Dog Grooming tool

TEAM 17

JUSTIN PROCTOR, ROY MASON, JORDAN CHUPP, DENNIS PUGH

SPONSOR: ENGINEERING TO GO

DATE: 3/17/2016

Background

Some dogs have fur that is prone to matting and tangling

- Textures and characteristic of the coat vary by dog's size and breed
- Short and long hair
- Course and fine hair

Grooming issues

- Takes too long
- Tools not very ergonomic
- Unpleasant experience for dogs and groomers

PRESENTER: DENNIS PUGH

Background Research

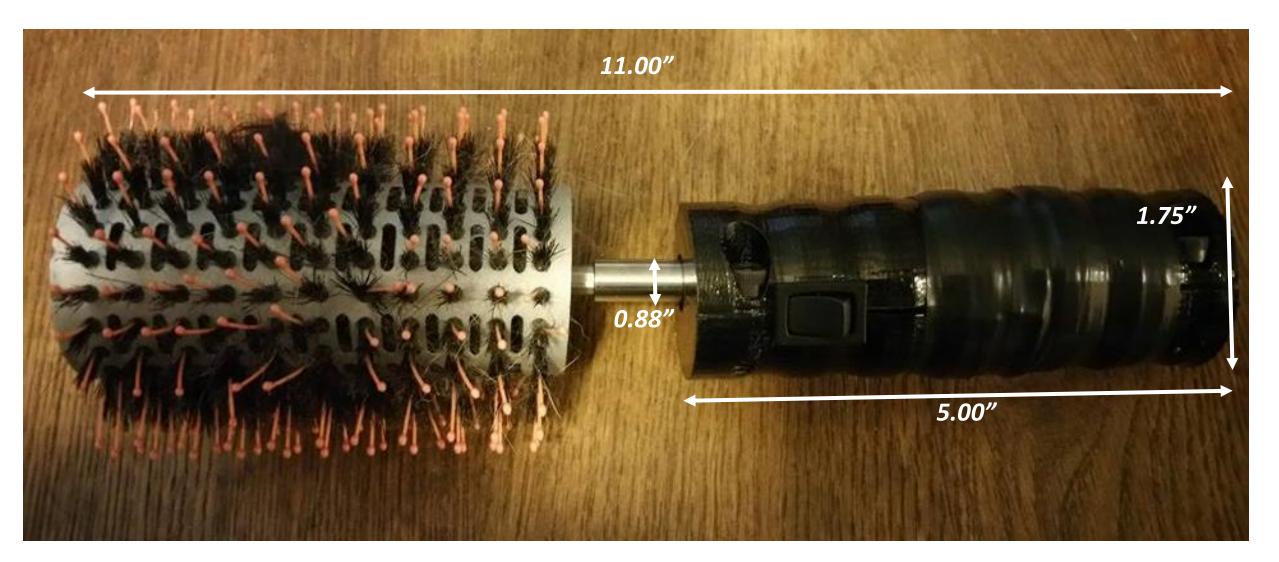
What makes a grooming tool successful?

- Safe for the pet and groomer
- Remove knots and tangles from hair
- Comfortable and easy for groomer to use

Various de-matting tools that currently exist

- Knot out cuts fur
- FURminator pulls mats
- Mat-Splitter splits mats

No current tools brush through knots
Hypothesis: A rotating brush could gently de-tangle hair from the top down


Need Statement

"De-matting a dog's fur can be an unpleasant experience for both the dog and the groomer, especially if the matting has advanced and is deep in the hair or fur. The de-matting process is considered to be time consuming and painful, for the groomer as well as the dog."

