Dog Grooming tool

TEAM 17

JUSTIN PROCTOR, ROY MASON, JORDAN CHUPP, DENNIS PUGH

SPONSOR: ENGINEERING TO GO

DATE: 11/17/2015

Background

A dog's fur is prone to matting or tangling

Textures and characteristic of the coat vary by dog's size and breed

- Short Hair dogs
- Long hair dogs
- Grooming issues
- Takes too long
- Tools not ergonomic
- Unpleasant for dogs and groomers

Provide a solution for unpleasant grooming experiences of dogs and caregivers

Dennis Pugh

Dennis Pugh

Background Research

Many types of dog grooming tools on market today

- double sided brushes
- brushes with vacuums
- mat splitter

Most popular dog brushes

- The FURminator
 - Reduces shedding by up to 90%
- Slicker Brush

FURminator

Background Research

No grooming tools with removable rotating heads on the market

Things to consider with a rotary style brush

- Will brush head run risk of getting tangled and twisted into dogs hair?
- Will spinning brush pull to hard and injure dog?

Objectives vs. Constraints

Objectives

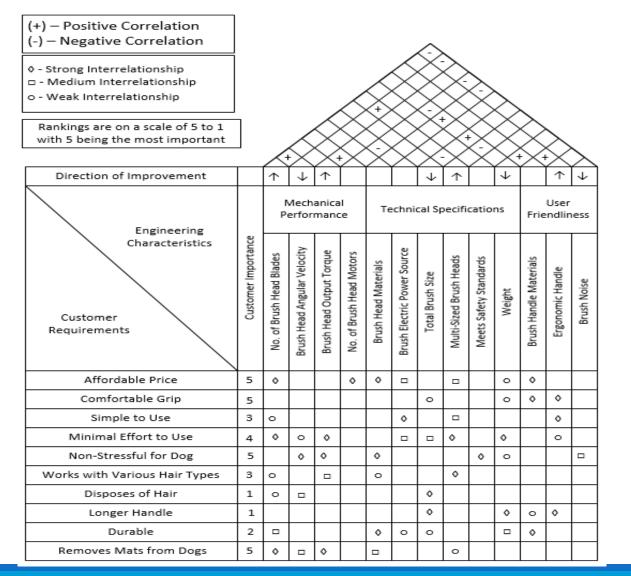
- Design tool for use by consumers, groomers, and rescuers
- Untangle pet's hair without harm to pet
- Develop tool that is stress free on dog and groomer

Constraints

- Tool is handheld and ergonomic
- Tool works at low RPM to prevent further entanglement and injury
- Tool is easy to clean and sterilize
- Battery last at least 2 hours at 50% duty cycle
- Total weight is 1 pound or lower

Voice of the Customer

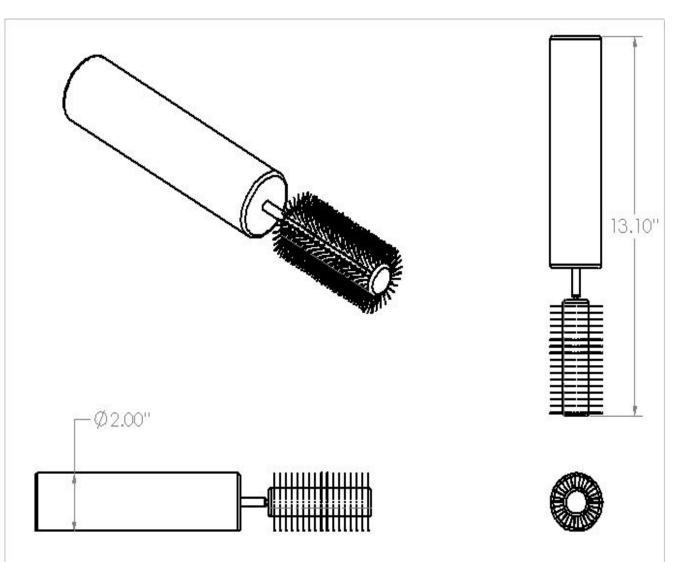
- 63% want an improved handle
- 46% surveyors brushed dog once a week
- 55% of surveyors didn't like grooming their dog "It's a lot of work"
- Surveyors grooming tool lasted about 6 months
- Dogs don't enjoy grooming process
- Price, shape and design were most important to customers
- 26% want something electrical


Need Statement

"De-matting a dog's hair can be an unpleasant experience for both the dog and the groomer, especially if the matting has advanced and is deep in the hair or fur. To dematt or de-tangle, it can be very time consuming and uncomfortable, if not painful."

