

Virtual Design Review 2

Team 502 Retractable Storage Rack for Inert Atmosphere Glove Box

Jacqueline Matthews Micheal Rodino Evan Ryan

Team Introductions

Jacqueline Matthews Project Manager/ Mechanical Engineer

Micheal Rodino Manufacturing Engineer

Evan Ryan Design Engineer

2

Sponsor and Advisor

Sponsor: Bill Starch-Applied Super Conductivity Center (ASC)

Advisor: Dr. Eric Hellstrom

Jacqueline Matthews

Objective

The objective of this project is to create fully functional retractable racks that will be implemented into an inert atmosphere glove box. The retractable racks will be used to store materials, tools, scales, etc., inside the glove box, creating an organized, uncluttered working area for the user.

Jacqueline Matthews

Department of Mechanical Engineering

4

Inert Atmosphere Glove Box

- Controlled atmosphere apparatus which uses inert gas to provide a stable and sterile work environment.
- User reaches into box through gloves and conducts experiment/ test.
- Can manipulate air properties and allow for more accurate testing.

Jacqueline Matthews

Past Work

Project Scope

- Key goals
 - Retractable storage racks
 - Optimize storage space
 - Unrestricted work area
 - Able to be used by one user
 - Easily removable
- Markets/Stakeholders
 - Applied Superconductivity Center (ASC) and its graduate students
 - FAMU and FSU chemistry departments
 - Glove box manufacturers

Functional Decomposition

- Provides extra storage
- Creates an open work space
- Retracts back to original location

Jacqueline Matthews

Work Completed after VDR1

- Targets and Metrics
- Concept Generation
- Concept Selection
- Bill of Materials

Jacqueline Matthews

7

Targets and Metrics

Category	Targets	Metrics
	Cost	Budget of \$2,000 USD
	Dimension	7in x 10in x14in
	Weight	~10 lbs
Quantitative	Carrying	~40 lbs
	Capacity	
	Longevity	The life of the glovebox (~40-50
		years)
	Functionality	Surface area gained by storage
		solution (1ft^2)
	Wall Support	Screw fasteners or magnets
Qualitative	Usability	Storage solution within the back of the
		glovebox wall for easy reach (1.5ft)
	Material	Stainless Steel and/or Aluminum

Jacqueline Matthews

Concept Generation

- Brainstorming, crap shoot, anti-problem, and a morphological chart to create 100 different design ideas.
- 3 High Fidelity Concepts and 5 Medium Fidelity Concepts were selected based on the satisfaction of the customer needs and key goals of the project.

Feature	Option 1	Option 2	Option 3	Option 4
Support	Free Standing	Hanging	Screwed	Tracks
Movement	Spin	Pull	Swing	Stationary
Location	Wall	Ceiling	Back	Floor

High Fidelity Concepts

Concept 1	The rotating shelves (Lazy Susan) will be attached to the box using rails and will be able to swing out of its position in the corner and forward to the user, where it can be rotated 360 degrees.
Concept 2	The Accordion style rack will sit against the back of the box and can be pulled forward towards the user on an extending wall support. A box or platform will be used to store the experiment materials and this area can be pushed back out of the way after use.
Concept 3	A four-bar linkage could be used to create a swinging platform that pulls outwards and towards the user from the corners which are out of reach. When the rack is fully extended it will lock into a forward storage area that holds it securely to the wall.

High Fidelity Concepts

Concept 1	The rotating shelves (Lazy Susan) will be attached to the box using rails and will be able to swing out of its position in the corner and forward to the user, where it can be rotated 360 degrees.
Concept 2	The Accordion style rack will sit against the back of the box and can be pulled forward towards the user on an extending wall support. A box or platform will be used to store the experiment materials and this area can be pushed back out of the way after use.
Concept 3	A four-bar linkage could be used to create a swinging platform that pulls outwards and towards the user from the corners which are out of reach. When the rack is fully extended it will lock into a forward storage area that holds it securely to the wall.

High Fidelity Concepts

Concept 1	The rotating shelves (Lazy Susan) will be attached to the box using rails and will be able to swing out of its position in the corner and forward to the user, where it can be rotated 360 degrees.
Concept 2	The Accordion style rack will sit against the back of the box and can be pulled forward towards the user on an extending wall support. A box or platform will be used to store the experiment materials and this area can be pushed back out of the way after use.
Concept 3	A four-bar linkage could be used to create a swinging platform that pulls outwards and towards the user from the corners which are out of reach. When the rack is fully extended it will lock into a forward storage area that holds it securely to the wall.