Revised Goal Statement

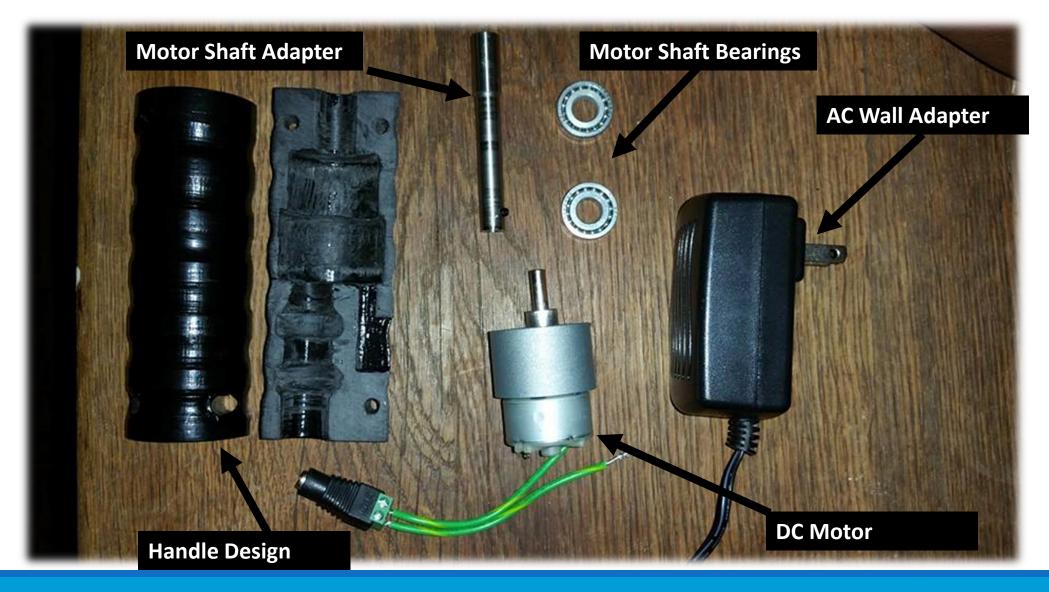
Design and develop a grooming tool that provides both the user and dog with a pleasant, stress free, time efficient grooming experience

Updated Prototype Design

Prototype Components and Specifications

Handle Design

- Ergonomic handle, 3D printed for convenience, finger grooves
 Motor
- 12V DC gear motor, runs at 60 RPM, has torque of 2.66 in-lbs.
- Dual bearings for lateral load placed on the motor shaft


Power Source

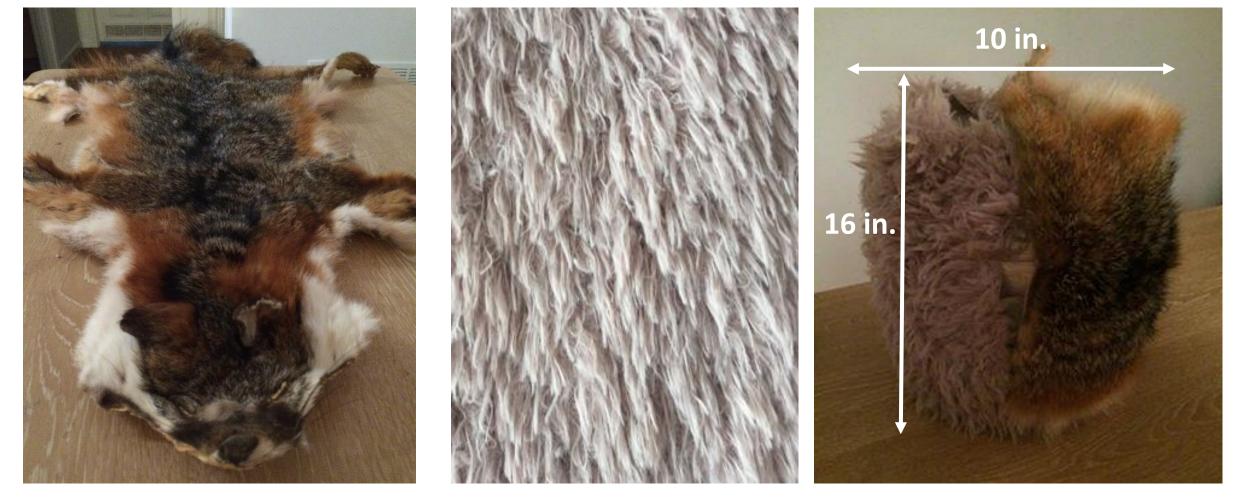
- Power is transferred through a small AC to DC wall adapter and a simple on/off switch
 Brush Head and Bristles
- Taken from existing dog and human hair brushes

Overall Design

- More ergonomic, compact, and safe for the pet and groomer
- Total weight of brush assembly is ~15.3 oz. (0.96 lbs.), less than 1 lbs. constraint

