TEAM 13 - NO-CONTACT GAP MEASUREMENT DEVICE

Samuel Giaquinto Matthew Nagy Forrest Parker

Sponsor - Dr. Zheng; Advisor - Dr. Shih

ROLLING MACHINE²

Figure 1. Rolling Machine

Presenting: Sam G.

Figure 2. Looking down on rollers

Figure 3. Safety Feature

NEED STATEMENT AND GOAL STATEMENT

Need

• The current use of feeler gauges to gap a pair of rollers is unreliable, time consuming, and potentially damaging.

Goal

• A non-invasive way of measuring the distance needs to be created.

Presenting: Sam G.

- Pro-E model with all relevant dimensions.
- Only the important dimensions needed for the design.
- To scale.
- Measurements taken from the machine.

Presenting: Sam G.

Figure 4. Pro-E Model of Machine

OBJECTIVES

- Maximize maneuverability in the applied system.
- Use optical sensors to measure the gaps of the rollers up to two microns.
- Can be removable or detachable and easily reassembled.
- No contact with the rollers themselves.
- System must have resistance to heat (rollers heat up to 300 Celsius)
- Reliable with a life of up to ten years.

CONSTRAINTS

- Total Cost: \$1,400
- Non-invasive.
- Light enough for the machine to hold it.
- Precise and purely accurate.
- Two micron resolution.
- Simple installation/takedown if needed.
- Internal power source; cannot be connected to machine.

HOUSE OF QUALITY

7

		Engineering Characteristics					
Customer needs	Importance	Material	Precision	Portability	Durability	Software/User Compatibility	
No Contact	5	1	5	5	1	2	
Easily Maneuverability	3	3	1	5	2	1	Key
Able to Perform in High Heat Environment	2	5	3	1	5	2	5 - Strong Relationship
Accuarte Readings	4	1	5	2	1	5	1 - Weak Relationship
Internal Power Source	1	1	4	5	2	2	
	Priority Σ(Importance* Rating)	29	58	55	27	39	
	Ranking	4	1	2	5	3	

Presenting: Matt N.

Figure 5. House of Quality

DESIGN CONCEPT - LASER SENSOR

- Laser mounted on the red bars above.
- Shine the laser down through the gap in the rollers.
- Measure the amount of light that shines through.
- Compare the amount of light to the intensity of the beam that was fired.
- From the ratio, the distance between the rollers can be acquired.

Figure 6. Laser triangulation Data

Presenting: Sam G.

VICKERS HARDNESS TEST

9

- Design concept inspiration
- 136° indenter is pressed into the sample by an controlled force
- The size of the indent is determined optically by measuring the two diagonals of the square indent.
- HV = Constant x test force / indent diagonal squared

Figure 7. Indentation measurement

Presenting: Forrest P.

DESIGN CONCEPT – HIGH RESOLUTION DIGITAL PHOTOGRAPHY

- Camera mounted on the red bars above.
- Zoomed enough to be able to take a clear picture.
- Black sheet (or other noticeable color) placed underneath to help visibility.
- Zoom level known.
- Use algorithm to find the distance with the zoom level and the photograph.
- Example: Kalu's Mechanics and Materials II Vickers Hardness Lab

Presenting: Forrest P.

PHOTO-MICROSCOPY

Main challenge: Focusing on a 80-200 micron gap from 6-18 inches away

Figure 8. Raspberry Pi Camera Presenting: Forrest P. Design Concept: Using M12 lenses on camera to achieve desired focal length

Figure 9. M12 Lense Mount

CHALLENGES AND RISKS

Presenting: Forrest P.

Figure 10. Comparing Design Concepts

BRIEF FUTURE PLANS OUTLINE

- October
 - Finalize design concepts
 - Pick final design
- November
 - Budget analysis
 - CAD design and simulation
- December
 - Order parts
 - Begin product testing

GANTT CHART

Novem

11/15

11/8

14

Presenting: Matt N. **BANTT CHAI**

Figure 11. Gantt Chart

SUMMARY

- Identified the need for the no-contact gap measurement for rolling machine.
- Address the objectives and constraints of the project.
- Set up a House of Quality to determine important engineering characteristics.
- Looked into two different potential designs.
- Identified challenges and risk of each design.
- Set up a Gantt chart to prepare for future project plans.

REFERENCES

- <u>http://www.micro-epsilon.com/download/products/dat--gapCONTROL--en-us.pdf</u>
- <u>http://wiki.raspberrytorte.com/index.php?title=File:CloseUpCameraModuleR</u> <u>ev1_3.jpg</u>
- <u>http://www.directindustry.com/prod/third-dimension/product-16646-</u> 217545.html