Team 517 Sample On-Boarding and Orientation

February 6, 2020

Justin Bomwell, Victor Prado, Kalin Burnside Ryan Dingman, Joshua Jones, Matthew Schrold

Senior Design Team 517

Justin Bomwell Software Engineer Victor Prado Design Engineer Kalin Burnside Power Systems Engineer Ryan Dingman Controls Engineer

Joshua Jones Robotics Engineer Matthew Schrold Test Engineer

Special Thanks

Dr. Camilo Ordóñez Advisor

Justin Bomwell

Objective

The objective of this project is for our device to onboard a sample from the environment, manipulate it so that all necessary tests on the sample can be performed, then store acceptable samples

Project Context

What are we making?

Our full scope includes bringing the sample onboard the rover, orienting it to show the surface to scientific sensors, and then storing the sample on the rover

We're designing all 3 parts but are only building the orientation component due to time and budget constraints

Justin Bomwell

Department of Mechanical Engineering

Research – Thermal Range

$\sum_{i=1}^{n}$	-110 C	35 C	Concerns of du transition for B	ictile/brittle CC steels.
Material	Yield Strength [MPa]	Coefficent of Thermal Expansion [1/K]*10 ⁻⁶	Density [kg/m³]	
Steel	350+	10.8 - 12.5	7850	
Stainless Steel	215	9.9 - 17.3	7480 - 8000	
Aluminum	310	21 - 24	2712	
Aluminum 2024	324	24.7	2780	
Aluminum 6061	276	25.2	2720	
Magnesium AZ31B	260	26	1770	Victor Pra

rado

Research – Torque Calculations

With two minimum points of contact from the end effector, the force required to hold the sample without losing grip:

Output torque requirements are determined from the minimum force needed to hold the sample:

Required contact force and output torque were computed using coefficients of static friction comparable to the fingertips and rock sample, maximum sample mass, gravity, and a factor of safety:

F ≥ 18.9 N T_o ≥ 0.41 Nm

 $F \ge \frac{mg}{2\mu_s}$

 $T_o \ge Fr_pFoS$

Victor Prado

Research – Torque Calculations

With two minimum points of contact from the end effector, the force required to hold the sample without losing grip:

Output torque requirements are determined from the minimum force needed to hold the sample:

Required contact force and output torque were computed using coefficients of static friction comparable to the fingertips and rock sample, maximum sample mass, gravity, and a factor of safety:

F ≥ 7.1 N T_o ≥ 0.15 Nm

FAMU-FSU

Engineering

 $F \ge \frac{mg}{2\mu_s}$

 $T_o \ge Fr_pFoS$

Victor Prado

End Effector: Overview

Victor Prado

Chain drive will be used in place of belts to reduce tension and wear issues

One motor is used to drive extension and contraction of 2 fingers which reduces weight

Victor Prado

Chains transfer power to the lower section of the end effector

Bevel gears split the motor's power two ways

Victor Prado

Chain drive will be used in place of belts to reduce tension and wear issues

Bevel gear, pinion, and chain pulley sizes will be selected once further torque analysis is complete One motor is used to drive extension and contraction of 2 fingers which reduces weight

"Accordion" seals will be used around the back and front of the finger to reduce the need for complex rotational seals

Victor Prado

Rack and pinion transforms rotational motion to translational

Chains transfer power to the lower section of the end effector

Motor mounted to rear of finger, "flat" motor may be selected to reduce weight and size

Pliable finger tip deforms to ensure good grip of sample

Victor Prado

14

Rotation Control

Rotation Control

Steps to Rotating Point of Interest to Face Sensor

Rotate sample incrementally about 1st axis of rotation

Continuously perform rotation transformation calculations on Point of Interest

Stop rotation about 1^{st} axis when Point of Interest intersects XZ-plane (or when y = 0)

Second pair of fingers extends until it contacts sample

First pair of fingers then retracts to allow for 2nd rotation

Rotate sample about 2^{nd} axis of rotation until Point of Interest intersects YZ-plane (or when x = 0)

Rotation Control

Steps to Rotating Point of Interest to Face Sensor

Rotate sample incrementally about 1st axis of rotation

Continuously perform rotation transformation calculations on Point of Interest

Stop rotation about 1st axis when Point of Interest intersects XZ-plane (or when y = 0)

Second pair of fingers extends until it contacts sample

First pair of fingers then retracts to allow for 2nd rotation

Rotate sample about 2^{nd} axis of rotation until Point of Interest intersects YZ-plane (or when x = 0)

Electrical

Layout

DC-DC converters can be used to lower the voltage from the source to supply power to lower voltage motor drivers

Using LDO's and direct connection from the motor driver to the source are also possible depending on the motor driver requirements

The communication channels from the motor drivers will be attached to a microcontroller

Future Work

Finalize End Effector Design	Order Parts	Finalize Other Designs	End Effector Prototype
 Complete CAD Complete drawings for machined parts Decide on materials for each part 	 Complete bill of materials Determine where to order from Place orders for all parts 	 Finalize arm design, CAD and drawings Finalize storage design, CAD, and drawings Initial programming structure Initial wiring diagrams 	 Assemble final build Finalize wiring Finalize programming Troubleshoot final build
2/3/2020 – 2/17/2020	2/17/2020 – 2/21/2020	2/21/2020 – 3/6/2020	After parts come in – Senior Design Day

Team 517 Sample On-Boarding and Orientation

February 6, 2020

Research

Detailed Design

Justin Bomwell

Victor Prado

Ryan Dingman

Kalin Burnside

Joshua Jones

Matthew Schrold

Future Work

