October, 30). Aviation Safety. Retrieved from https://www.aviationsafetymagazine.com/features/two-aileron-types/

Fuselage. (n.d.). Retrieved from https://studfile.net/preview/5375985/page:2/


Ozgen, S. (2015). *Landing Gear Sizing and Placement.* Middle East Technical University. Retrieved from http://www.ae.metu.edu.tr/~ae451/landing_gear.pdf

Backup Slides

Functional Decomposition

FAMU-FSU Engineering

50

Pairwise Chart

	1	2	3	4	5	6	7	8	9	10	11	12	Total
1. Material	-	0	0	0	0	0	0	1	0	0	0	0	1
2. Stability	1	-	0	0	0	1	1	1	1	0	0	1	6
3. CG in front of CP	1	1	I	1	1	1	1	1	1	1	1	1	10
4. Meet takeoff/landing requirements	1	1	0	I	1	1	1	0	1	0	0	1	7
5. Wingspan meets restrictions	1	1	0	0	I	1	1	1	1	0	0	1	7
6. Sufficient Power	1	0	0	0	0	-	0	0	1	1	1	1	5
7. Maneuverability	1	0	0	0	0	1	I	0	1	0	0	1	4
8. Light Weight	0	0	0	1	0	1	1	I	1	1	0	1	6
9. Touch-down Impact	1	0	0	0	0	0	0	0	I	0	0	1	2
10. Ground Controls	1	1	0	1	1	0	1	0	1	-	1	1	7
11. Carry the Minimum Cargo Load Required	1	1	0	1	1	0	1	1	1	0	-	1	8
12. Easy to Load/Unload	1	0	0	0	0	0	0	0	0	0	0	-	1
Total	10	5	0	4	4	6	7	5	9	4	3	10	-

Pairwise Chart: Concepts 3 and 12 were chosen as most important

Pugh Chart 1

					Con	cepts	;		
]	High	l	Medium				
Selection Criteria	2020 Competition Entry	1	2	3	4	5	6	7	8
Lift		+	+	+	-	I	+	•	-
Thrust		S	S	S	S	S	S	S	S
Control Surface Movement	DATUM	+	+	+	+	S	+	S	s
Weight		-	S	I	-	I	S	I	S
Joint Strength		+	+	+	+	+	+	+	+
# of pluses		3	3	3	2	1	3	1	1
# of S's		1	2	1	1	2	2	2	3
# of Minuses		1	0	1	2	2	0	1	1

Pugh Chart 1: Concept 2 was chosen as new datum

Pugh Chart 2

			Con	icepts
		Hi	gh	Medium
Selection Criteria	Concept 2	1	3	6
Lift		-	+	-
Thrust		S	S	S
Control Surface Movement	Datum	+	+	+
Weight		-	-	-
Joint Strength		S	S	S
# of pluses		1	2	1
# of S's		2	2	2
# of Minuses		2	1	2

Pugh Chart 2: Concept 3 chosen as final design

House of Quality

Units		lkf	lbf	lkf	degrees	ft/s	ft/s^2	degrees	seconds	lbs.	ft/s^2	psi	psi
Customer Requirements	Importance Weight Factor	Lift	Drag	Thrust	Max Angle of Attack	Stall Speed	Acceleration	Control Surface Movement	Loading/ Unloading Time	Weight	Deceleration	Joint Strength	Material Strength
1. Material	1		1							9		9	9
2. Stability	6	9	3	3				9					
3. CG in front of CP	10	9	3	9	9	9		9		3			
4. Meet takeoff/landing requirements	7	9	3	9			9				9		
5. Wingspan meets restrictions	7	9	3		3	3		1				3	3
6. Sufficient Power	5	1	1	3			3	3		1	1		
7. Maneuverability	4				3	3		9		3		3	1
8. Light Weight	6	3		3			3			9	3		
9. Touch-down Impact	2							3		3	9	9	9
10. Ground Controls	7							1					
11. Carry the Minimum Cargo Load Required	8	9		3			3		9	9	3	9	9
12. Easy to Load/Unload	1								9	3		3	
Raw Score		365	96	228	123	123	120	215	81	191	128	135	124
Relative Weight %		18.92	4.98	11.82	6.38	6.38	6.22	11.15	4.20	9.90	6.64	7.00	6.43
Rank Order		1	11	2	6	6	10	3	12	4	8	5	9

AHP Criteria Weights & Consistency

	Lift	Thrust	Control Surface Movement	Weight	Joint Strength
Lift	1.00	0.33	3.00	9.00	9.00
Thrust	3.00	1.00	3.00	9.00	9.00
Control Surface Movement	0.33	0.33	1.00	5.00	3.00
Weight	0.11	0.11	0.20	1.00	0.11
Joint Strength	0.11	0.11	0.33	9.00	1.00
Sum	4.56	1.89	7.53	33.00	22.11

