TEAM 13 – NO-CONTACT GAP MEASUREMENT DEVICE

GC GENERAL CAPACITOR A CLEAN-TECH COMPANY

Samuel Giaquinto, Matthew Nagy, Forrest Parker Sponsor - Dr. Zheng; Advisor - Dr. Shih

² OUTLINE

- Background Information on Rolling Machine
- Need Statement and Goal Statement
- Objectives and Constraints
- House of Quality
- Previous Design Concepts
- Final Design Concept 1 Capacitance Sensor
- Final Design Concept 2 Strain Gauges
- Budget Analysis
- Gantt Chart and Future Plans

ROLLING MACHINE

Figure 1. Rolling Machine

Presenting: Matt N.

Figure 2. Looking down on rollers

Figure 3. Safety Feature

PRO-E MODEL

- Pro-E model with relevant dimensions.
- Only the important dimensions needed for the design.
- To scale.
- Measurements taken from the machine.

Presenting: Matt N.

Figure 4. Pro-E Model of Machine

NEED STATEMENT AND GOAL STATEMENT

Need

• The current use of feeler gauges to gap a pair of rollers is unreliable, time consuming, and potentially damaging.

Goal

• A non-invasive way of measuring the distance needs to be created.

Presenting: Matt N.

OBJECTIVES / CONSTRAINTS

- Maximize maneuverability in the applied system.
- Use sensors to measure the gaps of the rollers up to two microns.
- Can be removable or detachable and easily reassembled.
- No contact with the rollers themselves.
- System must have resistance to heat (rollers heat up to 300 Celsius)
- Total Cost: \$1,500
- Reliable with a life of up to five years.

Presenting: Matt N.

HOUSE OF QUALITY

7

			Enginee	ring Chara	acteristics		
Customer needs	Importance	Material	Precision	Portability	Durability	Software/User Compatibility	
No Contact	5	1	5	5	1	2	
Easily Maneuverability	3	3	1	5	2	1	Key
Able to Perform in High Heat Environment	2	5	3	1	5	2	5 - Strong Relationship
Accurate Readings	4	1	5	2	1	5	1 - Weak Relationship
Internal Power Source	1	1	4	5	2	2	
	Priority Σ(Importance* Rating)	29	58	55	27	39	
	Ranking	4	1	2	5	3	

Presenting: Matt N.

Figure 5. House of Quality

FINITE ELEMENT ANALYSIS

- Air space above the hot rollers simplified into 2D
- Heat transfer physics used with steel rollers and air medium

Table 1: Properties of Air	Value
Thermal Conductivity	$0.024 \text{ Wm}^{-1}\text{K}^{-1}$
Density	1.225 kgm ⁻³
Heat Capacity	1.006 kJ kg ⁻¹ K ⁻¹

Presenting: Matt N.

Figure 6. FEA for Heat Transfer

Previous Design Concepts

- Laser Triangulation
- High Resolution
 Photography
- Long Distance Microscopes

Figure 7. Laser triangulation Data

Presenting: Matt N.

CAPACITANCE SENSOR

- Keyence EX-422V capacitance displacement sensor
- Resolution of 2 µm
- Working distance of 0-10 mm.
- 20 displays per second
- Cost : \$342 per sensor

Figure 8. Sensor Head

10

Figure 9. Keyence Controller

Presenting: Forrest P.

CAPACITANCE SENSOR

11

Figure 10. Roller Frame Arm Mount Design

Presenting:

Forrest P.

Figure 11. Arms Shown Mounted to Blocks

MOUNTING ARMS

- Aluminum 6061
- Two solid plates of aluminum to be machined
- \$44.20 per plate

	Dimension Name	Value
	Thickness	0.75 inches
	Width	14.1 inches
← W →	Length	5.50 inches

Figure 13. Shop Drawing Layout

Presenting: Forrest P. Figure 12. Aluminum Plate Sizing Data

SENSOR MOUNTING CONDITIONS

- Mounting metal or mounting fasteners must not be in the metal-free zone
- For cylindrical, unshielded sensors the typical metal-free zone extends to an area of two times the sensing range of the device

Figure 14. Schematic on Proper Sensor Mounting

Presenting: Forrest P.

Figure 15. LCR Meter reading inductance change.

Design Concept – Strain Gauge

- Strain Gauges mounted to a cantilever beam that will be displaced proportional to the roller blocks
- Variance in resistance results in a varying voltage, which can be used to determine displacement

Presenting: Forrest P.

Figure 16. Strain Gauge Wheatstone Bridge.

Design Concept – Strain Gauge

- Cantilever Design
 Calculations
- Directly related to thickness, inversely related to length
- Not a function of Modulus of Elasticity
- Suggested $\frac{L}{t} > 10$

Point Force on Beam Fixed on One Side

$$\delta_B = \frac{Fa^3}{3EI}$$
 δ_B = Deflection of Beam
 $\epsilon = \frac{6M}{ht^2E}$ ϵ = Bending Strain

M = Moment (M = Fd) F = Force E = Modulus of Elasticity I = Moment of Inertia ($I = \frac{bt^3}{12}$)

Figure 17. Equations used in Cantilever Design.

Presenting: Forrest P.

