

VIRTUAL DESIGN REVIEW 2 ANTONIO GOODMAN FERNANDO QUIROZ CHRISTOPHER REIS BENJAMIN WALKER

25-APR-19 TEAM 501: HTS COILS PROJECT FOR THE APPLIED SUPERCONDUCTIVITY CENTER

Applied Superconductivity Center HTS Coils Project Team 01

Antonio Goodman Lead Simulations Engineer

Fernando Quiroz Lead Technologist Treasurer

Christopher Reis Team Leader Material Scientist

Benjamin Walker Technical Writing Test Development

The Applied Super Conductivity Center (ASC)

- ✤ ASC, located in Tallahassee FL
- Association with the National High Magnetic Field Laboratory
- Advances science of superconductivity and superconductivity applications
- ASC is presently researching new types of high field magnets

- Ernesto Bosque, Ph.D. Project Sponsor
- ✤ ASC Research Faculty
- Florida State University Alumni

- Lance Cooley, Ph.D. Project Advisor
- Director of ASC
- University of Wisconsin-Madison Alumni

Project Brief

- Design a probe with better properties for inserting superconducting device into an external magnet like the one shown in the image
- Probe must carry high electrical current from room temperature to approx. -450 °F without excessively heating cold environment
- Fabricate and test this probe under the supervision of the Applied Superconductivity Center

Diagram of Typical Superconducting Magnet System

Objective

- The objective of this project is to provide the ASC with a 700A probe for high magnetic field insert coils that will be used in tandem with larger outsert magnets
 - The minimum objective is to deliver a probe to carry current to the test device with optimization for heat loss
 - The stretch objective is to deliver a probe that will carry 1000A and be thermally optimized to limit cryogen boil off

Purpose

- To develop a probe that our sponsor will use with a specific external magnet at the Applied Superconductivity Center
- The probe will be used for high current tests of new superconducting magnets
 - Some new magnets are associated with the NHMFL
 - Some new magnets are associated with the Department of Energy Office of High Energy Physics

Targets

Metric	Target	Units
Current through Probe	>700	Amperes
Thermal Dissipation	≤4	Watts
Pressure Loss in Probe	<0.5	psi
Cost of Probe	< 1,500	USD
Length of probe	1.75 < L < 2.5	meters
Probe Shaft Diameter	≤50.8	mm

 The critical targets for the project are the probe shaft diameter, current through the probe and thermal dissipation

Concept Generation

- Concept generation is a crucial step in the design process
- Intensive brainstorming sessions were held with a massive volume of concepts
- Concepts where classified according to its physical characteristics and properties
- These were shaved down by using various techniques including employing house of quality and Pugh charts
- The final eight designs were pairwise comparison

Generated Concepts

Concept #3

This probe utilizes a more traditional form factor but with the use of G10 insulation to break heat connection between the upper lead (heated by room temperature exposure and ohmic losses) and cryogen bath. Current passed using an HTS link between top and bottom

Pros:

- Simple design with readily available materials
- Effective thermal link termination using insulating materials
- Sturdy and resilient to mishandling Cons:
- If there is a malfunction at the link no current will pass
- Thermal link must be below 77K mark for HTS activation, which must be found empirically

Zoomed in view of G10 thermal insulation barrier

Generated Concepts Cont.

Concept #5

This design incorporates large amounts of copper lined with an HTS materials the entire length of the probe. This was conceived after it was projected the entire dewer would be under 77 Kelvin

Pros:

- Minimal thermal heating because HTS, which does not joule heat, runs along entire lead
- Would minimize cryogen boil-off to a significant degree

Cons:

- Fragile due to the length-wise configuration of the HTS material
- Expensive because of extensive use of HTS
- Potential risk of destroying HTS material if the material does not stay below 77 K and all current passes through copper (bearing the entire load may heat it up significantly and potentially burnout both rod and tape)

Generated Concepts Cont.

Concept #6

Design #6 utilizes an HTS material weave on the bottom portion of the probe that maximizes the amount of HTS material that current can pass through. Also utilizes heat sink and thermally insulative materials.

Pros:

- Innovative weave design that pushes new limits in the field of probe design
- Minimal thermal heating because of HTS utilization and heat sink
- Would maximize the helium cooling properties with its large external surface area, leaving most available enthalpy to cool upper portion

Cons:

- Fragile design because of use of HTS material
- Complex design leads to difficult assembly due to the need to weave HTS material, especially because it would need to be positioned in such a way as to not induce a magnetic field

Antonio Goodman

Pairwise Comparison

		1	2	3	4	5	6	Total
1	Cost	-	0	0	0	0	1	1
2	High Current	1	-	1	0	1	1	4
3	Low Helium Boil Off	1	0	-	0	1	1	3
4	Safety	1	1	1	-	1	1	5
5	Durability	1	0	0	0	_	1	2
6	Versatility	0	0	0	0	0	-	0
	Total	4	1	2	0	3	5	n-1 = 5

Fernando Quiroz

House of Quality

Imrovement Direction		1	¥	¥	1	Ť	¥
Units of EC's		A/m^2	Ра	J	S/m	1/m	kg/m^3
Design Requirements Customer Requirements	Design Requirements eguirements Customer equirements		Pressure Loss	Heat Dissipation	Conductivity	Surface area to Volume	Material Density
Cost	1	3		9	3	9	
High Current	4	9		9	9		
Low Helium Boil off	Low Helium Boil off 3		3	9	1	3	
Safety 5		9	9	1	9		
Durability 2				1			3
Versatility 1						3	
Technical Importance: Absolute		93	54	79	87	21	6
Technical Importance: Relative		27.84	16.17	23.65	26.05	6.29	2.43
Rank		1	4	3	2	5	6