Revised Goal Statement

Design and develop a grooming tool that provides both the user and dog with a pleasant, stress free, time efficient grooming experience


House Of Quality

- Customer Requirements from Voice of the Customer
- Engineering Characteristics evaluate essential product components
- Matrix displays the relationship strength between characteristics and requirements

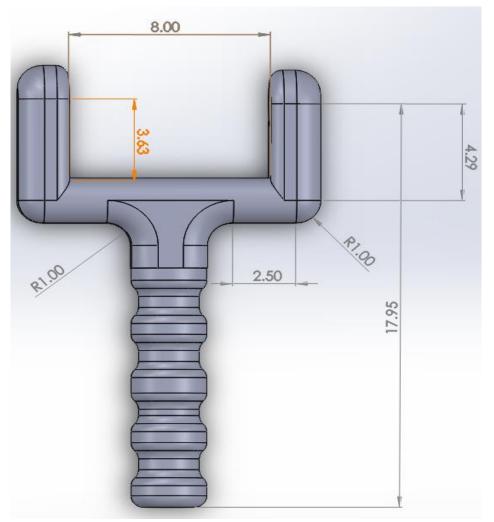
Dennis Pugh

Design Concept One

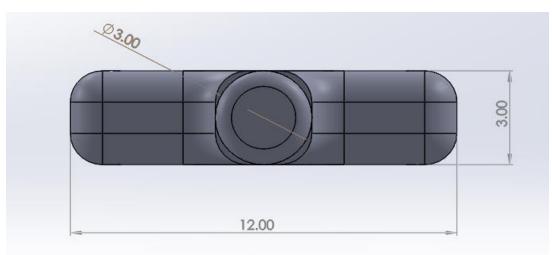
Dennis Pugh

Design Concept One

Positives

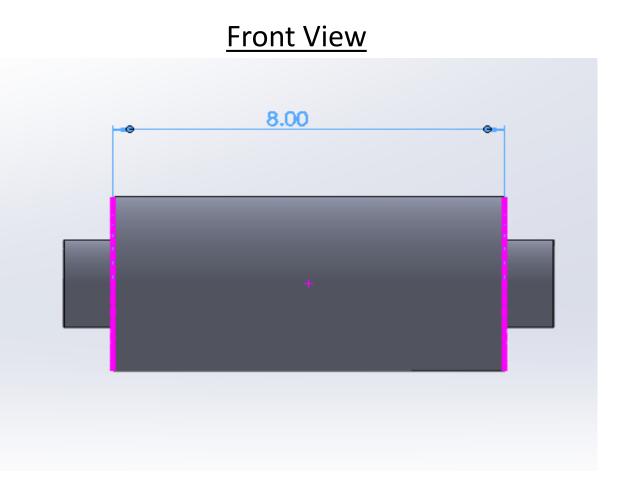

- Simple handle design
- Manufacturability
- Simple brush head swapping

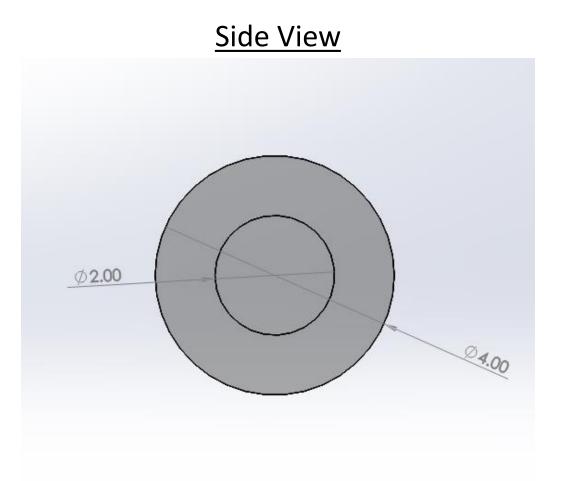
Drawbacks


- Ambidexterity
- Requires motor reversing
- Complex head assembly

Design Concept Two: Handle

Front View


Bottom View



All Measurements in Inches

Dennis Pugh

Design Concept Two: Brush Head

All Measurements in Inches

Design Concept Two

Positives

- Ergonomically molded handle
- Keeps hand away from moving parts
- Allows for ambidexterity
- Motor doesn't have to be reversible

Drawbacks

- Grooming motion requires movement all over the place making vertical orientation uncomfortable
- Doesn't account for inclusion of motor, power source, and other components
- No technical analysis behind it

