

Virtual Reality Tracking and Haptic Feedback Gloves

Team 513

Team Introductions

Alexandra Hollabaugh
Project Manager

Jonathan Roberts
Hardware Engineer

Alex Erven
Systems Engineer

Jake Kennedy
Test Engineer

Kevin Lindquist **Software Engineer**

Sponsor and Advisor

Engineering Mentor
Jeffrey Payne, PE
Staff Mechanical Engineer

Academic Advisor

Jerris Hooker, Ph.D

Teaching Faculty / Senior Design Coordinator

Objective

The objective of the project is to make a pair of gloves for Lockheed Martin that allow for the user to train in a virtual reality Abrams tank. The design will reduce the cost and size of current simulation systems while still providing feedback to the user.

Figure 1: A Lockheed Martin F-35 Flight Simulator

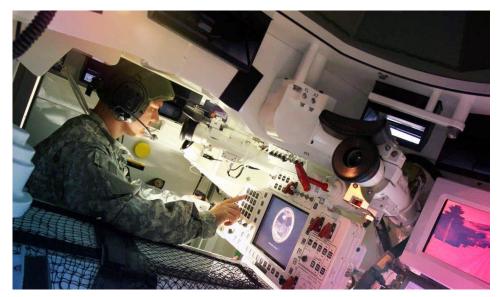


Figure 2: A Lockheed Martin M1A2 Tank Simulator

Project Background

Alex Erven

What is VR?

- >VR stands for virtual reality and is a relatively new technology
- >A headset allows for full emersion into a virtual world
- ➤ Wands are used as controllers to interact with the environment while providing limited feedback

Figure 3: HTC VIVÉ Pro Headset and Controller

Drawbacks of Existing VR Gloves

- > Have numerous wires and tubes connected to the base
- ➤ Do not retain the ability to feel interactions with a non-virtual environment
- ➤ Use bulky tracking systems

Figure 4: Example of current Haptic Feedback Glove. (HaptX glove)

