

# **Improved Mobility Device**

Team 526 - DR6 April 4th, 2019





Department of Mechanical Engineering

#### **Team Introductions**







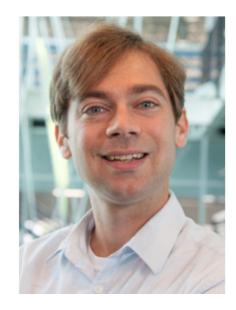


Michael Beech Design Engineer

Dionsse Carti Systems Engineer

Chase Craft Material Engineer

Leah Fiedler *Project Manager* 




#### **Sponsor and Advisor**





<u>Sponsor</u> Michael Devine, Ph.D.



<u>Advisor</u> Christian Hubicki, Ph.D.

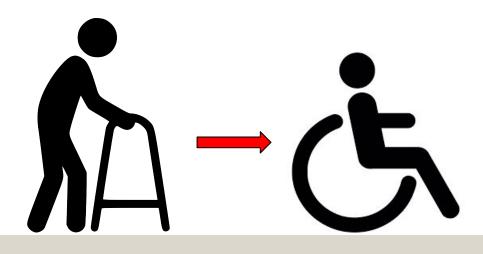


Department of Mechanical Engineering

#### Objective

- Design an assistive mobility device that improves upon the capabilities of current mobility devices on the market.
  - Weight Reduction
  - Natural Gait Variation
  - Adjustability

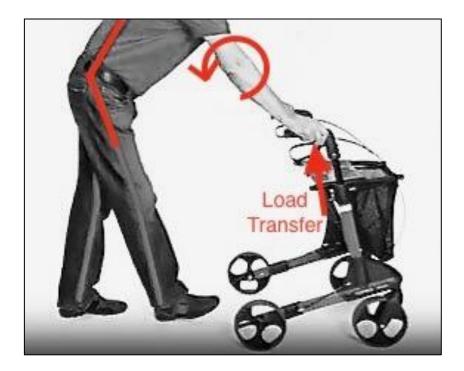






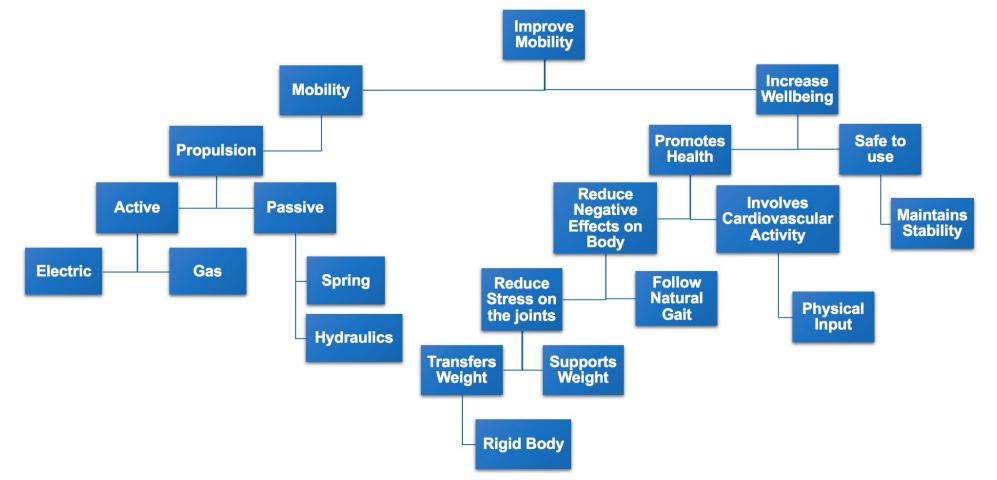

According to the U.S. Census Bureau:

