Dog Grooming tool

TEAM 17

JUSTIN PROCTOR, ROY MASON, JORDAN CHUPP, DENNIS PUGH

SPONSOR: ENGINEERING TO GO

DATE: 1/21/2016

Background

A dog's fur is prone to matting or tangling

Textures and characteristic of the coat vary by dog's size and breed

- Short Hair dogs
- Long hair dogs
- Grooming issues
- Takes too long
- Tools not ergonomic
- Unpleasant for dogs and groomers

Provide a solution for unpleasant grooming experiences of dogs and caregivers

PRESENTER: DENNIS PUGH

Background Research

Some rotary brush hardware does exist

No grooming tools with removable rotating heads on the market

Things to consider with a rotary style brush

- Will brush head run risk of getting tangled and twisted into dogs hair?
- Will spinning brush pull to hard and injure dog?

Voice of the Customer

- Taken during early parts of design project
 - Online Survey
 - Dog Groomer Shadowing
 - One on one Interviews with pet owners
- Used to refined Need Statement and Goal Statement
- Revealed current issues with dog grooming and the need for a better solution
- Maintained through consistent contact with potential customers and other established contacts

Need Statement

"De-matting a dog's hair can be an unpleasant experience for both the dog and the groomer, especially if the matting has advanced and is deep in the hair or fur. To dematt or de-tangle, it can be very time consuming and uncomfortable, if not painful."

Revised Goal Statement

Design and develop a grooming tool that provides both the user and dog with a pleasant, stress free, time efficient grooming experience

Objectives vs. Constraints

Objectives

- Design tool for use by consumers, groomers, and rescuers
- Untangle pet's hair without harm to pet
- Develop tool that is stress free on dog and groomer

Constraints

- Tool is handheld and ergonomic
- Tool works at low RPM to prevent further entanglement and injury
- Tool is easy to clean and sterilize
- Battery last at least 2 hours at 50% duty cycle
- Total weight is 1 pound or lower

Final Prototype Design

- Simple handle design to be 3D printed out of ABS plastic
- Uses a 12V DC gearmotor spinning at 72 RPM
- Power is transferred through a small AC to DC converter and a simple on/off switch
- The brush bristles are .01" 304 stainless wire
- This design should be compact, lightweight, and easy to use

Procurement

Motors

- Ordered 4 DC Motors that fit performance specs
- Vary in length and diameter
- Status: Arrived

Handles

- Design sent out to be 3D printed
- Status: Complete

Switch

- Ordered one flip switch
- Status: Arrived

Power Source

• Status: Purchased

Bearings

• Status: Purchased

Power Converter

- Spec'd out and ordered
- Status: Arrived

Procurement

PRESENTER: JORDAN CHUPP

Current Budget

Total Budget Allocated • \$500.00

Amount Spent

• \$147.00

Remaining Amount

• \$353.00

Testing: Force Required

PRESENTER: JORDAN CHUPP

Testing: Handle Ergonomics

Handle Design One

- 3D printed
- Designed with internal components in mind
 - Electrical components successfully housed
- Large diameter
- Uncomfortable to hold
- Weak grip

Testing: Handle Ergonomics

Handle Design Two

- 3D printed
- Designed with internal components and user comfort in mind
 - All electrical components successfully housed
- Smaller diameter but still large
- Comfortable to hold with finger grooves
- Weak grip

Testing: Handle Ergonomics

Handle Design Three

- 3D printed
- Designed with user comfort in mind
 - Oval shaped
- Designed as external covering for handle
 - Rubber sleeve

Current Design Adjustments

Brush Head

 Longer haired dogs will require large diameter to prevent fur from tangling

Handle

 Needs to be large enough to house all component and small enough to easily hold

Needs to provide balanced weight distribution

• Needs a sturdier grip

Future Work: Testing

Motor:

- Test the output torque
- Determine output needs to be stepped up or down
- Test angular speed on simulated dog fur, test for tangling

Converter

- Ensure that converter operates as needed
- Power is effectively converted as desired

Brush Head

- Determine optimal bristle length and head diameter for various dog coat types and length
- Test for effects of bristle contact with skin

Future Work: Testing

Handle

- Test for grip comfort
 - Handle Diameter
 - Handle Sleeve
- Test sealing and water resistance

Switch

• Evaluate ease with powering on and off the brush

Bearing and Shaft

- Bending force analysis
- FEA simulation
- Evaluate any slippage between adapting shaft and motor shaft

Future Work: Redesign & Fabrication

- Redesign and update current designs according to results of test
- Fabricate external handle covering
- Construct clay models of handle

Future Work: Field Trials and Finalizations

• Assemble final prototype

• Distribute to selected groomers and dog owners for trials

- Gather feedback on performance from trials
 - Likes and Dislikes
 - Areas for improvement

Research additional methods for dog grooming

Product Gantt Chart: Phase II

ask				
Mode 🔻	Task Name 👻	Dura 🗸	Start 👻	Finish +
	Phase II (January - March)	75 days	Mon 1/4/16	<u>Fri 4/15/16</u>
*	Test and Analysis I	26 days	Mon 1/4/16	Mon 2/8/16
	Test Motor Speed and Torque	16 days	Mon 1/4/16	Mon 1/25/16
-	Analyze Ergonomics	12 days	Mon 1/4/16	Tue 1/19/16
	Test Power Source	10 days	Mon 1/4/16	Fri 1/15/16
	Test Electrical Components	10 days	Mon 1/4/16	Fri 1/15/16
	Test Tool Effectiveness	10 days	Mon 1/4/16	Fri 1/15/16
	Test Tool Effeciency	14 days	Mon 1/4/16	Thu 1/21/16
	Troubleshoot Issues	10 days	Fri 1/22/16	Thu 2/4/16
	Voice of the Customer II	29 days	Wed 1/20/16	Mon 2/29/16
	A Redesign	30 days	Tue 2/9/16	Mon 3/21/16
	FMEA	3 days	Tue 2/9/16	Thu 2/11/16
	Design Approval	3 days	Fri 2/12/16	Tue 2/16/16
	Rebuild Prototype	10 days	Wed 2/17/16	Tue 3/1/16
	Test and Analysis I	14 days	Wed 3/2/16	Mon 3/21/16
	Field Trials	14 days	Tue 3/22/16	Fri 4/8/16
	Voice of the Customer Report	40 days	Tue 3/1/16	Mon 4/25/16

PRESENTER: ROY MASON

Conclusion

Prototype Design has been selected and approved

- CAD drawings have been finalized
- All parts have been ordered and received
- Brush head design to be tested and improved
- Product component testing will continue
- Grooming tool handle will be improved in ergonomics and purpose
- Testing results and data to be reported and used to improve product

Questions?