λ	CI	CR
Average	Consistency	Consistency
Consistency	Index	Ratio
6.053	0.027	0.051

Lift Matrix

{Ws}=[C]{W} Weighted Sum Vector	{W} Criteria Weights	Con={Ws}/{W} Consistency Vector
0.731	0.243	3.005
2.015	0.669	3.014
0.265	0.088	3.002

λ	CI	CR
Average	Consistency	Consistency
Consistency	Index	Ratio
3.00703	0.00352	

-

Thrust Matrix

{Ws}=[C]{W} Weighted Sum Vector	{W} Criteria Weights	Con={Ws}/{W} Consistency Vector
1.000	0.333	3.000
1.000	0.333	3.000
1.000	0.333	3.000

λ	CI	CR
Average	Consistency	Consistency
Consistency	Index	Ratio
3.00000	0.00000	

Control Matrix

{Ws}=[C]{W} Weighted Sum Vector	{W} Criteria Weights	Con={Ws}/{W} Consistency Vector
0.697	0.236	2.959
0.320	0.110	2.898
1.912	0.654	2.924

λ	CI	CR
Average	Consistency	Consistency
Consistency	Index	Ratio
2.92716	-0.03642	-0.07004

 Γ

 $\mathcal{L}^{(n)}$

Weight Matrix

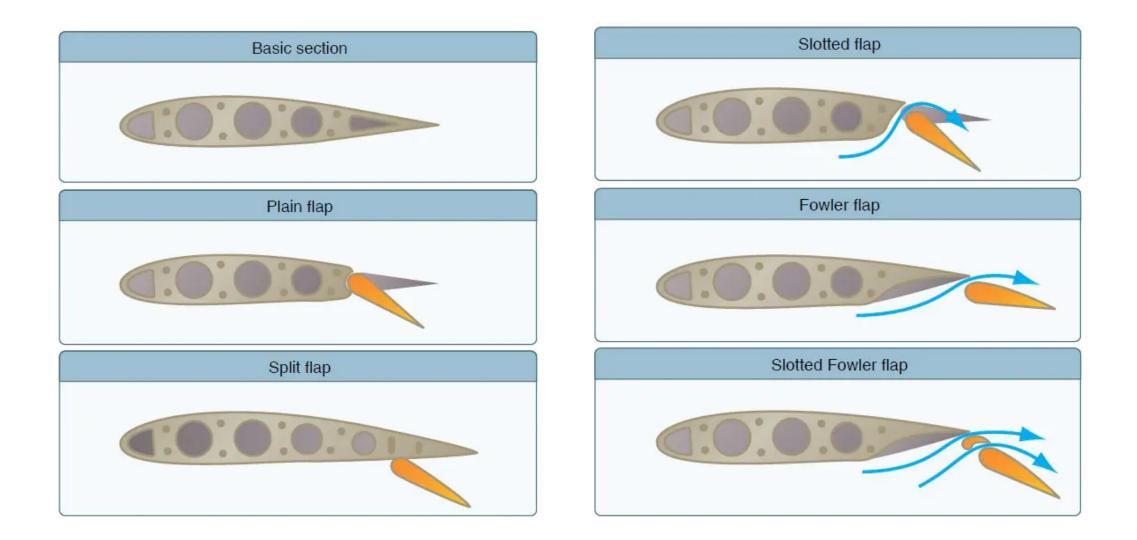
{Ws}=[C]{W} Weighted Sum Vector	{W} Criteria Weights	Con={Ws}/{W} Consistency Vector
0.790	0.260	3.033
1.946	0.633	3.072
0.320	0.106	3.011

λ	CI	CR
Average	Consistency	Consistency
Consistency	Index	Ratio
3.03871	0.01936	

Joint Strength Matrix

{Ws}=[C]{W} Weighted Sum Vector	{W} Criteria Weights	Con={Ws}/{W} Consistency Vector
1.000	0.333	3.000
1.000	0.333	3.000
1.000	0.333	3.000

λ	CI	CR
Average	Consistency	Consistency
Consistency	Index	Ratio
3.00000	0.00000	0.00000


Final Rating Matrix

Selection Criteria	Concept 1	Concept 3	Concept 6
Lift	0.243	0.669	0.088
Thrust	0.333	0.333	0.333
Control Surface Movement	0.236	0.110	0.654
Weight	0.260	0.633	0.106
Joint Strength	0.333	0.333	0.333

Concept	Alternative Value
Concept 1	0.292
Concept 3	0.411
Concept 6	0.297

F