- 3.6 million people in the U.S. over the age of 15 use wheelchairs
  - 11.6 million use a cane, crutches, or a walker
- 2 million new wheelchair


users every year

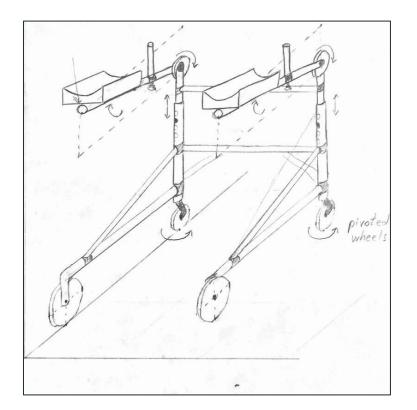


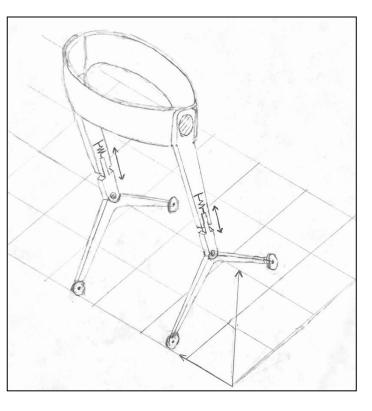


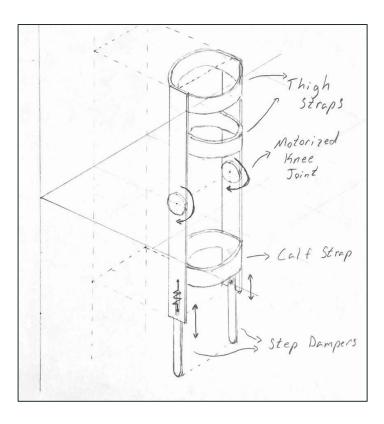

#### **Customer Needs**

- Designing for the market
  - Understand everyday issues that the mobility impaired deal with
  - Determine where the actual "need" within the market exists (putting a face behind the need)







#### **Functional Decomposition**






#### **Concept Generation**







Concept 1

Concept 2

Concept 3



Department of Mechanical Engineering

#### **Concept Selection**

|                                   |                             | Engineering Characteristics |                           |               |                         |       |                |
|-----------------------------------|-----------------------------|-----------------------------|---------------------------|---------------|-------------------------|-------|----------------|
| <b>Improvement Direction</b>      |                             | ↑                           | ↓                         | ↑             | ↑                       | ↓     | ſ              |
| Units                             |                             | lbs                         | %                         | °/in.         | bpm                     | \$    | in.            |
| Customer<br>Requirements          | Importance<br>Weight Factor | Weight Reduction            | Natural Gait<br>Variation | Adjustability | Change of Heart<br>Rate | Price | Compactability |
| Affordable                        | 3                           |                             |                           | 3             |                         | 9     | 3              |
| Lightweight                       | 1                           | 1                           | 1                         |               |                         | 3     |                |
| <b>Provides Support</b>           | 6                           | 9                           | 1                         | 3             |                         |       |                |
| Easily Maneuverable               | 5                           |                             | 3                         |               |                         |       |                |
| Uses Cardiovascular<br>Activity   | 3                           | 3                           | 1                         |               | 9                       |       |                |
| Doesn't Affect<br>Walking Pattern | 3                           | 1                           | 9                         | 3             |                         |       |                |
| Raw Score (221)                   |                             | 67                          | 52                        | 36            | 27                      | 30    | 9              |
| <b>Relative Weight %</b>          |                             | 30.3                        | 23.5                      | 16.3          | 12.2                    | 13.6  | 4.1            |
| Rank Order                        |                             | 1                           | 2                         | 3             | 5                       | 4     | 6              |