Prototype Components

PRESENTER: DENNIS PUGH


TEAM 17

Testing Review

Table 1: Test Result Review

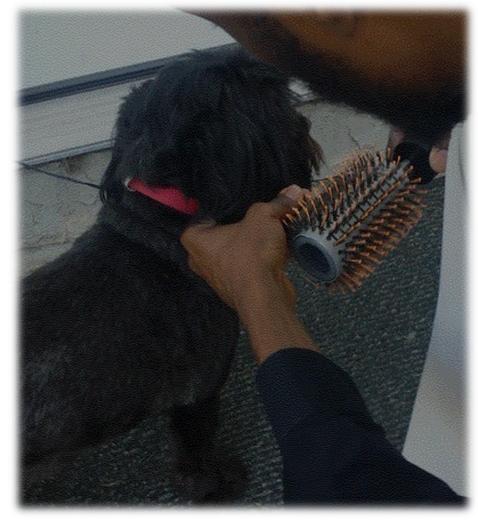
Test Conducted	Purpose	Results
Motor Stall Force	Calculate max applied tangential force where motor stalls	22.5 lbs.
Required Brushing Force	Determine the approx. force used to pull ordinary brush through fur	\leq 1 lbs.
Shaft Bending Moment	Calculate max applied bending force that shaft would encounter	Static: 8.4 lbs. Dynamic: 25.7 lbs.
Bristle Deflection	Determine how much each bristle would deflect when force applied	Displacement = 0.183 in Angle = 15.6 deg.
Bristle Design	Determine how well stiffer metal bristles handled fur	Bristles tend to grab and pull hair without release

Testing Materials and Apparatus

Dead Red Fox Hide

Faux Llama Fur

Testing Apparatus Body


Testing and Analysis: Brush Head Bristles

Test Conducted

- Applied brush on disordered and mildly matted fur
- Applied rotary bush with different heads to various types of fur

Test Purpose:

- Evaluate how well the select bristle design works
 - Is the fur neat?
 - Did the bristles snag on the fur?
 - Was excessive fur removed?

Testing of Brush Tool

Testing and Analysis: Brush Head Bristles

Gently Grasping Dog

Applying Brush to Ear

Removed Mat

TEAM 17

Testing Results:

Brush Head Dimensions:

 Less than 1.7 inches diameter caused wrapping regardless of bristle shape

Bristle Material:

 Snagging reduced when Hog hair and plastic was used versus metal

Motor:

 High torque of the motor would not allow brush head to stop rotating if snagged

Fur:

- Disordered fur became neat and ordered after brush use
- Minimal hair was removed

Dog's Response:

- Noise of brush startled dog
- Dog had to become familiar with sound of the brush in order to cooperate

Testing Conclusions:

Brush Head Dimensions:

- 1.75 in. \leq Diameter \leq 4in.
- 3 in. \leq Length \leq 6 in.

Bristle Material:

 Boar hair and plastic bristles will be used

Motor:

 Adding a clutch or torque regulator is the best option to combat high torques

Fur:

 Rotary brush functions effectively as a tool for simple brushing messy fur

Dog's Response:

 Noise of the brush is a factor for dogs in common situations

Boar Bristles

Miniature Clutch

Plastic Bristles

Updated Brush Head Design

Brush Head 1

Brush Head 2

Brush Head 3

Brush Head 4

Images not to scale

TEAM 17

Brush Head Design

Table 2: Brush Head Dimensions

Brushes	1	2	3	4
Diameter (inches)	1.9	1.7	3.2	1.7
Length (inches)	5	4.8	4.2	4.5
Weight (ounces)	4.7	3.7	7.17	1.8

Future Work: Test Plans

Table 3: Test Plans

ffective range for brush er for specific length fur
naterial to use for determine desired
two and determine the ve and time efficient
ow effective the rotating s at removing mats from

Upcoming Design Adjustments

Brush Head

 Metal bristles were found to be to lower deflection, so plastic and hog hair bristles will be further tested

Motor

Implementation of motor torque regulator (clutch)