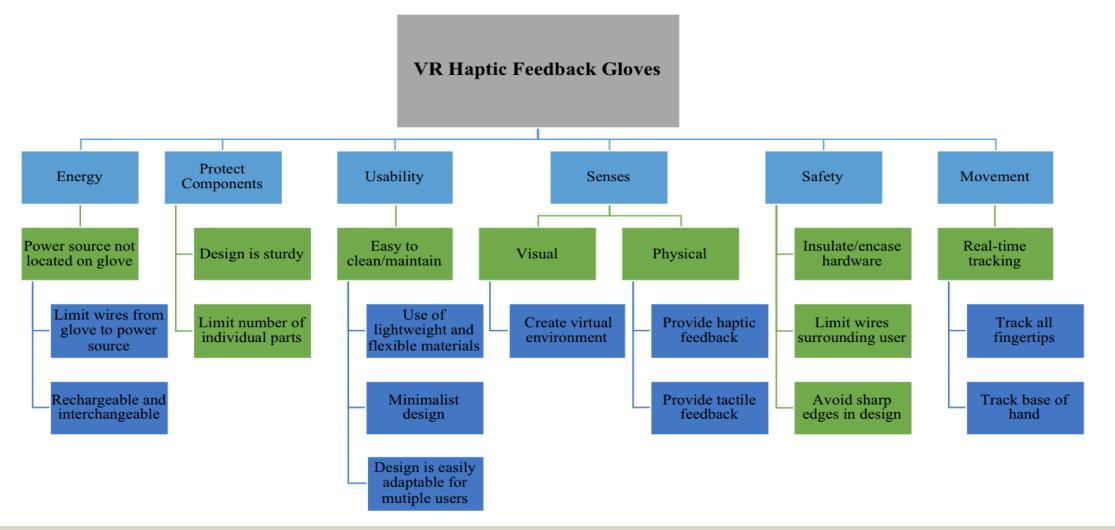
Customer Needs

Provide haptic feedback when interacting with the virtual environment

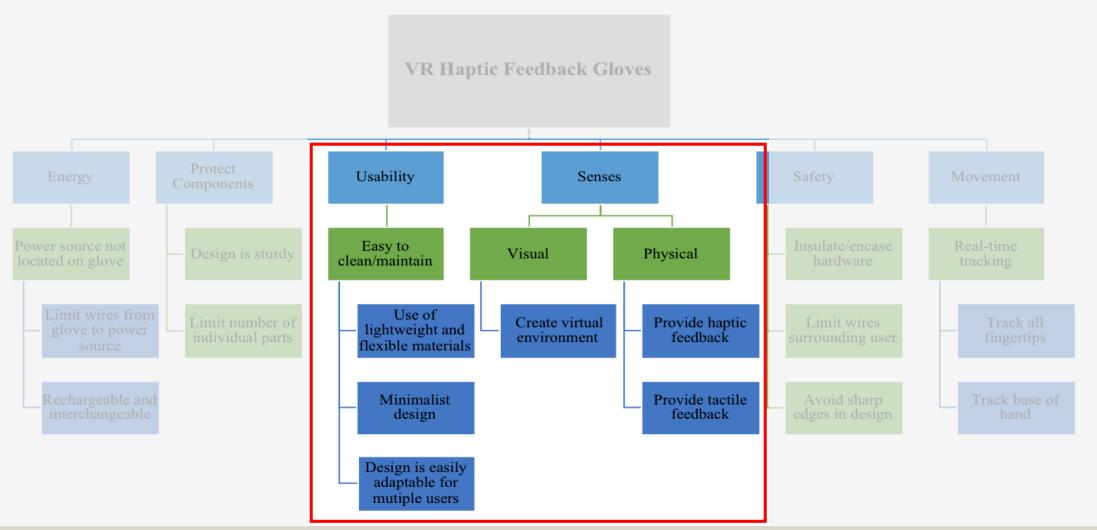
➤ Provide tactile feedback when interacting with the real world

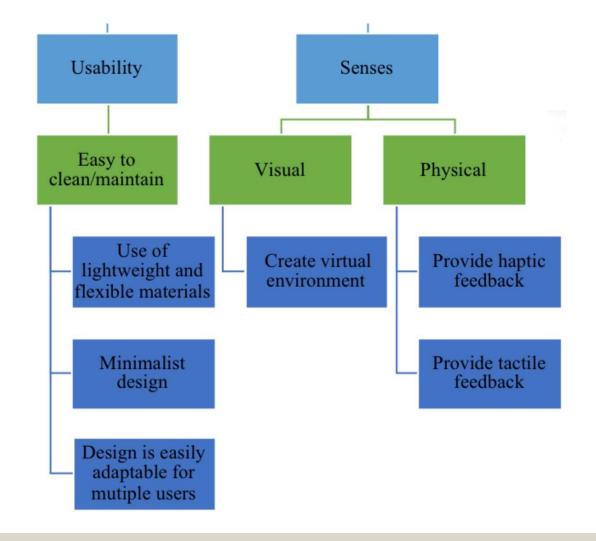
Durable design while maintaining a low profile

Able to easily transfer from one user to the next


Allows for uninhibited range of motion

► Hypoallergenic and easily sanitized


Functional Decomp

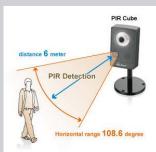

Functional Decomp

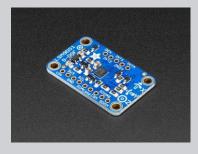
Functional Decomp

Concept Generation

Haptic Feedback

Gloves





Tracking

Concept Generation

Microcontroller

Power Supply

Concept Selection

LOCKHEED MARTIN

Table 1: Components Breakdown

Subsystem	Final Selection	Placement					
Haptic Feedback	(10) Linear Resonant Actuators (LRA)	(1) on inside of each finger					
Gloves	Fingerless gloves	N/A					
Tracking	(10) 9-axis Inertial Measurement Units (IMU)	(1) on the back of each finger					
Microcontroller	Raspberry Pi Zero	(1) on the back of each hand					
Power Supply	Removable Rechargeable Battery	(1) on the back of each hand					



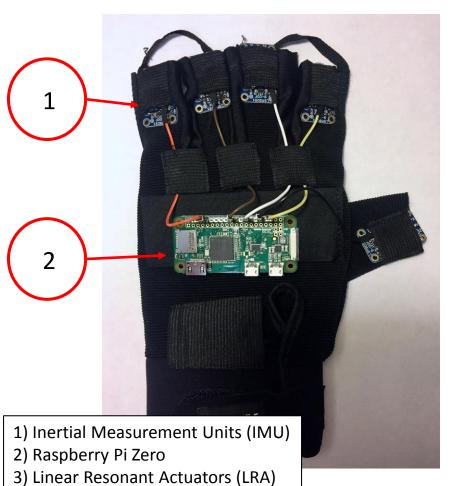
Figure 5: Final concept components

Component Layout

- 1) Inertial Measurement Units (IMU)
- 2) Linear Resonant Actuators (LRA)
- 3) Battery & Microcontroller Encasement
- 4) Raspberry Pi Zero
- 5) Fingerless Gloves