Antonio Goodman

Pugh Matrix

	Concepts						
Selection Criteria	#3	#5 #6 #					
Current Density		S	-	S			
Pressure Loss		S	S	S			
Heat Dissipation	Datum	_	_	-			
Conductivity		S	S	S			
Surface Area to Volume		S	S	-			
Number of Pluses	_	0	0	0			
Number of Minuses	-	1	2	2			

FAMU-FSU Engineering

MECHANICAL ENGINEERING

AHP – Criteria Comparison

Criteria Comparison Matrix [C]										
	Current Density	t Pressure Heat y Loss Dissipation		Conductivity	Surface Area to Volume					
Current Density	1.000	5.000	3.000	1.000	5.000					
Pressure Loss	0.200	1.000	0.200	0.333	3.000					
Heat Dissipation	0.333	5.000	1.000	0.333	3.000					
Conductivity	ivity 1.000 3.000 3.		3.000	1.000	5.000					
Surface Area to Volume	Surface Area to 0.200 Volume		0.333	0.200	1.000					
Sum	2.733	14.333	7.533	2.867	17.000					

Normalized Criteria Comparison Matrix [NormC]										
	Current Density	Pressure Loss	Heat Dissipation	Conductivity	Surface Area to Volume	Criteria Weights {W}				
Current Density	0.366	0.349	0.398	0.349	0.294	0.351				
Pressure Loss	0.073	0.070	0.027	0.116	0.176	0.092				
Heat Dissipation	0.122	0.349	0.133	0.116	0.176	0.179				
Conductivity	0.366	0.209	0.398	0.349	0.294	0.323				
Surface Area to Volume	0.073	0.023	0.044	0.070	0.059	0.054				
Sum	1.000	1.000	1.000	1.000	1.000	1.000				

AHP- Final Concept Ratings

Final Rating Matrix									
	Concept #3	Concept #6							
Current Density	0.429	0.429	0.143						
Pressure Loss	0.333	0.333	0.333						
Heat Dissipation	0.633	0.106	0.260						
Conductivity	0.333	0.333	0.333						
Surface Area to Volume	0.429	0.429	0.143						

Concept	Alternative Value
#3	0.425686557
#5	0.331184542
#6	0.243128901

Antonio Goodman

Bill of Materials

Category	ltem	Quantity	Units	Quantity Received	Cos	t per Unit	Tot	al Cost	Purchased?	Arrived?	Installed?	Description
Electrical												
	Copper 101 Round Stock	4	FT		\$	81.05	\$	324.20	No	No	No	Lead head assembly
	Copper 101 Bar	1	FT		\$	90.92	\$	90.92	No	No	No	Lead main body
Mechanical												
	Garolite Tubing	1	FT		\$	53.76	\$	53.76	No	No	No	Lead chassy
	Garolite Strip	2	FT		\$	4.76	\$	9.52	No	No	No	Lead electrical separation
	Garolite Block	1	FT		\$	56.61	\$	56.61	No	No	No	Dipper/solenoid support
	Gap-Filling Epoxy	1	OZ		\$	53.05	\$	53.05	No	No	No	Various sealings and fittings
	18-8 1-64 SS Socket Head Screw	1	Pack of 50		\$	5.55	\$	5.55	No	No	No	Clamps and fastening
	304 SS Barbed Hose Fitting	2	Each		\$	14.30	\$	28.60	No	No	No	Fittings
	KF50 Flange Clamp	2	mm		\$	28.90	\$	57.80	No	No	No	Clamps and fastening
	1/2 Inch Aluminum Pipe	1	FT		\$	16.28	\$	16.28	No	No	No	Instrumentation and ventilation
Instrumenta	tion											
	Thermocouple	1	Pack of 5		\$	59.00	\$	59.00	Yes	Yes	No	Temperature studies
	Fluke 8845A Multimeter	1	Each		\$	1,115.00	\$	1,115.00	Yes	Yes	No	IV documentation and studies
	Magnet Wire, 35 AWG	1	Each		\$	7.27	\$	7.27	Yes	Yes	No	Working piece/ solenoid prototype wiring
	Flow Meter for Inert Gas	1	Each		\$	262.98	\$	262.98	Yes	Yes	No	Helium boil-off studies
		Total Cost of Parts to be ordered				\$	696.29					
		Total Cost of all Parts (Including parts already in facility)				\$	2,140.54					
		Maturity Total						24%				

Next Steps

- Preliminary designs
 - Design and test small scale prototype designs
 - Software design and appropriate simulations
 - Bill of materials for final design
- Acquire materials and assemble prototype
 - Test the probe with the insert magnet

MECHANICAL ENGINEERING

References

- <u>https://essay.utwente.nl/62400/1/MSc_W_vander_Kamp.pdf</u>
- <u>https://nationalmaglab.org/magnet-development/magnet-science-technology/magnet-projects/32-tesla-scm</u>
- Shayne McConomy, *Engineering Design Methods*, lecture slide sets, FAMU-FSU College of Engineering, Spring 2018

Questions