|                               |              | Pugh Chart<br>Concept |   |   |   |  |  |
|-------------------------------|--------------|-----------------------|---|---|---|--|--|
|                               |              |                       |   |   |   |  |  |
| Selection Criteria            | UPWalker     | 1                     | 2 | 3 | 4 |  |  |
| Weight Reduction              |              | S                     | + | - | - |  |  |
| <b>Natural Gate Variation</b> |              | +                     | + | + | - |  |  |
| Adjustability                 | Datum        | +                     | + | + | + |  |  |
| Change of Heart Rate          | Dat          | S                     | - | - | - |  |  |
| Price                         |              | +                     | - | + | - |  |  |
| Compactability                |              | S                     | + | + | + |  |  |
|                               | # of Pluses  | 3                     | 4 | 4 | 2 |  |  |
|                               | # of Minuses | 0                     | 2 | 2 | 4 |  |  |

| Concept | Alternative Value |
|---------|-------------------|
| 1       | 0.53              |
| 2       | 0.3169            |
| 3       | 0.1541            |



## **Embodiment Design**

#### Presented by: Dionsse Carti

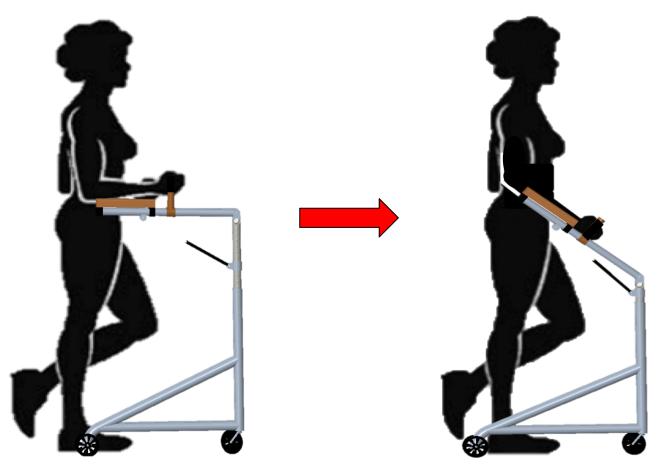
#### **Detailed Design**

Forearm Supports to provide comfortable weight support

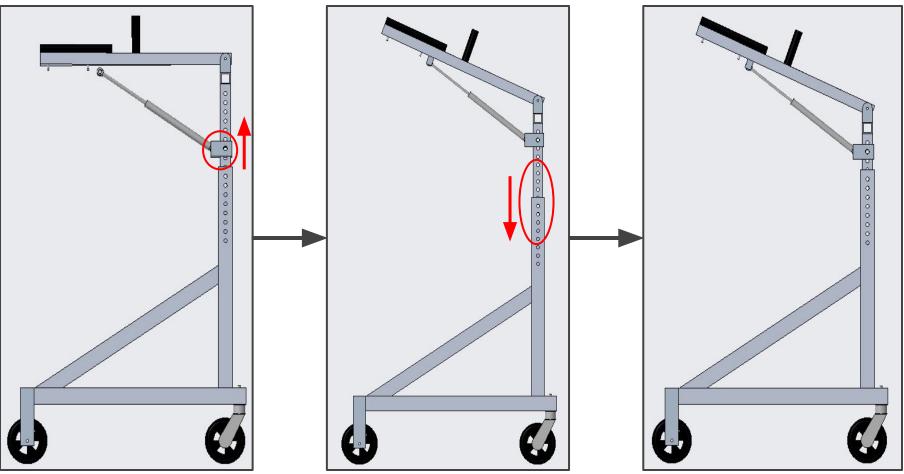
Gas Shocks to reduce impact on joints

Variable Slide Mechanism to allow for height adjustment




Hand Grips for extra support and sturdiness

> Arm Support Adjustment to accommodate a relaxed elbow angle for walking






#### **Device Operation**



#### **Device Adjustment**





#### **Proof of Concept**

- Impairing our own mobility for testing
  - $\circ$  Aid in Mobility
    - Completion of an obstacle course while impaired with help of NewWalk.
  - Follow Natural Gait
    - Comparing walking along a straight line with and without NewWalk to ensure an improvement in stride consistency.