Design Concept – Strain Gauge

- Half-bridge strain gauge circuits will be used in testing, full-bridge used in application
- Heat affects cancel if properly mounted to beam and placed in circuit
- Signal Conditioning and amplification will be necessary to read signal output
- Amplifies 1.5mV/V

Figure 18. Signal Conditioning and Amplification Circuit.

Presenting: Forrest P.

MICROCONTROLLER

Arduino UNO R3

- 14 digital input/output pins
- 16 MHz crystal oscillator Inputs:
- Roller temp through keypad
- Capacitance sensor, strain gauge Outputs:
- Left and right gap measurements
- Calculated center gap

Presenting: Forrest P.

Figure 19. Arduino UNO

Figure 20. LCD for Printed Outputs

STRAIN GAUGE ARM DESIGN 1

Presenting: Sam G.

Figure 21. 3D view of the Plexiglas shielding.

Figure 22. 2D view with dimensions.

STRAIN GAUGE ARM DESIGN 2

Figure 23. Screw is restricted from moving laterally, mounted block restricted from rotating.

Figure 24. Mounted block pinches cantilever into place. Sam G.

Sam G.

GANTT CHART 1/2

			16		Feb 21,	, '16		Feb 28, '16		Mar 6, '	16		N	lar 13, '1	6		M	ar 20, 1	16			Mar .	27, '16		
	Task Name 👻	Duration	TWT	T F S	S M	T W T	F S	S M T	WTF	S S M	TW	T F	S S	MT	WT	F	5 S	M	TW	TF	S	5 1	T N	WT	F
1	Finalize Design (Strain)	14 days																							
2	Signal Conditioning	5 days		_																					
3	Stain Gauges	2 days																							
4	Heat Anaylsis	5 days																							
5	Pro-E Model	14 days	1	_							6														
6	Mounting Parameters	12 days					-																		
7	Testing Strain Gauges	6 days						1			i -														
8	Inductive Sensor	14 days		-			-	110		3															
9	Testing Inductance	11 days					-		_	_															
10	Signal Conditioning (Inductance)	8 days	ł/				-																		
11	Choose Final Design	0 days									3/8														
12	Order Purchases	13 days														_								1	
13	 Installation and Calibration 	20 days																					1		
14	Coding	5 days																					1		
15	Installation	5 days																							
16	Uninstall and Recalibration	2 days																							
17	Data Collection	20 days																					- 1		

Presenting: Sam G.

Figure 25. Gantt Chart

GANTT CHART 2/2

			'16		Mar	20, '16	ĩ		Ma	r 27, '1	6			Apr 3	, '16				Apr	10, '1	5			Apr	17, '16			- 6	Apr	24, '16		
	Task Name 👻	Duration	TW	T F S	S I	M T	WT	FS	S	MT	W	TF	S	SN	T	W	TF	S	S	MT	W	TI	F S	S	М	W	T F	S	S	MT	WT	
1	Finalize Design (Strain)	14 days	2										11 - 16																			
2	Signal Conditioning	5 days																													10.00	
3	Stain Gauges	2 days																													2.22	
4	Heat Anaylsis	5 days																													1.1.1.1	
5	Pro-E Model	14 days	1																												1222	
6	Mounting Parameters	12 days																													111	
7	Testing Strain Gauges	6 days																													1.11	
8	Inductive Sensor	14 days																													1	
9	Testing Inductance	11 days																													1.1.1.1	
10	Signal Conditioning (Inductance)	8 days																														
11	Choose Final Design	0 days	1																												222	
12	Order Purchases	13 days									1																				1.1.1	
13	 Installation and Calibration 	20 days									-			-		_							-	-					-	1		
14	Coding	5 days														1															1.11	
15	Installation	5 days																													1.1.1	
16	Uninstall and Recalibration	2 days																		1												
17	Data Collection	20 days																												1		
18	Final Reinstallation	2 days	1																										1	-		
19	Design Completed	0 days																												<	4/2	7
				-																											12	

Presenting: Sam G. Figure 26. Gantt Chart

23

Future Plans

Research and experimentation with the Keyence sensor
Signal conditioning
LCR Meter

- •Acquire strain gauge adhesive
- •Purchase signal conditioning chip for strain gauge
- •Decide on final design after experimentation
- •FEM to determine heat transfer through the arms for the final design •Insulation Material Selection

Presenting: Sam G.

SUMMARY

- Identified the need for the no-contact gap measurement for rolling machine.
- Address the objectives and constraints of the project.
- Set up a House of Quality to determine important engineering characteristics.
- Prototyping and experimenting with 2 final designs.
- Set up a Gantt chart outlining future project plans.

REFERENCES

- <u>http://www.micro-epsilon.com/download/products/dat--gapCONTROL--en-us.pdf</u>
- <u>http://wiki.raspberrytorte.com/index.php?title=File:CloseUpCameraModuleRev1_3.jpg</u>
- <u>http://www.directindustry.com/prod/third-dimension/product-16646-217545.html</u>
- <u>http://www.industrologic.com/sga2man.htm</u>
- <u>http://www.rdpe.com/ex/hiw-sglc.htm</u>
- <u>http://www.ni.com/white-paper/3642/en/</u>