Concept 4	The fold out wall design consists of a plate pressed up against the wall that can be folded out and provide an extra platform for lab materials
Concept 5	The telescope style extending rack uses increasingly small cylinders to pull the shelf out towards the user where materials can be stored and then pushed back against the wall.
Concept 6	The pegboard shelf concept takes a typical pegboard found in many workshops to hold tools and materials, and adapts it to create a pegboard that can be utilized in the inert atmosphere glovebox.
Concept 7	A hide-able rack that is able to be opened by pressing a button is a concept that was created for users with high ceiling spaces inside their gloveboxes.
Concept 8	A window shutter design could be implemented using several elevated shelves that can be slid out of the wall and into a lab platform position from a shutter mechanism.

Concept 4	The fold out wall design consists of a plate pressed up against the wall that can be folded out and provide an extra platform for lab materials
Concept 5	The telescope style extending rack uses increasingly small cylinders to pull the shelf out towards the user where materials can be stored and then pushed back against the wall.
Concept 6	The pegboard shelf concept takes a typical pegboard found in many workshops to hold tools and materials, and adapts it to create a pegboard that can be utilized in the inert atmosphere glovebox.
Concept 7	A hide-able rack that is able to be opened by pressing a button is a concept that was created for users with high ceiling spaces inside their gloveboxes.
Concept 8	A window shutter design could be implemented using several elevated shelves that can be slid out of the wall and into a lab platform position from a shutter mechanism.

Concept 4	The fold out wall design consists of a plate pressed up against the wall that can be folded out and provide an extra platform for lab materials
Concept 5	The telescope style extending rack uses increasingly small cylinders to pull the shelf out towards the user where materials can be stored and then pushed back against the wall.
Concept 6	The pegboard shelf concept takes a typical pegboard found in many workshops to hold tools and materials, and adapts it to create a pegboard that can be utilized in the inert atmosphere glovebox.
Concept 7	A hide-able rack that is able to be opened by pressing a button is a concept that was created for users with high ceiling spaces inside their gloveboxes.
Concept 8	A window shutter design could be implemented using several elevated shelves that can be slid out of the wall and into a lab platform position from a shutter mechanism.

Concept 4	The fold out wall design consists of a plate pressed up against the wall that can be folded out and provide an extra platform for lab materials
Concept 5	The telescope style extending rack uses increasingly small cylinders to pull the shelf out towards the user where materials can be stored and then pushed back against the wall.
Concept 6	The pegboard shelf concept takes a typical pegboard found in many workshops to hold tools and materials, and adapts it to create a pegboard that can be utilized in the inert atmosphere glovebox.
Concept 7	A hide-able rack that is able to be opened by pressing a button is a concept that was created for users with high ceiling spaces inside their gloveboxes.
Concept 8	A window shutter design could be implemented using several elevated shelves that can be slid out of the wall and into a lab platform position from a shutter mechanism.

Concept 4	The fold out wall design consists of a plate pressed up against the wall that can be folded out and provide an extra platform for lab materials
Concept 5	The telescope style extending rack uses increasingly small cylinders to pull the shelf out towards the user where materials can be stored and then pushed back against the wall.
Concept 6	The pegboard shelf concept takes a typical pegboard found in many workshops to hold tools and materials, and adapts it to create a pegboard that can be utilized in the inert atmosphere glovebox.
Concept 7	A hide-able rack that is able to be opened by pressing a button is a concept that was created for users with high ceiling spaces inside their gloveboxes.
Concept 8	A window shutter design could be implemented using several elevated shelves that can be slid out of the wall and into a lab platform position from a shutter mechanism.