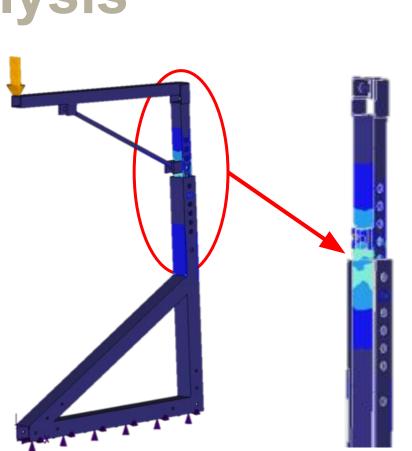


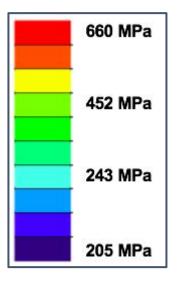




#### **Proof of Concept**

- Weight Support
  - Adding 250 pounds to device.
  - Using a scale to measure the users weight.





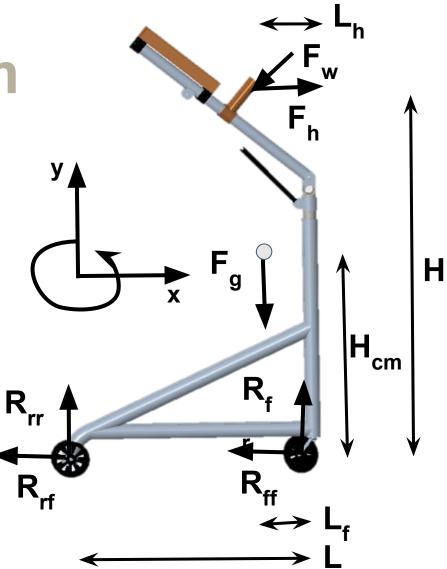

#### **Finite Element Analysis**

- Edge Load of 250 lbs ~113 kg.
- Gas shocks modeled as rigid steel bodies.
- AI-6061 Yield Strength: 310 MPa.
- Bending Stress Concentration.
  - $\circ$  Factor of Safety = 1.24.








# **Tipping Analysis**

Department of Mechanical Engineering



## Free Body Diagram

- Weight of Device: 22.34 lbf.
- Weight of User: 250 lbf.
- Max acceleration: 13 ft/s<sup>2</sup>.
  o from walker manufacturer.





#### Analysis

 $\sum F_x = m_w a$   $F_h = m_w (a + F_w sin(\theta) + \mu g) + F_w cos(\theta)$   $\sum M_{fw} = 0$   $F_g L_f + F_w cos(\theta) H + F_w sin(\theta) L_h - R_{rr} L - F_h H = 0$ 

#### Analysis

$$R_{rr} = \frac{m_w(gL_f - F_w \cos(\theta) - F_w \sin(\theta) - \mu g - a) + F_w(H\cos(\theta) + L_h \sin(\theta))}{L}$$

• Rrr<0, rear wheels lift.

$$R_{fr} = \frac{m_w(aH + F_w \sin(\theta)H + \mu gH + g(L - L_f)) + F_w \sin(\theta)(L - L_h) - Fw \cos(\theta)H)}{L}$$

• Rfr<0, front wheels lift.



#### Analysis

$$L_{min} = \frac{F_w H \cos(\theta) - a - F_w \cos(\theta) - F_w \sin(\theta) - \mu g}{-gc_l + \frac{F_w \sin(\theta)}{m_w}}$$

 $L_{min} = 1.367 ft$ 

- Wheelbase must be 1.367 ft.
- Current wheelbase is 2ft.
- Factor of Safety = 1.46

