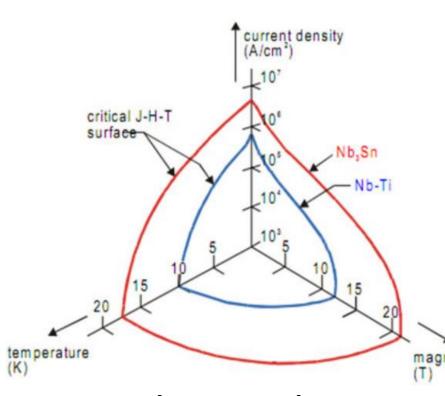


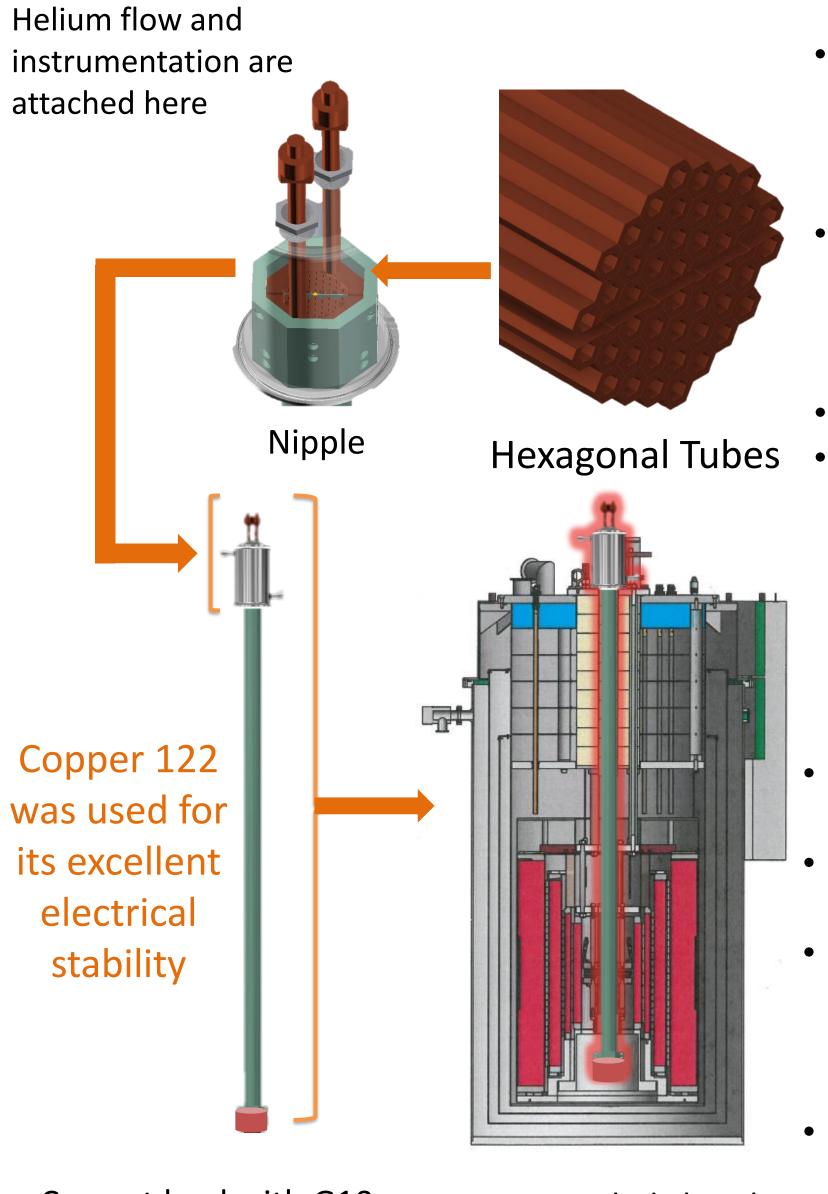
FAMU-FSU College of Engineering

HTS Coils Project The Applied Superconductivity Center

Objective


The objective of this project is to design and fabricate a current lead for the Applied Superconductivity Center (ASC) that delivers 1kA of current and dissipates less than 4 watts

- Overarching purpose of the MagLab is to use high field magnets to push the boundaries of several scientific fields
- The ASC which is attached to the MagLab uses superconductivity to aid this objective


Superconductivity and Test Coils

Superconductivity means zero electrical resistance in a material and depends on a current density(J), temperature(T) and

More advanced materials magnetic field(H) called high-temperature superconductors (HTS) are created with higher critical J-H-T and are subject to testing

Current lead with G10 Insulation (green) and test coil (red)

Hexagonal Tube Design and Operation Testing Operation

Test coil is attached to the base of Current lead

Lead assembly is inserted into vacuum sealed chamber

Cryostat is cooled to 4.2K with liquid helium before experiment begins

Design and Assembly

Vacuum Sealed chamber with magnet, test coil and current leads

Hexagonal Tubes

- Hexagonal hollow tubes allow for vapor cooling within the vacuum sealed chamber
- Hexagons are the most efficient way to pack a large amount of objects in a minimum space
- at cryogenic temperatures
- Copper tubing "drawn" and "hexed" using hydraulic drawing bench and appropriate hex dyes

Assembly

- Tubes are soldered and stacked together
- The tube are placed into a G10 sleeve
- Voltage signals are soldered into the copper to measure any potential difference in leads
- The current lead, attached to a small electromagnet, is inserted into a larger electromagnet

Theoretical Framework

This project was heavily rooted in material science, for electrical and thermal aspects, and thermal fluids for heat transfer science

$$\frac{Ix}{A} = 3.5 \times 10^{6} \quad f \approx \left(1 + \frac{2w_{o}u}{PhX_{2}}\right)^{-1} \quad \frac{dP}{dx} = \frac{32\eta\dot{m}}{\gamma AD^{2}}$$
Shape Factor
Heat transfer
efficiency
Pressure drop
efficiency
During the design
process it was
discovered that
cooled perimeter and
duct area were key to

Results and Conclusions

optimization

Current	1,195 A
Heat Leak	2.4895 W
Helium Consumption	3.43 L/hr.
Pressure Drop	30.90 Pa

- Hexagonal Tubes were also good for electrical contact among other things d
- Using optimized theoretical work provided very good real world approximations

References

- WILSON, M. N. (1983) *Superconducting Magnets* ch. 11, Oxford Press
- ROHSENOW, W. M. and CHOI, H. Y. (1961) *Heat mass and momentum*
- *transfer,* Patience Hall, New Jersey
- LANGE, F. (1960) Cryogenics, Sept., p.171