Concept Design: Motor Selection

Motor needs to provide adequate torque to turn brush head

- Low RPM is a must to ensure pet safety
- Motor must be inexpensive to meet price of manufacturing goals
- Reliability is key to ensure customer satisfaction

Motor Decision Matrix

Decision Factors	Column1	Choice 1	Choice 2	Choice 3	Scores Column2		Column3
Criteria	Weight (1- 5)	AC Motor	DC Motor	Battery Powered DC	AC Motor	DC Motor	Battery Powered DC
Power	3	5	4	3	15	12	9
User Safety	5	3	4	5	15	20	25
Reliabilty	3	5	4	3	15	12	9
Cost	4	3	4	3	12	16	12
Weight	3	4	5	3	12	15	9
Pet Safety	5	3	4	5	15	20	25
				Total Scores	<u>84</u>	<u>95</u>	<u>89</u>

Concept Design: Brush Head Selection

• Bristles must be designed to slowly work mats out of hair

• They must be sized to give when excessive force in encountered

 If bristles are to large or stiff, they will pull hair causing the animal discomfort

• The bristles must also be durable and able to last for many hours of constant use without failure

Bristle Decision Matrix

Decision Factors	Column1	Choice 1	Choice 2	Choice 3	Scores	Column2	Column3
Criteria	Weight (1-5)	Metal Wire Bristles	Plastic Bristles	Metal Blades	Metal Wire Bristles	Plastic Bristles	Metal Blades
User Comfort	3	3	4	1	9	12	3
Pet Safety	5	4	5	1	20	25	5
User Safety	5	5	5	1	25	25	5
Pet Comfort	5	3	4	2	15	20	10
Reliability	3	5	2	2	15	6	6
Dematting Performance	4	4	3	5	16	12	20
Cost	4	4	4	3	16	16	12
Manufacturability	3	4	3	1	12	9	3
				<u>Total</u> <u>Scores</u>	<u>128</u>	<u>125</u>	<u>64</u>

Concept Design: Handle Selection

- The handle must be lightweight
- Shaped to prevent fatigue of the user's hands
- Materials used in the handle must be durable
- Able to withstand cleaning chemicals without failing
- Texture of the handle material is important to provides adequate grip when wet
- The handle must be easy and cheap to manufacture
- The material must be readily available

Handle Decision Matrix

Decision Factors	Column1	Choice 1	Choice 2	Choice 3	Scores	Column2	Column3
Criteria	Weight (1-5)	Aluminum	ABS Plastic	HDPE Plastic	Aluminum	ABS Plastic	HDPE Plastic
User Comfort	4	3	4	4	12	16	16
User Safety	5	3	4	4	15	20	20
Strength	3	5	3	4	15	9	12
Cost	4	3	4	4	12	16	16
Manufacturability	4	4	5	4	16	20	16
Weight	3	3	5	4	9	15	12
				Total Scores	<u>79</u>	<u>96</u>	<u>92</u>