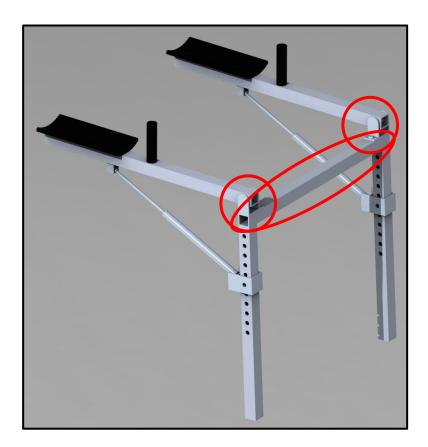




## Manufacturing

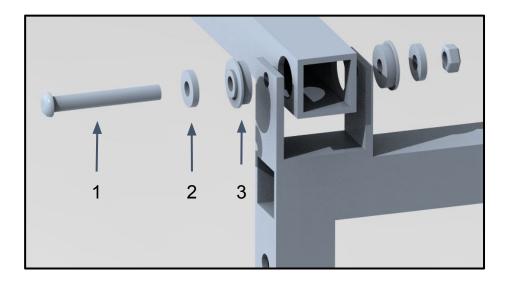
#### Presented by: Michael Beech

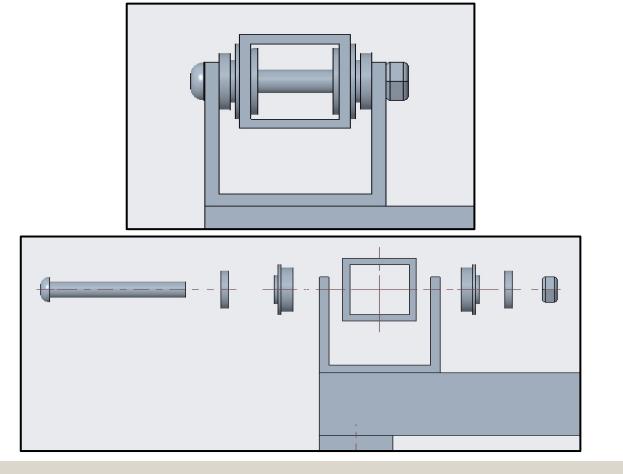
#### **Base Frame**


- Joints on the base of device will be welded.
  - Welding joints minimizes cost by reducing required materials (brackets, bolts, etc).
  - Square tubing minimizes manufacturing time .



FAMU-FSU Engineering


## **Upper Frame**

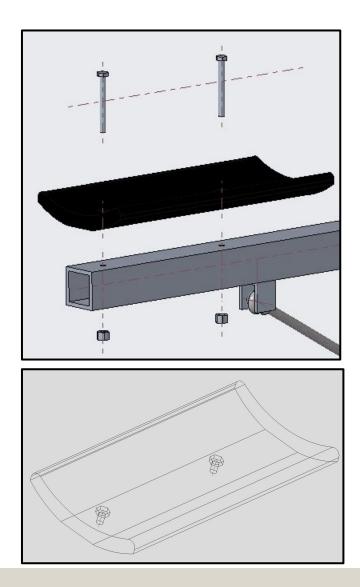

- Crossbar.
  - Placed on top of upright supports and welded.
- Pivoted arm supports.
  - Mounted to u-brackets on top of crossbar with bearings.





#### **Arm Support Pivot Bearing Stackup**

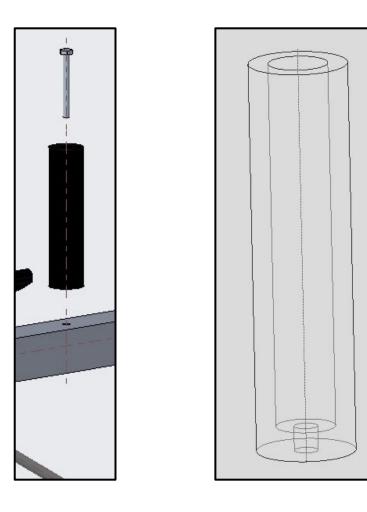





- 1. Bearing shaft.
- 2. Spacer.
- 3. Flanged Ball Bearing.