• Ability to control amount of torque output from prototype

Switch

Incorporate switch to allow motor to reverse revolution direction

• Allow tool to be used with either hand

Future Work: Testing and Field Trials

• Visit with groomers and owners to complete testing plan

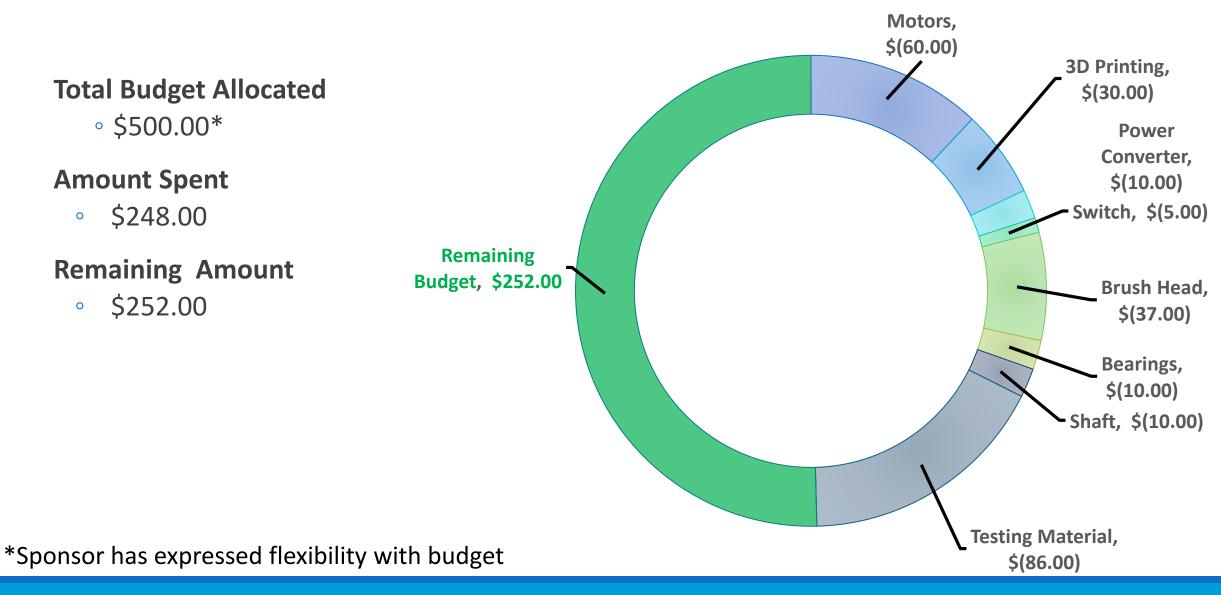
- Use results from test to finalize prototype design and function
- Distribute to selected groomers and dog owners for trials
- Gather feedback on performance from trials
 - Likes and Dislikes
 - Areas for improvements

Future Work: Current Goals

- Have a finalized working prototype that can functions as a dog brush
- Compete and <u>WIN</u> Engineering Shark Tank Competition
- Conclude whether current design will work as effective de-matting tool
- Build multiple grooming tool prototypes for sponsor
- Complete prototype and have product ready so that sponsor's marketing phase can begin
 - Business Model
 - Market Analysis
 - Commercialization

Future Work: Prototype Finalizations

Challenges:


- Creating adequate mats and tangles in fox fur and faux fur
- Addition of reversible switch requires reprinting handle
 - Costly unable to meet prototype goal

Possible Solutions:

- Add reversible switch
 - Allows tangled brush to unwrap itself
 - Use matted dog fur from owners and groomers to test de-matting abilities
 - Consider decreasing the number of prototypes to be made

• Request increase in budget funding

Current Budget

Updated Gantt Chart: Phase II

	-	Task Name 👻	Duration 👻	Start 👻	Finish 🚽
30	-	Phase II (January - April)	<u>80 days</u>	Mon 1/4/16	Fri 4/22/16
31	1	Test and Analysis	46 days	Mon 1/18/16	Mon 3/21/16
32	-	Analyze Ergonomics	12 days	Mon 1/18/16	Tue 2/2/16
33	-	Test Planning	5 days	Mon 1/18/16	Fri 1/22/16
34	-	Procure Test Materials	35 days	Mon 1/18/16	Fri 3/4/16
35	-	Test Motor Stall Force	16 days	Mon 1/25/16	Mon 2/15/16
36	-	Test Power Source	1 day	Mon 1/25/16	Mon 1/25/16
37	-	Test Optimal Brush Head Diameter	40 days	Mon 1/25/16	Fri 3/18/16
38	-	Test Bristle Design	40 days	Mon 1/25/16	Fri 3/18/16
39	-	Voice of the Customer II	26 days	Tue 2/9/16	Tue 3/15/16
0	1	▲ Redesign	61 days	Mon 1/4/16	Mon 3/28/16
1	-	Review FMEA	3 days	Mon 2/1/16	Wed 2/3/16
2		Design Approval	3 days	Thu 2/4/16	Mon 2/8/16
13	-	Fabricate Redesigned Parts	9 days	Tue 2/9/16	Fri 2/19/16
44	-	Rebuild Prototype	13 days	Mon 2/22/16	Wed 3/9/16
45	-	Test and Analysis II	10 days	Thu 3/10/16	Wed 3/23/16
46		Field Trials	5 days	Mon 3/28/16	Fri 4/1/16
47		Voice of the Customer III	28 days	Wed 3/16/16	Fri 4/22/16

PRESENTER: JORDAN CHUPP

Conclusion

- Redesign Phase continues
- Product component testing will continue
- Brush head diameter and length range determined
- Optimal bristle design material chosen
- Prototype's function as a de-matting tool to be determined
- Testing results and data to be reported and used to improve product
- Practical solution for over torqueing motor to be sought out

Questions?