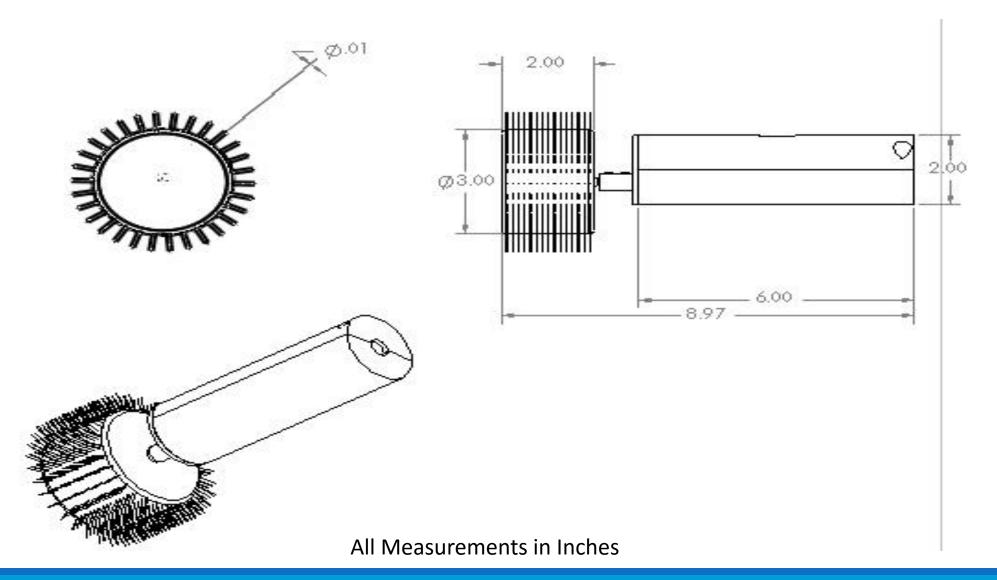
Concept Design: Power Source Selection

Power options were limited to 120V AC and DC battery power

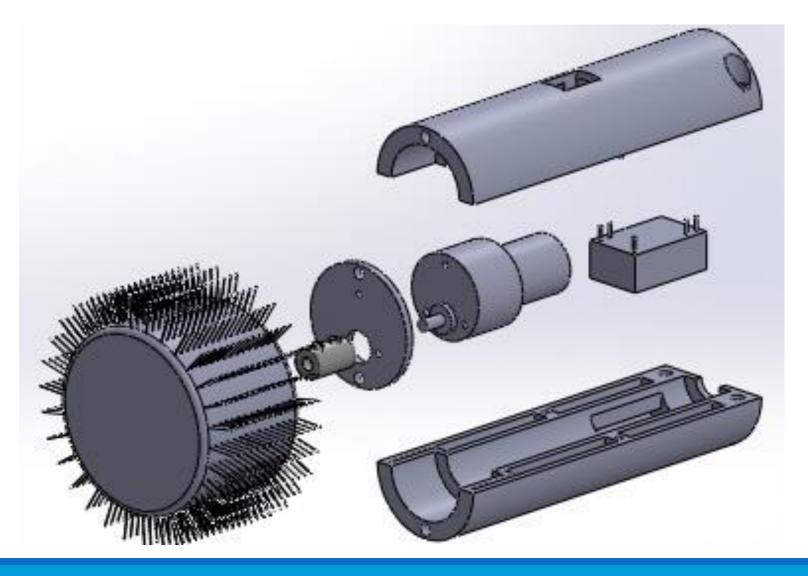
- Using 120V AC converted to 12V DC was determined to be best
- Using straight AC power was determined to be to costly and unsafe for the user
- Converting AC to DC does away with the battery pack, reducing weight

Final Prototype Design

• Simple handle design to be 3D printed out of ABS plastic


• Uses a 12V DC gearmotor spinning at 72 RPM

 Power is transferred through a small AC to DC converter and a simple on/off switch


• The brush bristles are .01" 304 stainless wire

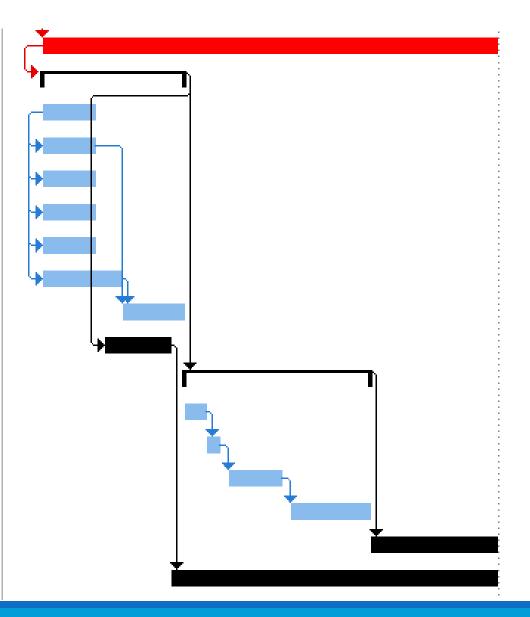
• This design should be compact, lightweight, and easy to use

Final Prototype Design

Final Prototype Design

FMEA

Function	Potential Failure Mode	Potential Effects of Failure	Severity (1-10)	Potential Causes of Failure	Occurrence (1-10)	Process Controls	Detection (1-10)	RPN	CRIT	Action Plan
		Motor overheats from excessive		Incorrect motor size	7	Select motor with minimum torque needed	4	280	70	Test force needed to pull through matt
	Motor not			Bad motor installed	1	Test motor before installing	1	10	10	Have multiple motors on hand
Detangle Matted Fur	loading, Brush becomes stuck in hair, Product does not meet spec	10	Motor/ shaft binding	5	Check tolerances and check for debris	2	100	50	Design to keep debris out, Test life cycle of product, determine test plan for aplied forces	
Bristles to soft and don't break up matt	David de contenent		Incorrect size wire installed	6	Ensure correct tolerances for manufacturing	2	108	54	Measure bristles on existing brushes	
	•	Brush doesn't meet initial goals	9	Length of Bristles	6	Ensure correct tolerances for manufacturing	3	162	54	Measure length of bristles on current brushes