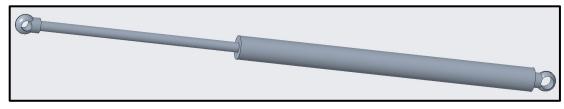
#### **Forearm Supports**


- Base is 3-D printed to reduce prototype costs.
- <sup>1</sup>/<sub>2</sub>" Polyurethane foam sheet for comfort.
- 18-8 Stainless steel screws, 10-24 thread size, 2-1/2" long.
- Counterbore to allow tightening of bolt with no access to head.

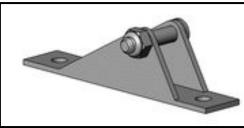


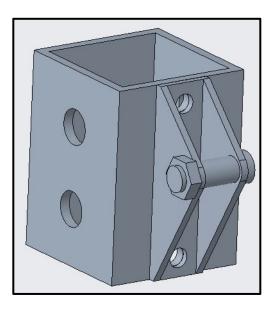


### **Hand Grips**


- Hand grips 3-D printed to reduce prototype costs and manufacturing time.
- 18-8 Stainless steel screws, 10-24 thread size, 2-1/2" long.







#### **Gas Shocks**

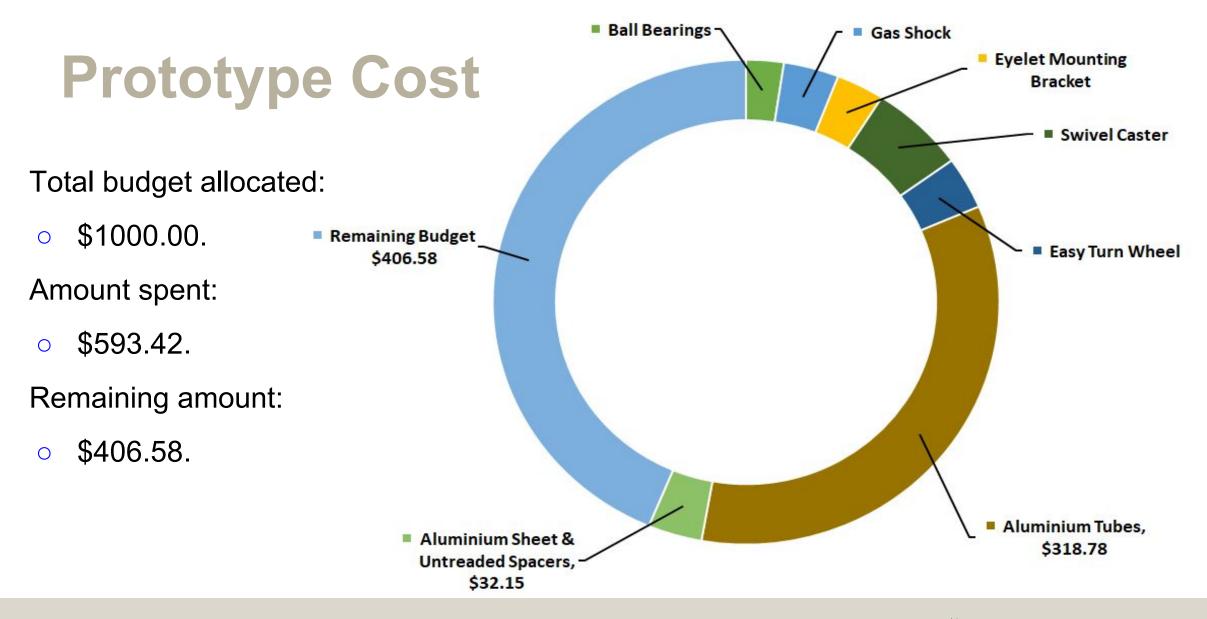
• Gas Shocks with 15.63"(inches) extended length.



- Extension force of 130lb.
- Eyelet, M6 Thread Size, 0.32" ID
  - Thread these eyelet end fittings onto gas springs.