Figure 6: Layout of components for glove design



Testing

Kevin Lindquist

Component Layout Testing

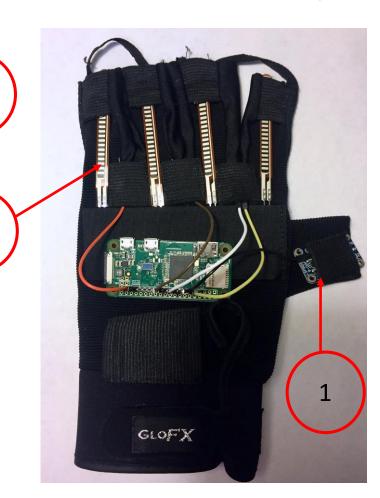


Figure 7: Layout of components for glove design

4) Flex Sensors

Sensor & Unity Testing

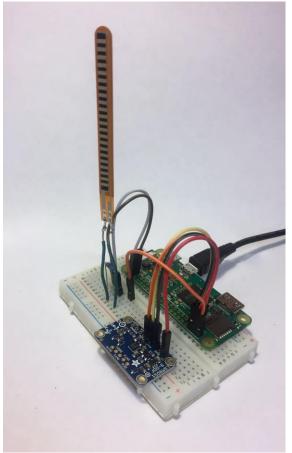


Figure 8: Inertial Measurement Unit & Flex Sensor Circuit

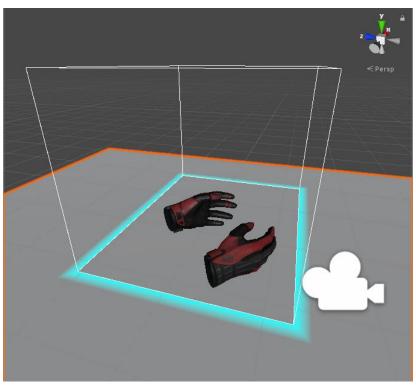


Figure 9: Hands In Unity VR Environment


```
20:25:02.269 -> G: 3.60, 66.98, 4.66 DPS
20:25:02.269 -> A: -0.62, -0.13, 0.92 g
20:25:02.269 -> M: -0.27, 0.11, -0.27 gauss
20:25:02.269 -> Pitch, Roll: 33.66, -8.29, Heading: 331.21
20:25:02.512 -> G: 21.27, 60.14, 4.29 DPS
20:25:02.512 -> A: -0.24, -0.17, 0.92 g
20:25:02.512 -> M: -0.19, 0.14, -0.39 gauss
20:25:02.512 -> Pitch, Roll: 14.24, -10.47, Heading: 317.47
20:25:02.754 -> G: -15.27, 34.09, 13.80 DPS
20:25:02.754 -> A: 0.06, -0.21, 0.88 q
20:25:02.754 -> M: -0.08, 0.16, -0.46 gauss
20:25:02.754 -> Pitch, Roll: -4.09, -13.43, Heading: 290.13
20:25:02.997 -> G: -16.30, 8.61, 6.84 DPS
20:25:02.997 -> A: 0.02, -0.10, 1.02 g
20:25:02.997 -> M: -0.10, 0.13, -0.44 gauss
  21:27:05.400 -> Flex sensor reading: 982
  21:27:05.503 -> Flex sensor reading: 771
  21:27:05.606 -> Flex sensor reading: 735
  21:27:05.708 -> Flex sensor reading: 710
  21:27:05.812 -> Flex sensor reading: 673
  21:27:05.915 -> Flex sensor reading: 567
  21:27:06.019 -> Flex sensor reading: 425
  21:27:06.123 -> Flex sensor reading: 269
  21:27:06.192 -> Flex sensor reading: 319
  21:27:06.297 -> Flex sensor reading: 255
  21:27:06.401 -> Flex sensor reading: 288
```