Concept Selection

- House of Quality
- Pugh Chart
- Criteria Comparison Matrix
- Normalized Criteria Comparison Matrix
- Consistency Check
- Consistency Index and Consistency Ratio Summa

Micheal Rodino

18

House of Quality

 Takes engineering characteristics and relates them to customer requirements by ranking them based on importance

						Engineerin	g Charact	eristics			
Improvement	Directio	m	t	Ť	T	Ť	Ť	Ť	†	1	1
Unit	s		Ib.	psi.	n/a	n/a	in^3.	in^2.	n/a	min.	lb./lb-ft.
Customer Requirer	ments	Importance Weight Factor	Weight Held	Material Rigidity	Corrosion Resistant	Medanism Simplicity	Storage Volume Increase	Surface Area Increase	Ease of Use	Time to Install	Force or Torque Required to Use
Glovebox Lifetime		1	1	9	9	3			1		1
Retractable		4	3			9					1
More usuable storage space		3					9	9	3		
Glovebox active inst	allation	4		3		1				9	
Non-Obtrusive		3					3	3	3	6	3
Usable with glove	s on	5							9	6	9
Compatability with multiple glovebox designs		5	1	1	1	3	3	3		1	1
	aw Score lative We	ight %	18 4.14746544	26 5.99078	14 3.22581	58 13.3641	and the second se	51 11.7512	and the second se	89 20.5069	64 14.7465
	Rank Or	rder	9	7	8	4	5	5	3	1	2

PureLab HE2GB

Micheal Rodino

Department of Mechanical Engineering

Pugh Chart with PureLab HE2GB as Datum

					Cone	cepts			
Engineering Characteristics Weight Held Material Rigidity	Storage Solution in PureLab HE2GB	1	2	3	4	5	6	7	8
Weight Held		+	s		+		+		S
Material Rigidity		s	S	S	S	S	S	S	S
Corrosion Resistant		S	s	S	s	s	S	S	S
Mechanism Simplicity			+	+	-	-	+	-	-
Storage Volume Increase	Storage Volume		+	-	4	+	20	+	-
Surface Area Increase	DATUM	+	+	•	+	+			+
Ease of Use				-	S		5		
Time to Install	õ	<u></u>	+	43	12	1 i i i i i i i i i i i i i i i i i i i	S	- 23	-
Force or Torque Required to Use	-			-	-		+	-	
Positive		3	2	0	2	2	3	1	1
Negative		4	4	7	4	5	2	6	5
Satisfactory		2	3	2	3	2	4	2	3

Pugh Chart with Concept 1 as Datum

			Cond	cepts	
Engineering Characteristics	Concept 1: Lazy Susan	2	4	5	6
Weight Held		-	-		+
Material Rigidity		S	S	S	S
Corrosion Resistant		S	S	S	S
Mechanism Simplicity			+	-	+
Storage Volume Increase	DATUM	+	-	+	-
Surface Area Increase	D	-	-	-	-
Ease of Use		-	S	-	+
Time to Install	õ	S	+	S	+
Force or Torque Required to Use	_	s	-	S	s
Positive	[1	2	1	4
Negative		4	4	4	2
Satisfactory		4	3	4	3

Criteria Comparison Matrix

Selection Criteria	Time to Install	Force or Torque Required to Use	Ease of Use	Mechanism Simplicity	Storage Volume Increase	Surface Area Increase	Material Rigidity	Corrosion Resistance	Weight Held
Time to Install	1	7	7	3	7	7	3	5	7
Force or Torque Required to Use	0.14	1	3	0.33	5	5	1	1	7
Ease of Use	0.14	0.33	1	0.2	1	1	0.33	0.33	5
Mechanism Simplicity	0.33	3	5	1	5	5	3	1	7
Storage Volume Increase	0.14	0.2	1	0.2	1	1	0.2	0.2	3
Surface Area Increase	0.14	0.2	1	0.2	1	1	0.2	0.2	5
Material Rigidity	0.33	1	3	0.33	5	5	1	1	5
Corrosion Resistance	0.2	1	3	1	5	5	1	1	5
Weight Held	0.14	0.14	0.2	0.14	0.33	0.2	0.2	0.2	1
Sum	2.56	13.87	24.2	6.4	30.33	30.2	9.93	9.93	45

 Takes selection criteria and weights each one accordingly.