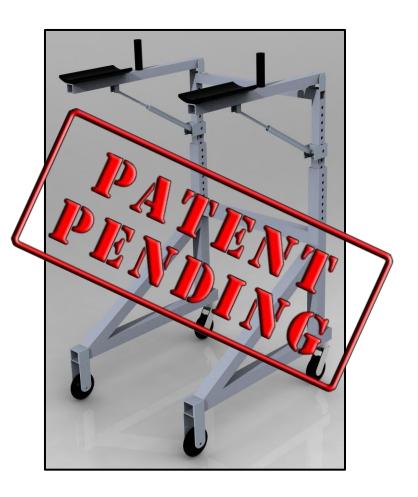



## **Project Management**

#### Presented by: Leah Fiedler

#### **Gantt Chart**

| <b>Events/Activities</b>              | Dates         | JAN | FEB | MAR | APR | MAY |
|---------------------------------------|---------------|-----|-----|-----|-----|-----|
| Abstract - First Submission           | 01/07 - 01/11 |     |     |     |     |     |
| Web Master                            | 01/10 - 01/11 |     |     |     |     |     |
| Staff Meeting 1                       | 01/17 - 01/17 |     |     |     |     |     |
| Abstract - Second Submission          | 01/15 - 01/18 |     |     |     |     |     |
| Design Review 4                       | 01/10 - 01/18 |     |     |     |     |     |
| Team Photo                            | 01/21 - 01/21 |     |     |     |     |     |
| Web Page Development                  | 02/03 - 02/08 |     |     |     |     |     |
| Abstract - Third Submission           | 02/04 - 02/08 |     |     |     |     |     |
| Staff Meeting 2                       | 02/13 - 02/14 |     |     |     |     |     |
| Design Review 5                       | 02/10 - 02/18 |     |     |     |     |     |
| High Resolution Graphic               | 02/18 - 02/22 |     |     |     |     |     |
| Risk Assessment                       | 02/25 - 02/28 |     |     |     |     |     |
| Web Page Update 1                     | 02/28 - 03/01 |     |     |     |     |     |
| Poster                                | 03/01 - 03/08 |     |     |     |     |     |
| Design Review 6                       | 03/18 - 03/25 |     |     |     |     |     |
| Operation Manual                      | 03/25 - 03/29 |     |     |     |     |     |
| Web Page Update 2                     | 04/01 - 04/05 |     |     |     |     |     |
| Engineering Design Day - Poster       | 04/01 - 04/11 |     |     |     |     |     |
| Engineering Design Day - Presentation | 04/01 - 04/11 |     |     |     |     |     |
| Final Report                          | 04/12 - 04/26 |     |     |     |     |     |
| Prototype Demo                        | 04/12 - 04/26 |     |     |     |     |     |






## **Shark Tank Competition**

April 18th 7:00 PM-8:30 PM.

- Continue editing and finalizing our business pitch.
- Look into getting a utility patent.





#### **3 Most Important Points**

- 1. Using square tubing to reduce manufacturing time.
- 2. Tipping calculations confirmed device will not tip.
- 3. FEM stress analysis confirmed device sturdiness.

#### **Lessons Learned**

- 1. To continue making updates to the purchase orders and to always have an updated BOM.
- 2. To perform initial calculations prior to the finalized design to avoid making design mistakes.
- 3. Start prototyping as soon as possible.

#### References

- U.S. Disability Statistics and Information. (2010). *Americans with Disabilities*. Retrieved from https://www.disabled-world.com/disability/statistics/info.php/
- Takanokura, M. (2014, August 27). Analysis for Minimal Wheelbase Length of Four-wheeled Walker for Prevention of Tipping on Sloped Surfaces. Retrieved from https://www.omicsonline.org/open-access/analysis-for-minimal-wheelbase-length-of-fourwheeledwalker-for-prevention-of-tipping-on-sloped-surfaces-2165-7556.1000128.php?aid=31404

# Questions?