Product Gantt Chart: Phase I

Task Name 👻	Dura 👻	Start 👻	Finish 👻
Initial Conceptual Designs	23 days	Mon 9/21/15	Wed 10/21/15
Risk Assessment	8 days	Mon 9/21/15	Wed 9/30/15
Design Decision Matrix	20 days	Mon 9/21/15	Fri 10/16/15
Voice of the Customer Report	3 days	Mon 10/19/15	Wed 10/21/15
Design Research	55 days	Mon 9/21/15	Fri 12/4/15
Research Similar Designs	35 days	Mon 10/19/15	Fri 12/4/15
Research Essential Design Components	20 days	Mon 9/21/15	Fri 10/16/15
Research Fabrication Options	15 days	Mon 9/28/15	Fri 10/16/15
Research Retail Options	15 days	Mon 9/28/15	Fri 10/16/15
Research Material Possibilities	15 days	Mon 9/28/15	Fri 10/16/15
Research Assembly Options	10 days	Mon 10/5/15	Fri 10/16/15
Design Selection	23 days	Mon 10/19/15	Wed 11/18/15
Select Material	21 days	Mon 10/19/15	Mon 11/16/15
Select Fabrication Method	21 days	Mon 10/19/15	Mon 11/16/15
Select Motor	21 days	Mon 10/19/15	Mon 11/16/15
Select Brush Head Design	21 days	Mon 10/19/15	Mon 11/16/15
Select Enclosing Method	21 days	Mon 10/19/15	Mon 11/16/15
Select Electrical Components	21 days	Mon 10/19/15	Mon 11/16/15
Select Retail Option	16 days	Mon 10/26/15	Mon 11/16/15
Select Assembly Method	6 days	Mon 11/9/15	Mon 11/16/15
FMEA	6 days	Wed 11/11/15	Wed 11/18/15
Design Approval	0 days	Wed 11/18/15	Wed 11/18/15
I Order Parts	13 days	Thu 11/12/15	Mon 11/30/15
Order Motor	13 days	Thu 11/12/15	Mon 11/30/15
Order Bristle Materials	13 days	Thu 11/12/15	Mon 11/30/15
Order Power Source	13 days	Thu 11/12/15	Mon 11/30/15
Order Fusion Method Parts	13 days	Thu 11/12/15	Mon 11/30/15
Test Planning	17 days	Thu 11/12/15	Fri 12/4/15
Fabrication	8 days	Thu 11/19/15	Mon 11/30/15
Build Prototype	4 days	Tue 12/1/15	Fri 12/4/15
Research Alternative Designs	61 days	Mon 12/7/15	Mon 2/29/16

Jordan Chupp

Product Gantt Chart: Phase II

Phase II (January - March)	75 days	Mon 1/4/16	Fri 4/15/16
Test and Analysis I	24 days	Mon 1/4/16	Thu 2/4/16
Test Motor Speed	10 days	Mon 1/4/16	Fri 1/15/16
Analyze Ergonomics	10 days	Mon 1/4/16	Fri 1/15/16
Test Power Source	10 days	Mon 1/4/16	Fri 1/15/16
Test Electrical Components	10 days	Mon 1/4/16	Fri 1/15/16
Test Tool Effectiveness	10 days	Mon 1/4/16	Fri 1/15/16
Test Tool Effeciency	14 days	Mon 1/4/16	Thu 1/21/16
Troubleshoot Issues	10 days	Fri 1/22/16	Thu 2/4/16
Voice of the Customer II	11 days	Mon 1/18/16	Mon 2/1/16
⊿ Redesign	30 days	Fri 2/5/16	Thu 3/17/16
FMEA	3 days	Fri 2/5/16	Tue 2/9/16
Design Approval	3 days	Wed 2/10/16	Fri 2/12/16
Build Prototype	10 days	Mon 2/15/16	Fri 2/26/16
Test and Analysis I	14 days	Mon 2/29/16	Thu 3/17/16
Field Trials	21 days	Fri 3/18/16	Fri 4/15/16
Voice of the Customer Report	54 days	Tue 2/2/16	Fri 4/15/16

Jordan Chupp

Conclusion and Future Work

- Prototype Design has been selected and approved
- Failure Mode Analysis has been completed
- CAD drawings have been finalized
- Motor and electrical components are to be ordered
- Brush head manufacturing to be outsourced
- Product testing plan will be developed
- Grooming tool handle will be fabricated
- Prototype will be constructed

Questions?