Normalized Criteria Comparison Matrix

Ease of Use Mechanism Weight Held Surface Are Simplicity Storage Resistance Corrosion Weights Increase Increase Rigidity Time to Force or Torque Material Criteria Required Install Use Selection Criteria 0.28926 0.46875 0.23079 0.23179 0.30211 0.50352 0.15556 0.3419 Time to Install 0.39063 0.50468637 Force or Torque 0.05469 0.07209805 0.12397 0.05156 0.16485 0.16556 0.1007 0.1007 0.15556 0.10997 Required to Use Ease of Use 0.05469 0.02379236 0.04132 0.03125 0.03297 0.03311 0.03323 0.03323 0.111111 0.04386 Mechanism Simplicity 0.12891 0.21629416 0.20661 0.15625 0.16485 0.16556 0.30211 0.1007 0.15556 0.17743 Storage Volume 0.05469 0.01441961 0.04132 0.03125 0.03297 0.03311 0.02014 0.02014 0.06667 0.03497 Increase Surface Area Increase 0.05469 0.01441961 0.04132 0.03125 0.03297 0.03311 0.02014 0.02014 0.111111 0.03991 Material Rigidity 0.07209805 0.12397 0.05156 0.16485 0.16556 0.1007 0.1007 0.111111 0.11327 0.12891 Corrosion Resistance 0.12397 0.15625 0.16485 0.16556 0.1007 0.07813 0.07209805 0.1007 0.111111 0.11926 Weight Held 0.01009373 0.00826 0.02188 0.01088 0.00662 0.02014 0.02014 0.02222 0.05469 0.01944 Sum

 Normalized criteria comparison matrix by dividing the sum of the previous criteria.

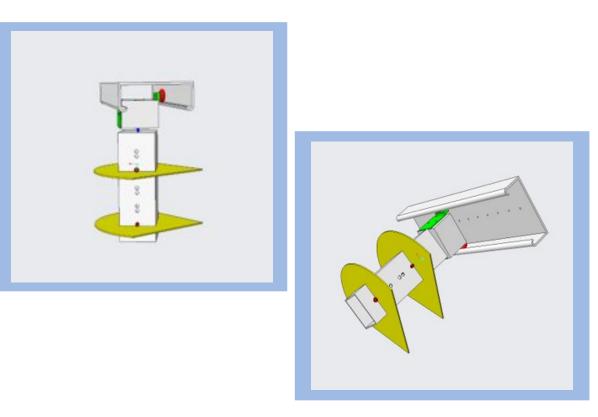
Consistency Check

- Criteria weights found from the normalized criteria comparison matrix table.
- The weighted sum vector uses matrix multiplication between the normalized table [C] and criteria weights{W}.

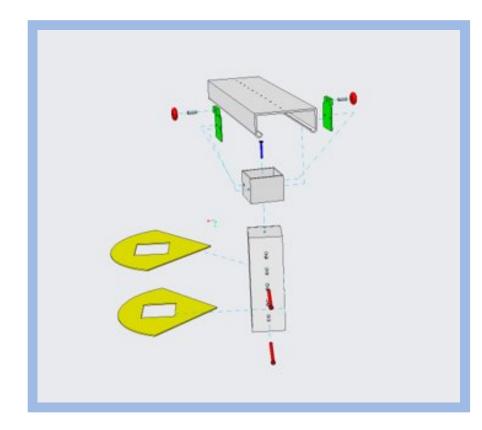
Weighted Sum Vector{Ws} = [C]{W}	Criteria Weights {W}	${Cons} = {Ws}./{W}$
3.547259	0.341899	10.375166
1.0909151	0.109966	9.920476
0.41228911	0.043857	9.40076
1.80894867	0.177428	10.195396
0.32889146	0.034968	9.405498
0.36776346	0.039906	9.215743
1.11700391	0.113275	9.860992
1.1914338	0.119264	9.989886
0.18233686	0.019436	9.381398

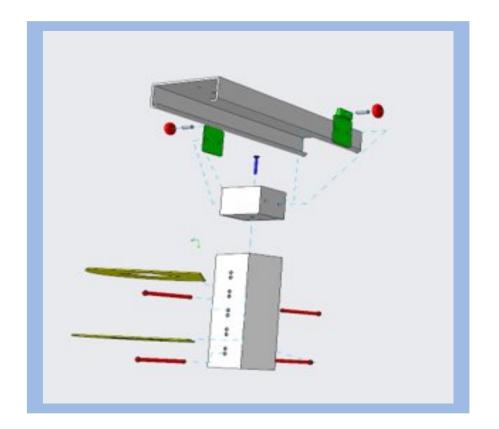
Consistency Index and Consistency Ratio Summary

- Consistency values show that the values were accurate because the Consistency Ratio was below the threshold of 0.1.
- λ comes from the average of the cons column from the consistency check.