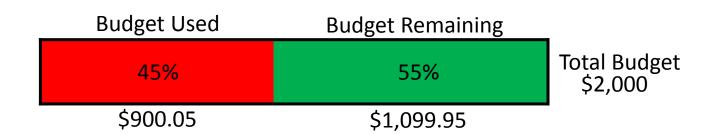
Figure 10: Reading Data From Sensors

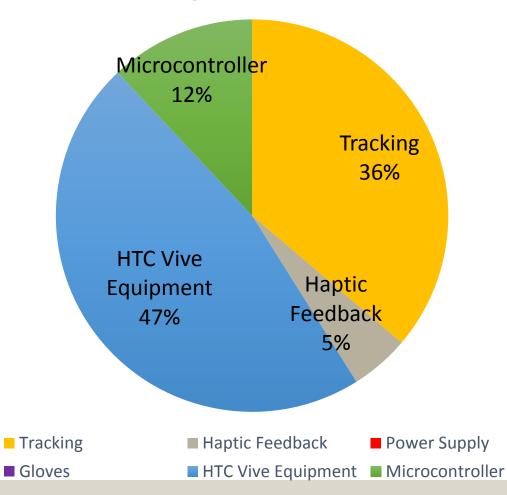
Project Management

Kevin Lindquist

Targets

Table 2: Most Important Targets and Metrics


Metric	Target
System latency	20 milliseconds
Tactile feedback	Sensation of touch retained
Haptic feedback	Physical response to interaction with virtual environment


- > From the customer needs the following targets were determined
- These were then used to determine the engineering characteristics

Budget Report

Timeline

		February			March									April		May	
Major Tasks		10th	18th	22nd	28th	2nd	6th	8th	10th	12th	18th	22nd	30th	12th	18th	29th	5th
	Read data from single IMU & flex sensor																
	Build hands in VR environment																
	Incorporate Vive tracker in VR environment																
	Test LRA vibrations on gloves														Com	pleted	
	3D scan Vive tracker to make mounting device															•	
Establish bluetooth communications from microcontroller to computer																ted On	
	Connect single IMU to the VR hand														Futu	re Work	(
	Connect single flex sensor to the VR hand																
	Connect sensor network to microcontroller																
	Read data from multiple sensors in a network																
	Manipulate raw data into usable data																
	Order parts last needed parts for prototype																
	Connect sensor network to the VR hand																
	Mount sensors/LRA's on one glove																
	Mount tracker and MCU on one glove																
	Duplicate one hand into two hands in VR																
	Make wiring low profile																
	Working intial prototype but not final one																
	Mount sensors/LRA's on the other glove																
	Mount tracker and MCU on other glove																
Testing																	
Debugging																	
Testing																	
Finished Prototype																	
Engineering Design Day																	
Finals																	
Graduation																	

Acknowledgments

- ➤ Thank you to Lockheed Martin for their sponsorship
- ➤ Thank you to Jeff Payne and Adam Bojanowski of Lockheed Martin for their guidance and direction
- Thank you to Dr. Hooker for his expertise on our project

References

- Burnett, Richard. "Lockheed F-35 Training Work Gets Big Boost." *OrlandoSentinel.com*, 18 Aug. 2014, www.orlandosentinel.com/news/os-lockheed-f35-simulator-contract-20140818-story.html.
- Catanzarite, M. (n.d.). Lockheed Martin displays fighter jet simulator for Arconic employees, Rep. Walorski. Retrieved from https://www.wndu.com/content/news/Lockheed-Martin-displays-F-35-simulator-for-Arconic-employees-Rep-Walorski-489797411.html
- Lee, N. (2017, November 20). HaptX promises to make your virtual hands feel like real ones. Retrieved from https://www.engadget.com/2017/11/20/haptx-gloves-vr/
- Horsey, J. (2018). HTC Vive Pro Headset Unveiled Offering Improved Audio And Higher Resolution Geeky Gadgets. [online] Geeky Gadgets. Available at: https://www.geeky-gadgets.com/htc-vive-pro-headset-09-01-2018/
- Horsey, J. (2014). *Dexmo Exoskeleton Provides Touch Feedback In Virtual Worlds*. [online] *Geeky Gadgets*. Retrieved from https://www.geeky-gadgets.com/dexmo-exoskeleton-provides-touch-feedback-in-virtual-worlds-27-10-2014/
- Holley, R. (2017). The least painful way to set up HTC Vive Lighthouses. [online] VR Heads. https://www.vrheads.com/least-painful-way-set-htc-vive-lighthouses
- Senso Glove. (n.d.). Retrieved from https://senso.me/