Random Index Value	1.45		
λ	9.74948		
Number of Engineering Criteria	9		
Consistency Index	0.093684954		
Consistency Ratio	0.064610313		

Final Concept


Concept 1: The Lazy Susan


- Final selected design concept:
 - Provides the most useable space without compromising experimental space
 - Combines rotational and linear movements to have a retractable and rotating shelving system
 - Shelves are held up by pins to allow them to change the position or add more shelves
 - Added concept: Having one shelf act as a pegboard to put tools into
 - Hangs from the ceiling to reduce wasted floor space

Final Concept Exploded View

Micheal Rodino

Department of Mechanical Engineering

Future Work

- Risk Assessment
- Spring Project Plan
- Prototype

Acknowledgments

- Bill Starch, Chongin Pak, and Arland Ohrt for demonstrating the use of the glovebox and giving us a decommissioned box for prototyping.
- Dr. Hellstrom for his helpful expertise on the project.
- ASC for sponsoring the project and allowing us to work on it.

Cleartech. "Inert atmospheres glove box." *Cleatech.com*, 2018, 30 September 2019. <u>https://www.cleatech.com/inert-atmosphere-glove-box/</u>

Inerttechnology, "Gloveboxes." *Inerttechnology.com*, 30 September 2019 https://www.inerttechnology.com/gloveboxes/

Questions

FAMU-FSU Engineering

32

Department of Mechanical Engineering

Embodiment

Upcoming Presenter's Name

33

Department of Mechanical Engineering

34

Manufacturing

Upcoming Presenter's Name

35

Department of Mechanical Engineering

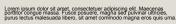
Testing

Upcoming Presenter's Name

Project Management

Most Important Points

- 1. The quick brown fox jumps over the lazy dog.
- 2. The quick brown fox jumps over the lazy dog.
- 3. The quick brown fox jumps over the lazy dog.
- 4. The quick brown fox jumps over the lazy dog.
- 5. The quick brown fox jumps over the lazy dog.
- 6. The quick brown fox jumps over the lazy dog.


Lessons Learned

41

Department of Mechanical Engineering

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas portitor congue massa. Fusce posuere, manha sed pulvinar ultrices, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas portitor congue massa. Fusce posuere, magha sed pulvinar ultrices, purus lectus malesuada libero, sit amet continodo magna eros quis uma

Questions (be sure to design your own)

Backup Slides

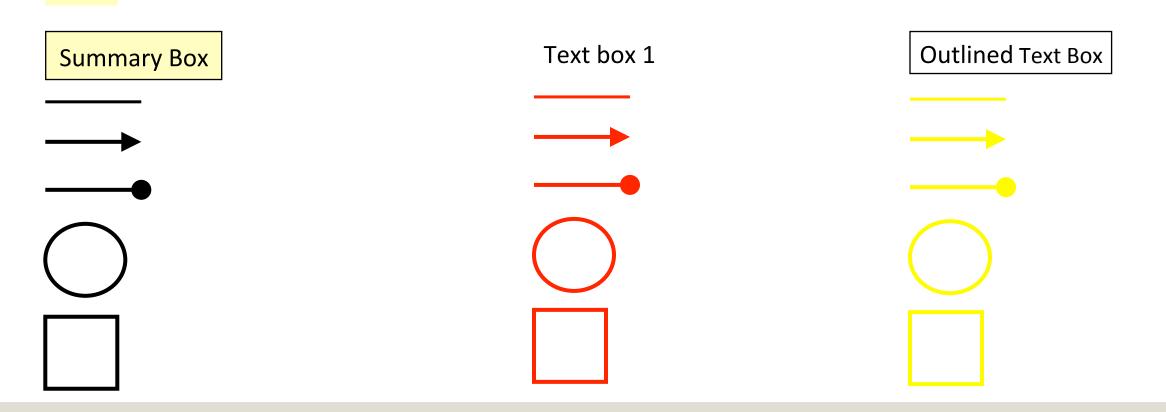
Functional Decomp Backup

FAMU-FSU Engineering

45

Concept Selection Backup

Detailed Math Backup


FAMU-FSU Engineering

51

Department of Mechanical Engineering

Approved Logos

FAMU-FSU College of Engineering

FAMU-FSU

Engineering

Color Palette

APA Tables

Category 1	Category 2	Category 3	Category 4	Category 5
ltem 1				
ltem 2				
Item 3				
Item 4				

Category 1	Category 2		Category 3	
	subcategory 1	subcategory 2	subcategory 1	subcategory 2
ltem 1				
ltem 2				
Item 3				
ltem 4				

